
Learning Reduced Fluid Dynamics

Zherong Pan, Xifeng Gao, Kui Wu
Lightspeed Studios

{zrpan,xifgao,kwwu}@global.tecent.com

Abstract

Predicting the state evolution of ultra high-dimensional, time-
reversible fluid dynamic systems is a crucial but computation-
ally expensive task. Existing physics-informed neural net-
works either incur high inference cost or cannot preserve
the time-reversible nature of the underlying dynamics sys-
tem. We propose a model-based approach to identify low-
dimensional, time reversible, nonlinear fluid dynamic sys-
tems. Our method utilizes the symplectic structure of reduced
Eulerian fluid and use stochastic Riemann optimization to
obtain a low-dimensional bases that minimize the expected
trajectory-wise dimension-reduction error over a given dis-
tribution of initial conditions. We show that such minimiza-
tion is well-defined since the reduced trajectories are differ-
entiable with respect to the subspace bases over the entire
Grassmannian manifold, under proper choices of timestep
sizes and numerical integrators. Finally, we propose a loss
function measuring the trajectory-wise discrepancy between
the original and reduced models. By tensor precomputation,
we show that gradient information of such loss function can
be evaluated efficiently over a long trajectory without time-
integrating the high-dimensional dynamic system. Through
evaluations on a row of simulation benchmarks, we show that
our method reduces the discrepancy by 50-90 percent over
conventional reduced models and we outperform PINNs by
exactly preserving the time reversibility.

Introduction
High-dimensional Partial Differential Equations (PDE),
especially fluid dynamic systems, find vast applications
in the field of scientific computation (Moin and Ma-
hesh 1998; Alfonsi 2009), PDE-constrained optimiza-
tion (Biegler et al. 2003; Herzog and Kunisch 2010), design
prototyping (Baysal and Eleshaky 1992; Zang and Green
1999), fluidic devices design (Du et al. 2020; Li et al. 2022),
and digital entertainment (Bridson and Batty 2010; Bridson
2015), to name a few. A fundamental task of all these appli-
cations lies in the efficient prediction of numerical solutions
over a long horizon. In design prototyping, for example, a
designer needs to quickly preview the fluid flow surrounding
an aerial vehicle in order to refine its form factor. In a game
engine, a fluid simulator needs to achieve real-time per-
formance to provide interactive special effects for players.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although abundant numerical tools (Petrila and Trif 2004;
Demkowicz et al. 1989) have been developed over the past
decades with improved efficacy, their algorithmic complex-
ity is still challenging the limits of current computational
resources. On a parallel front, the idealized, incompressible,
inviscid Eulerian fluid should be time reversible and energy
preserving (Duponcheel, Orlandi, and Winckelmans 2008),
and dedicated numerical schemes are proposed to faithfully
preserve these properties in a discrete setting (Rowley and
Marsden 2002; Pavlov et al. 2011). This implies that the ini-
tial condition of a trajectory can be recovered from any state
thereafter and the discrete total energy is a constant through-
out the predicted trajectory. Although idealized fluid models
are not pursued in applications, their accurate prediction is
an important criterion of reliable numerical schemes.

Recently, a row of approaches have been proposed to
identify high-dimensional fluid dynamic systems using com-
pact learnable models. A large body of prior works fall into
the category of non-intrusive approaches, which parame-
terize fluid dynamic transfer function using general learn-
ing models such as radial basis functions (Zhang, Kou, and
Wang 2016), feed-forward networks (Hsieh and Tang 1998),
recurrent networks (Pearlmutter 1989; Wang et al. 2018),
convolutional autoencoder (Wu et al. 2021; Hasegawa et al.
2020), etc. Unfortunately, all these non-intrusive learning
techniques cannot preserve the time reversible property of
idealized Eulerian fluid, potentially leading to large predic-
tion error or requiring a large dataset. Recent works pro-
pose physics-informed loss (PINNs) (Raissi, Perdikaris, and
Karniadakis 2019) to minimize the physics-rule violation as
much as possible, but since the underlying learning models
are not exactly time reversible, the energy loss can still occur
and even accumulate over long trajectories. To ensure exact
time reversibility, the seminal work (Greydanus, Dzamba,
and Yosinski 2019) proposes to learn the Hamiltonian oper-
ator and then uses symplectic integrator to predict the tra-
jectory. Although this method could be applied to fluid me-
chanics, their computational cost is as high as conventional
fluid simulator (if not even higher) since the Hamiltonian
network needs to be evaluated separately for each fluid par-
ticle. So far, we are still lacking a learning-based fluid dy-
namic model that both preserves exact time reversibility and
reduces the dimension.

On the other hand, model reduction approaches (Berkooz,

Method Time-Reversible Low-Dimensional

PINNs ✓

HNN ✓

Ours ✓ ✓

Table 1: Features of representative methods.

...
Ū

I v̄+(v̄0, Ū) v̄+(v̄1, Ū) v̄+(v̄T , Ū)

Ldyn Ldyn Ldyn

Figure 1: Given a distribution of initial conditions I, we
identify a reduced-order fluid model v̄+(v̄, Ū) by optimizing
the bases Ū that minimize the expected trajectory-wise dis-
crepancy loss Ldyn. Our output model v̄+(v̄, Ū) can perform
efficient and as-accurate-as-possible fluid trajectory predic-
tions.

Holmes, and Lumley 1993; Rowley 2005) have shown
great potential in compressing high-dimensional PDE, but
their connection with learning-based approaches have been
largely ignored. The earliest data-driven method of Proper
Orthogonal Decomposition (POD) (Berkooz, Holmes, and
Lumley 1993) finds the optimal linear subspace that best ex-
plains the variation of the state distribution. However, POD
does not consider time-dependency, which is remedied by
Dynamic Model Decomposition (DMD) (Schmid 2010) that
finds the optimal linear subspace that best approximates the
Koopman operator. In comparison, data-free model reduc-
tion approaches, such as balanced POD (Rowley 2005),H2-
optimization (Gugercin, Beattie, and Antoulas 2006), and
modal analysis (Taira et al. 2017), identify bases correspond-
ing to the intrinsic property of PDE by analyzing the system
transfer matrices in the frequency domain, and are thus inde-
pendent of data. Unfortunately, these techniques are largely
limited to linear systems and their extensions to nonlinear
fluid dynamics, such as (Yang, Jiang, and Xu 2019), are in
their infancy.

We propose a learning-based model reduction technique
to identify low-dimensional, exactly time reversible fluid dy-
namic systems and we summarize our features in Table 1.
We first interpret the linear subspace of fluid velocities as
a point on the Grassmannian manifold and study the de-
pendence of reduced trajectories on the choice of subspace.
Thanks to the time reversibility, we show that the map from
the subspace bases to reduced trajectories is globally differ-
entiable, which allows us to optimize the reduced model via
gradient-based Riemannian optimization. We further pro-
pose a trajectory-wise discrepancy loss that penalizes the
difference between the full-order and the reduced trajecto-
ries. To make the optimization tractable, we propose a tensor
precomputation scheme to accelerate the back-propagation
of gradient information. Our high-level idea is to fine-tune

the reduced fluid model to minimize the expected trajectory-
wise discrepancy loss over the distribution of initial condi-
tions. In essence, our method extends prior optimal reduced
bases construction algorithm (Berkooz, Holmes, and Lum-
ley 1993; Schmid 2010) to the nonlinear, idealized fluid dy-
namic model. As an intrusive approach, our method pre-
serves the desirable property of time reversibility. When
compared with POD-type reduced model baseline on a row
of idealized fluid simulation benchmarks, our method low-
ers the discrepancy by 50% − 90%. We further show that
general learnable models can incur energy loss that accumu-
lates over time, while our method exactly preserves the total
energy.

Related Work
We review related works on machine learning for solving
ODE and PDE, reduced physics models beyond fluid dy-
namics, and finally learning under hard constraints.

Learning for Solving ODE and PDE: Machine learn-
ing can identify complex behaviors of dynamic systems
from groundtruth data. (Chen et al. 2018) propose to learn
such dynamics as a general Ordinary Differential Equation
(ODE) with the time derivative of state predicted via a neural
network. However, it does not reflect the spatial and tempo-
ral structures of certain systems, which limits its accuracy,
data-efficacy, and scalability to high-dimensional systems
such as fluids. Several follow-up works improve the network
architecture to reflect additional structures. For example, the
inter-dependency among spatial variables is oftentimes local
and sparse, which could be modeled via neighborhood mes-
sage passing (Battaglia et al. 2016; Li et al. 2019). Hamil-
tonian dynamics are time reversible and energy preserving,
which is modeled by learning the Hamiltonian operator in
“canonical” coordinates (Greydanus, Dzamba, and Yosin-
ski 2019), generalized coordinates (Cranmer et al. 2020),
or ambient space with additional constraints (Finzi, Wang,
and Wilson 2020). However, the above techniques are us-
ing Lagrangian coordinates, while fluid mechanics are of-
tentimes modeled via an Eulerian grid, see e.g. (Takahashi
et al. 2021), which is a major point of difference from our
method. Parallel efforts have been made to learn Eulerian
fluid mechanics (Um et al. 2020; Takahashi et al. 2021; Holl,
Thuerey, and Koltun 2020; Prantl, Bonev, and Thuerey 2019;
Kim et al. 2019). Some of these works (Um et al. 2020;
Takahashi et al. 2021; Holl, Thuerey, and Koltun 2020) learn
to control fluids via differentiable simulators but the dy-
namic systems are not learned. Other works (Prantl, Bonev,
and Thuerey 2019; Kim et al. 2019) learn to predict short
future trajectories of free-surface flows. As the major differ-
ence from these techniques, our goal is to predict arbitrarily
long trajectories by utilizing the time reversible structure of
the dynamic system to guarantee stability. On the downside,
however, our method cannot predict free-surface flows.

Learning Reduced Physical Models: Model reduction
is a special kind of dimension reduction technique deal-
ing with time series datasets and we refer readers to (Row-
ley and Dawson 2017) for a review of its application in
fluid mechanics. Other than fluid, reduced models have

0 2 4
0.0

2.5

5.0

7.5

10.0

12.5

diffuse=0
diffuse=1
diffuse=10
diffuse=100 (a)

0 2 4

4

6

8

10

12

diffuse=0
diffuse=1
diffuse=10
diffuse=100 (b)

Figure 2: We plot the energy dissipation cause by a viscous
term under µ = 0,1,10,100, simulated using our learned
reduced model (a) and the groundtruth fullspace model (b).

been adopted in predicting the behaviors of solid (Sampaio
and Soize 2007), electromagnetic fields (Ralph-Uwe, Ernst,
and Spitzer 2008), quantum and molecular mechanics (Mo-
han and Fredrickson 2020), neuron propagations (Amsallem
and Nordstrom 2016), etc. Conventional techniques for
model reduction are restricted to linear dynamic systems,
for which optimal linear subspace can be identified via
POD or DMD (Berkooz, Holmes, and Lumley 1993; Row-
ley 2005) and the projected dynamic system can be pre-
computed via Galerkin projection. More general machine
learning techniques have been proposed for an extension to
nonlinear dynamics. For example, convolution autoencoder
has been used to identify nonlinear subspaces (Wu et al.
2021; Hasegawa et al. 2020). The ROM-net (Daniel et al.
2020) learns to select a suitable subspace from a dictionary.
(Li et al. 2017) proposes to represent the linear subspace
bases as the output of a universal neural network. In or-
der to efficiently project the nonlinear dynamic system into
the subspace, the Discrete Empirical Interpolation Method
(DEIM) (Chaturantabut and Sorensen 2010) has been pro-
posed to select a sparse set of interpolation points. The inter-
polation points are then contracted with the subspace bases
in an intrusive manner. Non-intrusive approaches use uni-
versal neural networks to learn the entire nonlinear transfer
function (Wu et al. 2021; Hasegawa et al. 2020; Lee et al.
2021) or part of the nonlinear terms (Maulik et al. 2019).
It has been noticed in (Amsallem and Nordstrom 2016; Liu
et al. 2015) that time reversibility and energy preservation
features can be preserved by using an intrusive approach,
which is a main reason behind our technical choice.

Learning Under Hard Constraints: Our work deals with
idealized fluid satisfying two hard constraints: 1) incom-
pressibility and 2) time reversibility. Since prominent train-
ing algorithms (Duchi, Hazan, and Singer 2011; Kingma and
Ba 2014) and neural network architectures are designed for
unconstrained optimization, dealing with hard constraints
has been a long-standing problem (Márquez-Neila, Salz-
mann, and Fua 2017). There are two general approaches to
inform a learned model of hard constraints: softening and
constraint layers. Softening transforms the hard constraint
into soft losses and relies on unconstrained optimizations. In
the learning of physical models, softening has been adopted
to enforce physical correctness (Sirignano and Spiliopou-
los 2018; Ober-Blöbaum and Offen 2022), fluid incompress-
ible (Ajuria Illarramendi et al. 2020), and collision-free con-
straints (Tan et al. 2022), and data augmentation has been

used to enforce invariance to rigid (Morozov, Zgyatti, and
Popov 2021) and Galilean transformations (Ling, Jones, and
Templeton 2016). A common problem with all these ap-
proaches lies in the unpredictable constraint violation in
regions of insufficient data coverage. To exactly impose
hard constraints, a series of works (Amos and Kolter 2017;
Agrawal et al. 2019) propose to formulate the constrained
optimization as a differentiable layer in the neural network
architecture. In particular, the entire fluid simulator has been
formulated as a differentiable layer (Schenck and Fox 2018;
Takahashi et al. 2021) for model-based control and system
identification. The incompressible constraint has also been
formulated as an elliptic PDE solver layer in (Mohan et al.
2020). Although these techniques can enforce hard con-
straints, the cost of forward- and back-propagations through
these layers are prohibitive. Our method uses the constraint
layer approach to enforce fluid incompressibility and time
reversibility, by incorporating the reduced model (Liu et al.
2015) as our differentiable layer. However, we encode the
constraint property into the reduced bases, which is fixed
during test time, leading to the low computational cost of
trajectory prediction.

Time Reversible Reduced Fluid Model
We briefly review the underlying geometric structure and as-
sociated computational model of idealized, incompressible,
inviscid fluid (Pavlov et al. 2011). Given a simulation do-
mainM, the fluid configuration can be described as a vector
field v ∈ V(M) where v(x) for any x ∈M represents the
velocity of fluid at x. The governing equation for v is:

v̇ +∇ × v × v +∇λ = 0 s.t. ∇ ⋅ v = 0, (1)

where λ is the pressure field, which is also the Lagrangian
multiplier for the divergence-free constraint ∇ ⋅ v = 0.
The above system is closed with appropriate initial and
boundary conditions. (Pavlov et al. 2011) proposed time-
reversible, energy preserving spatial and temporal dis-
cretization schemes for Equation 1. However, directly time
integrating the discrete system requires solving large-scale
nonlinear system equations. Reduced-order model (Liu et al.
2015) scales down the cost by embedding v into a p-
dimensional subspace with divergence-free, orthogonal ba-
sis U , giving v = Uz where z is the coefficient vector.
The reduced-order governing equation can be derived via
Galerkin projection:

ż + ∫
M

UT
∇× (Uz) × (Uz) = 0, (2)

where the second term is the reduced-order advector, which
could be succinctly written as a contraction with a third-
order tensor Ckij :

żk +∑
i

∑
j

Ckijzizj = 0

s.t. Ckij ≜ ∫
M

⟨Uk,∇×Ui ×Uj⟩ ,
(3)

where we use zk (resp. Uk) to denote the kth element (resp.
column). For fast reduced trajectory prediction, the tensor

Ckij is precomputed, and a small p is used. An essential fea-
ture of Ckij is antisymmetry: Ckij = −Cjik, which implies
that the continuous-time, reduced system is also energy-
preserving as:

d

dt
∥z∥2 =2∑

kij

Ckijzkzizj =∑
kij

(Ckij −Cjik)zkzizj = 0.

Using a variational integrator, e.g. the trapezoidal rule, the
energy will also be conserved in a time-discrete computa-
tional model. We use a superscript + to denote variables at
the next time instance, the superscript d denotes the variable
at the dth timestep, and δt denotes timestep size. The trape-
zoidal rule relates z+ and z by:

z+(z) ∶
z+ − z

δt
+C(z+) = 0

s.t. C(z+) ≜∑
ij

C∶ij
z+i + zi

2

z+j + zj

2
,

(4)

from which z+ can be solved via the Newton-Raphson
method to satisfy ∥z+∥2 = ∥z∥2, i.e. energy conservation, as
well as discrete-time reversibility. These remarked features,
originally discovered in (Pavlov et al. 2011; Liu et al. 2015),
achieve an ideal balance between computational efficacy and
numerical stability. As pointed out by (Pavlov et al. 2011),
although real-world flows are not ideally energy-preserved,
simulating ideal flows is a crucial benchmark for evaluating
the stability and fidelity of a simulator. More general non-
reversible flows can be modeled by adding additional con-
stitutive terms. As an example, we could add a viscous term
µ∇(∇ ⋅ v) to model energy dissipation and this term can
be projected to the reduced space via Galerkin projection.
In Figure 2, we plot the procedure of energy dissipation un-
der different µ using both our learned reduced model and
the groundtruth fullspace model. We formalize and prove
these properties in Appendix 2 and Appendix 3. In particu-
lar, Equation 4 defines a unique z+ given z and a sufficiently
small δt, so we define the function z+(z) by a slight abuse
of notations. The accuracy of a reduced model relies on a
proper choice of the basis vector U , which remains a diffi-
cult but underappreciated problem.

Reduced Model Optimization
As illustrated in Figure 1, we propose to identify reduce-
order fluid models via gradient-based optimization of U
to minimize the trajectory-wise discrepancy between a
reduced-order model (Equation 3) and the full-order model
(Equation 1). In this section, we first discretize the spatial
computational domain (Section), we then propose our dis-
crepancy loss function (Section), and finally discuss our op-
timization algorithm (Section).

Spatial Discretization
We assume thatM is discretized using a tetrahedron mesh
or a rectangular grid via Discrete Exterior Calculus (DEC)
as in (Pavlov et al. 2011). As a result, each vector field has
a finite dimension n ≫ p. We use a bar to denote discrete
variable so v̄ ∈ Rn. Ū belongs to the intersection of Stiefel

manifold St(n, p) and the divergence-free basis subspace:
D(n, p) = {Ū ∈ Rn×p∣∇̄ ⋅ Ū = 0}, where ∇̄⋅ ∈ R(n−m)×n is
the discrete divergence operator and m≫ p is the dimension
of divergence-free velocity subspace. The elements of Ū can
also be identified with the elements of St(m,p). Indeed, we
can find a set of unit, orthogonal bases D̄ ∈ Rn×m spanning
the subspace of divergence-free velocity fields. For each Ū ,
we can identify some Ūm ∈ St(m,p) such that Ū = D̄Ūm.
As illustrated in Figure 1, a point on St(n, p) is the bases
of a p-dimensional velocity field subspace, while a point on
St(m,p) is the bases of a p-dimensional divergence-free ve-
locity field subspace. Since we merely use Ū to project the
velocity field into a subspace, we are only interested in the
lower-dimensional Grassmannian Manifold (the manifold of
velocity subspace irrespective of the particular bases), but
we use Stiefel representation for better memory and compu-
tational efficacy. In other words, we treat Ū as our decision
variable. We further write the tensor coefficient Ckij as a
function C(Ūk, Ūi, Ūj), which is derived by discretizing the
continuous definition of Ckij in Equation 3 using DEC.

Lifting Transfer Function to Full-Space
In order to optimize the accuracy of reduced dynamic sys-
tem, we first need to compare simulated trajectories gener-
ated by different bases Ū . However, the coordinate vector
z of different Ū is incomparable, as they reside in differ-
ent linear subspaces. To resolve this problem, we propose to
lift z to v̄ = Ūz in the ambient space Rn, so that two vec-
tors can be compared by the induced metric in the Euclidean
space. Further, we can smoothly extend the reduced-order
simulator function to the ambient space using the projection
operator P̄ = Ū ŪT and P̄⊥ = I − P̄ :

v̄+(v̄, Ū) ≜ Ūz+(ŪT v̄) + P̄⊥v̄. (5)

In other words, the velocity component orthogonal to the
subspace is stationary, and the tangential velocity is gov-
erned by the reduced dynamic system. As detailed in Ap-
pendix 4, the above extension can be written as a func-
tion defined on the Grassmannian manifold: v̄+(v̄, P̄m) ∶

Rn ×Gr(m,p) ↦ Rn, where we denote P̄m = Ūm [Ūm]
T

.
With the smooth extension, we can evaluate the derivatives
of v̄+ with respect to v̄ and the subspace. We can also com-
pare two velocity fields generated by reduced-order simula-
tors using different subspaces. Note the full-order dynamics
(Equation 1) can be identified with Um = Im×m. The above
lifting is not unique, and a useful alternative is to discard the
orthogonal component, i.e. setting P̄⊥v̄

+ = 0, which is dis-
cussed in Appendix 4. As our major contribution, we show
in Appendix 4 that the above function v̄+ is a well-defined
smooth function on Gr(m,p). We further show that for any
differentiable loss function L(v̄+), its derivatives with re-
spect to the bases can be efficiently computed under a proper
representation of Ū as a manifold point.

Reduced Discrepancy Loss
The differentiable structure of reduced fluid allows us to
minimize the discrepancy between reduced- and full-order

model in an efficient model-based manner. Given two ve-
locity fields v̄ and v̄+, a full-order model should satisfy the
governing equation of motion, which inspires the following
discrepancy measure:

Ldyn(v̄
+, v̄) ≜

∥D̄D̄T v̄+ − v̄

δt
+C(D̄D̄T ,

v̄+ + v̄

2
,
v̄+ + v̄

2
)∥

2

.
(6)

This is similar to the physics correctness loss used in (Sirig-
nano and Spiliopoulos 2018; Ober-Blöbaum and Offen
2022) and we absorb the linear divergence-free constraint by
using the projection operator D̄D̄T . Again, evaluating L in-
volves a sparse linear solve for each of the T timesteps. But
we can accelerate this computation thanks to the low-rank
property of the velocity fields. Since, v̄ and v̄+ both reside in
low-rank spaces, we can write:

C(D̄D̄T ,
v̄+ + v̄

2
,
v̄+ + v̄

2
) =

∑
ij

C(D̄D̄T , Ūi, Ūj)
z̄+i + z̄i

2

v̄+j + v̄j

2
,

and precompute the tensor C(D̄D̄T , Ūi, Ūj) via p2 sparse
linear solves at the cost of O(nωp2). For a trajectory with
T ≫ p2 timesteps, this operator reduces the cost of evaluat-
ing Ldyn from O(nωT) to O(nωp2 + Tnp2).

Stochastic Riemann Optimization
Using a low-dimensional subspace, it is impossible to ap-
proximate all fluid simulation trajectories with sufficient ac-
curacy. Instead, reduced models are designed to optimize a
subset of trajectories with a given distribution I of initial
conditions, i.e. v̄0 ∼ I and our goal is to solve the following
problem via stochastic Riemann optimization:

argmin
Ū∈D(n,p)∩St(n,p)

Ev̄0∼I [
T

∑
d=1

γd
Ldyn(v̄

d, v̄d−1)] , (7)

where T is the horizon of trajectory and γ ∈ (0,1] is a con-
stant discount factor. Riemann optimization is a well-studied
problem in both deterministic and stochastic settings and
we use the RAMSGRAD algorithm proposed in (Becigneul
and Ganea 2019). This algorithm requires both the retrac-
tion and parallel transport operators on St(n, p). We use QR-
factorization for the retraction operator (Bendokat, Zimmer-
mann, and Absil 2020). Unfortunately, there is no efficient
way to compute the parallel transport operator (Edelman,
Arias, and Smith 1998), so we approximate the transport op-
erator by projecting out the non-tangential component. This
corresponds to using a single step of forward Euler inte-
grator to solve the associated ODE of the transport opera-
tor. Again due to time reversibility, the objective function is
globally differentiable with respect to Ū under compact I
and sufficiently small δt. We outline our forward-backward
gradient propagation and adapted RAMSGRAD algorithm
in Appendix 1. These algorithms are well-defined due to the
following lemma:

10 20 30 40 50
p

2

4

6

8

Ti
m

e(
m

s)

Figure 3: The cost of evaluating z+(z) plotted against p.

Lemma 0.1. For any compact initial distribution I, there
exists a sufficiently small δt, such that the objective function
∑

T
d=0 γ

dLdyn(v̄
d) is globally differentiable, i.e. for any z0 ∈

I and Ū ∈ D(n, p) ∩ St(n, p).

Proof. Since I is compact, v̄0 is uniformly upper bounded
by some r and ∥z0∥ = ∥ŪT v̄0∥ ≤ r. By Corollary 2.5, there
exists a sufficiently small δt making any zd a differentiable,
reversible function of z0. This also implies v̄d is a differen-
tiable, reversible function of v̄0 under the definition of Equa-
tion 5, and our result follows.

Evaluation
We implement our method using Pytorch with a fluid simu-
lator implemented via native C++ with CPU parallelization,
and perform all the computations on an AMD Threadripper
3970X CPU having 32 cores. We initialize our method us-
ing a conventional POD-type algorithm. Given I, we first
sample a set of N trajectories using the full-order dynam-
ics (Equation 1) and then perform a POD-type basis extrac-
tion. The number of extracted bases is determined by trun-
cating the eigenvalues below ϵ of the largest eigenvalue. We
always use a batch size of 1. The performance of our method
is summarized in Table 2. We consider two variants of our
method: coupled case, where Ckij is treated as a function
C(Uk, Ui, Uj) as discussed in Section , and decoupled case,
where Ckij is treated as an antisymmetric independent deci-
sion variable. Our main experiments are performed with the
coupled case. Experiments with the decoupled case and a
summary of decision variables are included in Appendix 5.
The efficacy of trajectory prediction using a reduced-order
model depends on p as illustrated in Figure 3, so the runtime
performance of both the POD baseline and our method are
the same, while the cost of evaluating the full-order model
is 252ms (26× slower than the reduced-order model with
p = 49).

Our first benchmark is Taylor vortices (Pavlov et al.
2011), where two vortices are separated by a distance
slightly larger than the critical threshold. We use a veloc-
ity field discretized on a 64 × 64 rectangular grid with the
periodic boundary condition, leading to n = 8192. This is
a single trajectory (I is deterministic) and we set T = 500,
δt = 0.01. We experiment with four parameters ϵ = 0.05,
0.01, 0.001, and 0.0001 and the number of bases is p = 8,
11, 16, and 25, correspondingly. With each Ū as the initial
guess, we run our optimizer for 24 hours. In Figure 5bc, we
plot the trajectory-wise discrepancy loss against the number

0°

45°

90°

135°

180°

225°

270°

315°

0
50

100
150

Discrepancy - Our Method
POD

(a) 1

0.1
0.3

0.5
0.7

0.9

2

0.1
0.3

0.5
0.7

0.9

Di
sc

re
pa

nc
y

0
25
50
75
100
125
150
175

(b) 1

0.1
0.3

0.5
0.7

0.9

2

0.1
0.3

0.5
0.7

0.9

Di
sc

re
pa

nc
y

0
25
50
75
100
125
150
175

(c)

Figure 4: (a): The trajectory-wise discrepancy with respect to θ for our third benchmark. (bc): The initial (b) and final (c)
trajectory-wise discrepancy with respect to θ1, θ2 for our forth benchmark.

Benchmark ϵ = 0.05 ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001
p Loss-POD Loss-Ours p Loss-POD Loss-Ours p Loss-POD Loss-Ours p Loss-POD Loss-Ours

Taylor Vortices 8 4.84 0.58 11 3.93 0.39 16 1.99 0.17 25 0.70 0.07
Plume Rise 6 57.04 6.37 9 28.23 5.38 15 18.53 2.30 26 5.96 1.44
Plume Rise+Obs. 5 133.16 10.48 8 46.47 8.60 16 17.57 2.57 30 5.71 1.05
Spherical Plume - - - 36 120.89 44.89 - - - - - -
Two Plume - - - 59 103.23 49.22 - - - - - -

Table 2: Summary of benchmarks for comparing POD and our method under different ϵ and p.

of bases p and the convergence history of our method. Com-
pared with POD bases, our method reduces the discrepancy
loss by 87.93%, 90.12%, 91.47%, and 90.16%, respectively.
Snapshots are shown in Figure 5a, where our method pre-
dicts a velocity field closer to the full-order groundtruth.

Our second benchmark involves having a smoke plume
rise at a constant speed. We use a rectangular domain of
[0,1]2 with all Dirichlet boundary conditions. The region of
[0.25,0.75] × [0.125,0.375] is occupied by the smoke with
a constant speed (0, 1), the remaining regions have zero ve-
locity, and we use T = 1000. All other settings are the same
as our first benchmark. The discrepancy loss and conver-
gence history are plotted in Figure 6bc. We experiment with
four parameters ϵ = 0.05, 0.01, 0.001, and 0.0001, the cor-
responding numbers of bases p are 6, 9, 15, and 26, respec-
tively. Our method reduces the discrepancy loss by 88.82%,
80.94%, 87.60%, and 75.79%, respectively. We have also
tested a variant of our method with an obstacle in the sim-
ulation domain, where our method reduces the discrepancy
loss by 92.13%, 81.49%, 85.38%, and 81.70%, respectively.
Snapshots of our second benchmark are shown in Figure 6a
and Figure 7 of Appendix 9.

In our first benchmark, Taylor vortices (Pavlov et al.
2011), we further analyze the sensitivity of our method with
respect to the initial guess Ū . To this end, we first com-
pute Ū via POD and then corrupt Ū using a random noise
bases Ũ with each element sampled according to the trun-
cated normal distribution with µ = 0, σ = 1 and truncated
to range [−1,1]. We then use the following initial guess:
Retract(Ũ , D̄D̄T ŨΣ), where Σ is a scaling diagonal ma-

trix such that each column of ŨΣ has l2-norm equals to
some ϵ̃ and ϵ̃ controls the magnitude of random noise. Here
multiplying by D̄D̄T ensures that our noise is divergence-
free. In Figure 6, we profile the convergence history with
ϵ̃ = 0.01,0.05,0.25,0.5. Although the noise can drastically
change the initial discrepancy loss, all four instances can re-
duce the loss to similar levels after sufficiently many itera-
tions. Our analysis also implies that the POD baseline pro-
vides a good initial guess of Ū , because a fully noisy initial-
ization of Ū can lead to a worse result.

In the recent work (Brandstetter, Worrall, and Welling
2022), authors proposed two training modes for learning
neural PDE solver, one-step training and full-unrolling. One-
step training cuts off the gradient after a single timestep,
while the full-unrolling mode considers the full gradient
of Equation 7 over the entire trajectory. We compare the two
modes in Figure 7 in terms of trajectory-wise discrepancy
loss, using our second benchmark scenario, rising smoke
plume. Both modes can reduce the loss after 3000 iterations,
although there is some initial fluctuation in one-step train-
ing, while full-unrolling leads to significantly faster conver-
gence. We use the full-unrolling mode for all other exam-
ples.

Our third benchmark involves a spherical smoke plume,
with initial diameter 1/3 and speed 1.0 located in the cen-
ter of a [0,1]2 domain, moving in varying directions. We
assume the direction of motion is parameterized by the an-
gle θ ∈ [0,2π] sampled from the initial distribution I =
U([0,2π]). We use a velocity field discretized on a 64 × 64
rectangular grid with Dirichlet boundary condition (n =
8320). Our training dataset for the POD baseline contains

(a)
10 15 20 25

#Bases

0

1

2

3

4

5

Di
sc

re
pa

nc
y

POD
Our Method

(b)
0 10 20

Elapsed Time (hr)

0

1

2

3

4

5

Di
sc

re
pa

nc
y

coupled(8)
coupled(11)
coupled(16)
coupled(25)

(c)

Figure 5: (a) Velocity magnitude field snapshots of the Taylor vortices benchmark, generated by full-order model (top row),
our method with ϵ = 0.0001 and p = 25 (middle row), and POD with ϵ = 0.0001 and p = 25 (bottom row). (b) Trajectory-wise
discrepancy loss of POD and our method, under different p. (c) The convergence history of our method over 24 hours.

0 2500 5000 7500 10000 12500
#Iteration

0

5

10

15

20

Di
sc

re
pa

nc
y

coupled(8)(0.01)
coupled(8)(0.05)
coupled(8)(0.25)
coupled(8)(0.5)
coupled(8)(0.5) More Iter.
coupled(8)(noise)

ϵ̃ Loss-Init. Loss-8k-Iter. Loss-12k-Iter.

0.01 4.84 0.79 N/A
0.05 5.04 0.83 N/A
0.25 10.16 1.23 N/A
0.5 22.77 1.51 1.08

Noise 21.06 2.37 N/A

Figure 6: The convergence history of four instances of learn-
ing reduced Taylor vortices with ϵ = 0.05, p = 8, and differ-
ence noise levels ϵ̃ = 0.01,0.05,0.25,0.5. We first run the
four training instances for 8000 iterations, which already
brings the ultimate discrepancy loss down to similarly low
levels. We then give the ϵ̃ = 0.5 instance another 4500 iter-
ations (purple after red curve) and it could outperform the
ϵ̃ = 0.25 instance. Finally, we tried using a fully noisy ini-
tialization of Ū and the result is much worse than other in-
stances.

N = 8 trajectories with evenly sampled θ = 0○,45○,90○,⋯.
With T = 500, δt = 0.01, ϵ = 0.01, p = 36, we run our
method for 12200 iterations, taking 72 hours to converge.
We then test our method on another 24 evenly sampled
θ = 7.5○,22.5○,30○,⋯, which are not covered by the train-
ing dataset (some snapshots can be found in Figure 8 of Ap-
pendix 9). As plotted in Figure 4a, our method reduces the
discrepancy by 54.65% on average.

Our fourth benchmark extends the third one by involving
two smoke plumes, located at (0.5, 0.25) and (0.5, 0.75).
The directions of motion θ1, θ2 ∈ [0, π] are sampled from
the initial distribution I = U([0, π]2) and we set ϵ =

0 500 1000 1500 2000 2500 3000
#Iteration

10

20

30

40

50

Di
sc

re
pa

nc
y

coupled(6)
coupled(6) One-Step
coupled(9)
coupled(9) One-Step

Mode ϵ/p Loss-POD Loss-3k-Iter.

One-Step 0.05/6 57.39 24.12
Full-Unrolling 0.05/6 57.39 6.37

One-Step 0.01/9 28.23 15.71
Full-Unrolling 0.01/9 28.23 5.38

Figure 7: The convergence history over 3000 iterations of
four instances of learning reduced smoke plume rising tra-
jectory. We use two sets of instances: ϵ = 0.05, p = 6 and
ϵ = 0.01, p = 9. For each set, we compare one-step and full-
unrolling mode of training.

0.01, p = 59. Our training dataset for the POD base-
line contains N = 25 trajectories with 5 evenly sampled
θ1,2 = 0○,72○,144○,216○,288○. Other parameters are the
same as those of our third benchmark. We run our method
for 18000 iterations, taking 72 hours to converge (some
snapshots can be found in Figure 9 of Appendix 9). After-
wards, we test our method on another 25 evenly sampled
θ1,2 = 36○,108○,180○,252○,324○ that are not covered by
the training dataset. As plotted in Figure 4bc, our method
reduces the discrepancy by 59.28% on average.

Conclusion
We propose a model-based approach to fine-tune reduced
fluid dynamic systems. By evaluating several simulation
benchmarks, we show that our method outperforms the POD

baseline. On the downside, our trajectory prediction has se-
quential dependence and cannot exploit GPU parallelization.
Even with our tensor precomputation technique, the training
still takes hours on a desktop machine, which is much slower
than the simple POD or DMD method. Further, our method
uses a linear subspace with limited expressivity as compared
with universal neural networks (Wu et al. 2021; Hasegawa
et al. 2020; Lee et al. 2021) used by non-intrusive model re-
duction techniques. We speculate that using neural networks
to represent the reduced bases Ū is possible as done in (Li
et al. 2017).

References
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, J. Z. 2019. Differentiable convex optimization
layers. Advances in neural information processing systems,
32.
Ajuria Illarramendi, E.; Alguacil, A.; Bauerheim, M.; Mis-
dariis, A.; Cuenot, B.; and Benazera, E. 2020. Towards an
hybrid computational strategy based on deep learning for
incompressible flows. In AIAA AVIATION 2020 FORUM,
3058.
Alfonsi, G. 2009. Reynolds-averaged Navier–Stokes equa-
tions for turbulence modeling. Applied Mechanics Reviews,
62(4).
Amos, B.; and Kolter, J. Z. 2017. Optnet: Differentiable
optimization as a layer in neural networks. In International
Conference on Machine Learning, 136–145. PMLR.
Amsallem, D.; and Nordstrom, J. 2016. Energy stable model
reduction of neurons by nonnegative discrete empirical in-
terpolation. SIAM Journal on Scientific Computing, 38(2):
B297–B326.
Battaglia, P.; Pascanu, R.; Lai, M.; Jimenez Rezende, D.;
et al. 2016. Interaction networks for learning about objects,
relations and physics. Advances in neural information pro-
cessing systems, 29.
Baysal, O.; and Eleshaky, M. E. 1992. Aerodynamic de-
sign optimization using sensitivity analysis and computa-
tional fluid dynamics. AIAA journal, 30(3): 718–725.
Becigneul, G.; and Ganea, O.-E. 2019. Riemannian Adap-
tive Optimization Methods. In International Conference on
Learning Representations.
Bendokat, T.; Zimmermann, R.; and Absil, P.-A. 2020. A
Grassmann manifold handbook: Basic geometry and com-
putational aspects. arXiv preprint arXiv:2011.13699.
Berkooz, G.; Holmes, P.; and Lumley, J. L. 1993. The proper
orthogonal decomposition in the analysis of turbulent flows.
Annual review of fluid mechanics, 25(1): 539–575.
Biegler, L. T.; Ghattas, O.; Heinkenschloss, M.; and Bloe-
men Waanders, B. v. 2003. Large-scale PDE-constrained
optimization: an introduction. In Large-Scale PDE-
Constrained Optimization, 3–13. Springer.
Brandstetter, J.; Worrall, D.; and Welling, M. 2022.
Message passing neural PDE solvers. arXiv preprint
arXiv:2202.03376.
Bridson, R. 2015. Fluid simulation for computer graphics.
AK Peters/CRC Press.
Bridson, R.; and Batty, C. 2010. Computational physics in
film. Science, 330(6012): 1756–1757.
Chaturantabut, S.; and Sorensen, D. C. 2010. Nonlinear
model reduction via discrete empirical interpolation. SIAM
Journal on Scientific Computing, 32(5): 2737–2764.
Chen, R. T.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. Ad-
vances in neural information processing systems, 31.
Cranmer, M.; Greydanus, S.; Hoyer, S.; Battaglia, P.;
Spergel, D.; and Ho, S. 2020. Lagrangian neural networks.
arXiv preprint arXiv:2003.04630.

Daniel, T.; Casenave, F.; Akkari, N.; and Ryckelynck, D.
2020. Model order reduction assisted by deep neural net-
works (ROM-net). Advanced Modeling and Simulation in
Engineering Sciences, 7(1): 1–27.
Demkowicz, L.; Oden, J. T.; Rachowicz, W.; and Hardy, O.
1989. Toward a universal hp adaptive finite element strat-
egy, Part 1. Constrained approximation and data structure.
Computer Methods in Applied Mechanics and Engineering,
77(1-2): 79–112.
Du, T.; Wu, K.; Spielberg, A.; Matusik, W.; Zhu, B.; and
Sifakis, E. 2020. Functional Optimization of Fluidic Devices
with Differentiable Stokes Flow. ACM Trans. Graph., 39(6).
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(7).
Duponcheel, M.; Orlandi, P.; and Winckelmans, G. 2008.
Time-reversibility of the Euler equations as a benchmark
for energy conserving schemes. Journal of Computational
Physics, 227(19): 8736–8752.
Edelman, A.; Arias, T. A.; and Smith, S. T. 1998. The ge-
ometry of algorithms with orthogonality constraints. SIAM
journal on Matrix Analysis and Applications, 20(2): 303–
353.
Finzi, M.; Wang, K. A.; and Wilson, A. G. 2020. Simplify-
ing hamiltonian and lagrangian neural networks via explicit
constraints. Advances in neural information processing sys-
tems, 33: 13880–13889.
Greydanus, S.; Dzamba, M.; and Yosinski, J. 2019. Hamilto-
nian neural networks. Advances in neural information pro-
cessing systems, 32.
Gugercin, S.; Beattie, C.; and Antoulas, A. 2006. Rational
Krylov methods for optimal H2 model reduction. submitted
for publication.
Hasegawa, K.; Fukami, K.; Murata, T.; and Fukagata, K.
2020. CNN-LSTM based reduced order modeling of two-
dimensional unsteady flows around a circular cylinder at dif-
ferent Reynolds numbers. Fluid Dynamics Research, 52(6):
065501.
Herzog, R.; and Kunisch, K. 2010. Algorithms for PDE-
constrained optimization. GAMM-Mitteilungen, 33(2): 163–
176.
Holl, P.; Thuerey, N.; and Koltun, V. 2020. Learning to Con-
trol PDEs with Differentiable Physics. In International Con-
ference on Learning Representations.
Hsieh, W. W.; and Tang, B. 1998. Applying neural network
models to prediction and data analysis in meteorology and
oceanography. Bulletin of the American Meteorological So-
ciety, 79(9): 1855–1870.
Kim, B.; Azevedo, V. C.; Thuerey, N.; Kim, T.; Gross, M.;
and Solenthaler, B. 2019. Deep fluids: A generative network
for parameterized fluid simulations. In Computer graphics
forum, volume 38, 59–70. Wiley Online Library.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Lee, S.; Jang, K.; Cho, H.; Kim, H.; and Shin, S. 2021. Para-
metric non-intrusive model order reduction for flow-fields

using unsupervised machine learning. Computer Methods
in Applied Mechanics and Engineering, 384: 113999.
Li, Q.; Dietrich, F.; Bollt, E. M.; and Kevrekidis, I. G.
2017. Extended dynamic mode decomposition with dictio-
nary learning: A data-driven adaptive spectral decomposi-
tion of the Koopman operator. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 27(10): 103111.
Li, Y.; Du, T.; Grama Srinivasan, S.; Wu, K.; Zhu, B.;
Sifakis, E.; and Matusik, W. 2022. Fluidic Topology Op-
timization with an Anisotropic Mixture Model. ACM Trans.
Graph.
Li, Y.; Wu, J.; Zhu, J.-Y.; Tenenbaum, J. B.; Torralba, A.;
and Tedrake, R. 2019. Propagation networks for model-
based control under partial observation. In 2019 Inter-
national Conference on Robotics and Automation (ICRA),
1205–1211. IEEE.
Ling, J.; Jones, R.; and Templeton, J. 2016. Machine learn-
ing strategies for systems with invariance properties. Jour-
nal of Computational Physics, 318: 22–35.
Liu, B.; Mason, G.; Hodgson, J.; Tong, Y.; and Desbrun, M.
2015. Model-Reduced Variational Fluid Simulation. ACM
Trans. Graph., 34(6).
Márquez-Neila, P.; Salzmann, M.; and Fua, P. 2017. Impos-
ing hard constraints on deep networks: Promises and limita-
tions. arXiv preprint arXiv:1706.02025.
Maulik, R.; Rao, V.; Madireddy, S.; Lusch, B.; and Bal-
aprakash, P. 2019. Using recurrent neural networks for
nonlinear component computation in advection-dominated
reduced-order models. arXiv preprint arXiv:1909.09144.
Mohan, A.; and Fredrickson, G. H. 2020. Reduced-
Order Computational Model for the Molecular Dynam-
ics Simulation of Entangled Polymers. arXiv preprint
arXiv:2009.00216.
Mohan, A. T.; Lubbers, N.; Livescu, D.; and Chertkov, M.
2020. Embedding hard physical constraints in neural net-
work coarse-graining of 3D turbulence. arXiv preprint
arXiv:2002.00021.
Moin, P.; and Mahesh, K. 1998. Direct numerical simula-
tion: a tool in turbulence research. Annual review of fluid
mechanics, 30(1): 539–578.
Morozov, A.; Zgyatti, D.; and Popov, P. 2021. Equidistant
and Uniform Data Augmentation for 3D Objects. IEEE Ac-
cess, 10: 3766–3774.
Ober-Blöbaum, S.; and Offen, C. 2022. Variational Learn-
ing of Euler–Lagrange Dynamics from Data. arXiv preprint
arXiv:2112.12619.
Pavlov, D.; Mullen, P.; Tong, Y.; Kanso, E.; Marsden, J. E.;
and Desbrun, M. 2011. Structure-preserving discretization
of incompressible fluids. Physica D: Nonlinear Phenomena,
240(6): 443–458.
Pearlmutter, B. A. 1989. Learning state space trajectories in
recurrent neural networks. Neural Computation, 1(2): 263–
269.
Petrila, T.; and Trif, D. 2004. Basics of fluid mechanics
and introduction to computational fluid dynamics, volume 3.
Springer Science & Business Media.

Prantl, L.; Bonev, B.; and Thuerey, N. 2019. Generating Liq-
uid Simulations with Deformation-aware Neural Networks.
In International Conference on Learning Representations.
Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Compu-
tational physics, 378: 686–707.
Ralph-Uwe, B.; Ernst, O. G.; and Spitzer, K. 2008. Fast 3-
D simulation of transient electromagnetic fields by model
reduction in the frequency domain using Krylov subspace
projection. Geophysical Journal International, 173(3): 766–
780.
Rowley, C. W. 2005. Model reduction for fluids, using bal-
anced proper orthogonal decomposition. International Jour-
nal of Bifurcation and Chaos, 15(03): 997–1013.
Rowley, C. W.; and Dawson, S. T. 2017. Model reduction
for flow analysis and control. Annu. Rev. Fluid Mech, 49(1):
387–417.
Rowley, C. W.; and Marsden, J. E. 2002. Variational integra-
tors for degenerate Lagrangians, with application to point
vortices. In Proceedings of the 41st IEEE Conference on
Decision and Control, 2002., volume 2, 1521–1527. IEEE.
Sampaio, R.; and Soize, C. 2007. Remarks on the efficiency
of POD for model reduction in non-linear dynamics of con-
tinuous elastic systems. International Journal for numerical
methods in Engineering, 72(1): 22–45.
Schenck, C.; and Fox, D. 2018. Spnets: Differentiable fluid
dynamics for deep neural networks. In Conference on Robot
Learning, 317–335. PMLR.
Schmid, P. J. 2010. Dynamic mode decomposition of nu-
merical and experimental data. Journal of fluid mechanics,
656: 5–28.
Sirignano, J.; and Spiliopoulos, K. 2018. DGM: A deep
learning algorithm for solving partial differential equations.
Journal of computational physics, 375: 1339–1364.
Taira, K.; Brunton, S. L.; Dawson, S. T.; Rowley, C. W.;
Colonius, T.; McKeon, B. J.; Schmidt, O. T.; Gordeyev, S.;
Theofilis, V.; and Ukeiley, L. S. 2017. Modal analysis of
fluid flows: An overview. Aiaa Journal, 55(12): 4013–4041.
Takahashi, T.; Liang, J.; Qiao, Y.-L.; and Lin, M. C. 2021.
Differentiable fluids with solid coupling for learning and
control. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, 6138–6146.
Tan, Q.; Pan, Z.; Smith, B.; Shiratori, T.; and Manocha, D.
2022. N-penetrate: Active learning of neural collision han-
dler for complex 3d mesh deformations. In International
Conference on Machine Learning, 21037–21049. PMLR.
Um, K.; Brand, R.; Fei, Y. R.; Holl, P.; and Thuerey, N. 2020.
Solver-in-the-loop: Learning from differentiable physics to
interact with iterative pde-solvers. Advances in Neural In-
formation Processing Systems, 33: 6111–6122.
Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C. C.; and
Guo, Y. 2018. Model identification of reduced order fluid
dynamics systems using deep learning. International Jour-
nal for Numerical Methods in Fluids, 86(4): 255–268.

Wu, P.; Gong, S.; Pan, K.; Qiu, F.; Feng, W.; and Pain,
C. 2021. Reduced order model using convolutional auto-
encoder with self-attention. Physics of Fluids, 33(7):
077107.
Yang, P.; Jiang, Y.-L.; and Xu, K.-L. 2019. A trust-region
method for H2 model reduction of bilinear systems on the
Stiefel manifold. Journal of the Franklin Institute, 356(4):
2258–2273.
Zang, T.; and Green, L. 1999. Multidisciplinary design opti-
mization techniques-Implications and opportunities for fluid
dynamics research. In 30th Fluid Dynamics Conference,
3798.
Zhang, W.; Kou, J.; and Wang, Z. 2016. Nonlinear aerody-
namic reduced-order model for limit-cycle oscillation and
flutter. Aiaa Journal, 54(10): 3304–3311.

1 Algorithm Outlines
We outline our forward-backward gradient propagation in Algorithm 1 and adapted RAMSGRAD in Algorithm 2.

Algorithm 1: Forward-Backward(v̄0,Ū)

1: Precompute tensor Ckij = C(Ūk, Ūi, Ūj)
2: Precompute tensor C(D̄D̄T , Ūi, Ūj)
3: for d = 0,⋯, T − 1 do ▷ forward propagation
4: v̄d+1 ← v̄+(v̄d, Ū)
5: G← 0 ▷ backward propagation

6: Evaluate ∇L← ∂γT
Ldyn(v̄

T
)

∂v̄T

7: for d = T − 1,⋯,1 do
8: G← G + Equation 5

9: ∇L← ∂v̄d+1

∂v̄d

T
∇L + ∂γd

Ldyn(v̄
d
)

∂v̄d

10: Compute ∇ŪL via Equation 4 ▷ divergence-free
11: Return ∇ŪL

Algorithm 2: RAMSGRAD(I,Ū)

Input: β1, β2, α, δt
1: m← 0, τ ← 0, ν ← 0, ν̂ ← 0
2: while Not converge do
3: Sample v0 ∼ I ▷ we use batch size equals to 1
4: g ←Forward-Backward(v0,Ū)
5: m← β1τ + (1 − β1)g
6: ν ← β2ν + (1 − β2)∥g∥2
7: ν̂ = max(ν̂, ν)
8: Ū ← Retract(Ū ,−αm/

√
ν̂) ▷ by QR factorization

9: τ ← P̄⊥m ▷ approximate parallel transport
10: Return Ū

2 Discrete Energy Preservation
We prove that energy preservation and time reversibility hold in a time-discrete setting.
Lemma 2.1. The tensor Ckij is antisymmetric.

Proof. This follows from the definition of Ckij :

Ckij =∫
M
⟨Uk,∇×Ui ×Uj⟩ = ∫

M
UT
k (∇Ui −∇UT

i)Uj

= − ∫
M

UT
j (∇Ui −∇UT

i)Uk = −∫
M
⟨Uj ,∇×Ui ×Uk⟩ = −Cjik,

where we used elementary vector identity that (∇×A) ×B = B ⋅ (∇A −∇AT).
Using the antisymmetry of Ckij , we can show that trapezoidal rule is indeed energy preserving.

Lemma 2.2. For any z+ satisfying the trapezoidal rule, ∥z+∥ = ∥z∥.
Proof. Multiplying the lefthand side of Equation 4 by z+k + zk and summing over k, we have:

∥z+∥2 − ∥z∥2
δt

+ 2∑
kij

[Ckij
z+k + zk

2

z+i + zi
2

z+j + zj
2
]

=∥z
+∥2 − ∥z∥2

δt
+∑

kij

[(Ckij +Cjik)
z+k + zk

2

z+i + zi
2

z+j + zj
2
] = ∥z

+∥2 − ∥z∥2
δt

= 0,

from which our result follows.

Next, we show that the trapezoidal integrator (Equation 4) must have a solution by a proper choice of sufficiently small δt.
Lemma 2.3. There exists a sufficiently small δt such that Equation 4 can be solved for z+ via the following negative gradient
flow:

f(z+) ≜ z+ − z + δtC(z+) ż+ ≜ −∇f(z+)T f(z+)/2,
with initial guess z+ = z.

Proof. We consider the Lyapunov candidate V (z+) ≜ ∥f(z+)∥2 on the ball Br(z) = {z+∣∥z+ − z∥ ≤ r}. The negative gradient
flow satisfies:

V̇ (z+) = − ∥∇f(z+)T f(z+)∥2 = −∥(I + δt∇C(z+)T)f(z+)∥2

= − V (z+) − 2δtf(z+)T∇C(z+)T f(z+) − δt2∥∇C(z+)T f(z+)∥2

≤ − (1 − δt)V (z+) + (δt − δt2)∥∇C(z+)T f(z+)∥2.
Now since the eigenvalue of a Hermitian matrix is a Lipschitz function of matrix entries (Golub and Van Loan 2013), we must
have:

ρ(∥z∥, r) ≤ ρ(∇C(z+)∇C(z+)T) ≤ ρ̄(∥z∥, r),

for some ρ, ρ̄ and any z+ ∈ Br(z). Combining the above estimation, we have:

V̇ (z+) ≤ −(1 − δt)V (z+) + (δt − δt2)ρ̄(∥z∥, r)V (z+).

Obviously, with sufficiently small δt, we have V̇ (z+) ≤ −ϵV (z+) for some ϵ ∈ (0,1) and z+ ∈ Br(z). Next, consider the
boundary case z+ ∈ ∂Br(z), where we have:

V (z+) − V (z) =r2 + δtC(z+)T (z+ − z) + 2δt2 [∥C(z+)∥2 − ∥C(z)∥2]
≥(1 − δt)r2 + (δt2 − δt)∥C(z+)∥2 − δt2∥C(z)∥2,

and we can choose sufficiently small δt such that V (z+) > V (z) for all z+ ∈ ∂Br(z). Our result follows from the exponential
stability condition (Murray, Li, and Sastry 2017).

In practice, however, continuous gradient flow cannot be realized, but a similar argument as Lemma 2.3 can be used to show
that the Newton–Raphson method is guaranteed to converge when minimizing V (z+) under sufficiently small δt:
Lemma 2.4. There exists a sufficiently small δt such that Equation 4 can be solved for z+ via the Newton-Raphson method:

z(d) = z(d−1) −∇f(z(d−1))−1f(z(d−1)),

with initial guess z(0) = z. Here we use superscript with bracket to denote iteration index.

Proof. Consider the reduction of Lyapunov candidate V (z) after one iteration, we have:

V (z(d)) =∥f(z(d−1) −∇f(z(d−1))−1f(z(d−1)))∥2 =∑
k

∥δt
2
f(z(d−1))THk(z(d−1))f(z(d−1))∥2

Hk(z(d−1)) ≜∇f(z(d−1))−T
Ck∶∶ +CT

k∶∶

2
∇f(z(d−1))−1.

By a similar argument as in Lemma 2.3, we can choose sufficiently small δt such that:

ρ(Hk(z(d−1))) ≤ ρ̄(∥z∥, r) V (z(d)) ≤ pδt2ρ̄(∥z∥, r)2
4

∥f(z(d−1))∥4,

as long as z(d−1) ∈ Br(z). We can also choose sufficiently small δt such that:

V (z(d)) ≤ ϵV (z(d−1)) ∀z(d−1) ∈ Br(z) ∧ ∥f(z(d−1))∥ ≤ 1, (1)

for some ϵ ∈ (0,1). Next, we consider the Hessian of V (z+):

∇2V (z+) = [I − δt∇C(z+)T] [I − δt∇C(z+)] + δt∇2C(z+)f(z+) ≜ I +O(δt)R(z+),

where R(z+) is a smooth, symmetric matrix function. We can further choose sufficiently small δt such that V (z+) is 1/2-
strongly convex and for any z+ ∈ B3r(z)/Br(z):

V (z+) − V (z) ≥ r2/2 +∇V (z)T (z+ − z) = r2/2 + δt2C(z)T∇C(z)(z+ − z).

By the smallness of δt, we have:
⎧⎪⎪⎨⎪⎪⎩

V (z+) > V (z) ∀z+ ∈ B3r(z)/Br(z)
∥∇f(z(d−1))−1f(z(d−1))∥ ≤ 2r ∀z(d−1) ∈ Br(z) ∧ V (z(d−1)) ≤ min(1, r2/2) . (2)

Combining Equation 1 and Equation 2, we have for small enough δt:

{z
(d) ∈ Br(z)

V (z(d)) ≤ ϵV (z(d−1)) ∀z(d−1) ∈ Br(z) ∧ V (z(d−1)) ≤ min(1, r2/2).

Our result follows by choosing sufficiently small δt such that V (z(0)) ≤ min(1, r2/2) and invoke the discrete exponential
stability condition (Aitken and Schwartz 1994).

Note the choice of δt is only dependent on ∥z∥ and r, which can be used to show that the timestep size can be fixed throughout
the trajectory for time reversible fluid systems:
Corollary 2.5. Given an initial condition z0, an energy preserving discrete trajectory can be computed by repeatedly solv-
ing Equation 4 for zk using a fixed timestep size δt via the Newton-Raphson method.

Proof. This result can be derived by induction on two facts: 1) ∥zk∥ = ∥zk−1∥ by Lemma 2.2; 2) To solve for zk, δt can be
determined as a function δt(∥zk−1∥, r) by Lemma 2.4.

3 Discrete Time Reversibility
The above result guarantees energy preservation throughout the trajectory. We now move on to show time reversibility in the
discrete setting:
Lemma 3.1. There exists a sufficiently small δt, such that for any z ∈ Br(0), the negative gradient flow Equation 4 defines a
invertible map from z to z+.

Proof. Following the same argument as in Lemma 2.4, we can choose sufficiently small δt such that V (z+) is strongly convex
when restricted to B2r(0) and the map z+(z) = argmin

z+
V (z+) is well-defined and differentiable (Still 2018). The derivative of

function z+(z) can then be derived via the implicit function theorem as:

∇z+(z) = − [I + δt∇C(z+)]−1 [I − δt∇C(z+)] .
By Lemma 2.2, we know that z+ ∈ Br(0) as well. Again by the lipschitz continuity of singular values, we can choose sufficiently
small δt such that det(∇z+(z)) ≠ 0 throughout Br(0) and our result follows by the inverse function theorem.

Lemma 3.1 can also be extended to the entire trajectory via induction:
Corollary 3.2. Given an initial condition z0 ∈ Br(0) for some r, an energy preserving discrete trajectory can be computed by
repeated solving Equation 4 for zk using a fixed timestep size δt, such that the resulting map zk(z0) is invertible.

Proof. By induction on Lemma 2.2 and Lemma 3.1, we know that zk(zk−1) is invertible for any k > 0 and our result follows
by composition of invertible functions.

Ūm ∈ St(m,p) Ū ∈ St(n,p)

P̄m ∈ Gr(m,p) P̄ ∈ Gr(n,p)

dŪm

dP̄m

dŪ

dP̄

πSt(m,p)↦Gr(m,p) πSt(n,p)↦Gr(n,p)

πGr(m,p)↦Gr(n,p)

πSt(m,p)↦St(n,p)

Our Method

Figure 1: We illustrate the four manifolds: St(n, p) for the velocity bases; St(m,p) for the divergence-free velocity bases;
Gr(n, p) for the velocity subspace; Gr(m,p) for the divergence-free velocity subspace. Our method maintains Ū ∈ St(n, p) and
represents the gradient as some ∇ŪL ∈ TŪSt(n, p), which is both memory efficient and computationally tractable.

4 Derivative Formulation
In this section, we analyze the differentiability of our lifted transfer function Equation 5. To compute derivatives of the forward
dynamic function with respect to the bases Ū , we need to utilize the implicit function theorem and special representation
of the bases as a manifold point, which cannot be exploited by automatic differentiation. First, we show that the function is
well-defined on the manifold Gr(m,p) via the following lemma:
Lemma 4.1. The lifted transfer function Equation 5 can be written as a function v̄+(v̄, P̄m).

Proof. By the incompressibility of bases Ū = D̄Ūm, we have: P̄ = D̄P̄mD̄T . Plugging this into Equation 5 and we have the
follow rewrite:

v̄+(v̄, P̄m) ∶ { P̄⊥v̄
+ = P̄⊥v̄

P̄ v̄+−v̄
δt
+C(P̄ , P̄ v̄++v̄

2
, P̄ v̄++v̄

2
) = 0 ,

from which our result follows. We can derive the original definition (Equation 5) by multiplying the second equation by ŪT

from the left.

Although the function is well-defined, the complexity of its derivative computation relies on an efficient representation of
bases. A straightforward representation is to use matrix P̄m and consider the function v̄+(v̄, P̄m). However, this representation
requires storing the large matrix P̄m which is computationally impractical. In this section, we exploit equivalent manifold
representations to derive the computationally tractable formulas for the derivatives of arbitrary loss functions L ○ v̄+. The
relevant manifolds are illustrated in Figure 1. We first derive the partial derivative ∂v̄+/∂v̄ via the implicit function theorem:

∂v̄+

∂v̄
= [Ū [I + δt∇C(z+)]−1 [I − δt∇C(z+)] ŪT + P̄⊥] . (3)

The inverse of the system matrix above is well-defined when the timestep size δt is sufficiently small according to Appendix 2.
It can be verified that the above derivative is invariant to the orthogonal basis transform. Next, we derive the partial derivative
with respect to P̄m ∈ Gr(m,p). We denote Ūm

⊥ as the complement of Ūm and Qm = (Ūm, Ūm
⊥) ∈ O(m). An element of

TP̄mGr(m,p) can be identified with a matrix dB ∈ R(m−p)×p via:

dP̄m = Qm (dBT

dB
) [Qm]T .

We can lift Gr(m,p) to St(m,p) via the map πSt(m,p)↦Gr(m,p)(Ūm) = Ūm [Ūm]T . Under this map, an element dŪm ∈
TŪmSt(m,p) horizontal of TP̄mGr(m,p) must satisfy the condition dŪm = Ūm

⊥ dB (we refer readers to (Bendokat, Zimmer-
mann, and Absil 2020) for the derivation). Representing gradient as some dB is the most memory efficient method, since the
dimension of Gr(m,p) equals that of dB. However, we have to multiply dB with Ūm

⊥ and then with D̄ to recover divergence-
free velocity bases, while computing either Ūm

⊥ or D̄ is intractable. Instead, we choose to work with dŪ directly and rely on
the following result that establishes a connection between dB and dŪ :
Lemma 4.2. For a divergence-free velocity bases Ū , a direction dŪ belongs to the tangent plane of D(n, p) ∩ S(n, p) at Ū if
and only if dŪ ∈ D(n, p) and ŪT dŪ = 0.

Proof. If dŪ belongs to the tangent plane, then it must satisfy dŪ = D̄dŪm for some dŪm = Ūm
⊥ dB, so dŪ ∈ D(n, p).

Further, ŪT dŪ = ŪT D̄Ūm
⊥ dB = [Ūm]T Ūm

⊥ dB = 0. Conversely, dŪ ∈ D(n, p) implies dŪ = D̄dŪm for some dŪm. Further,
ŪT dŪ = 0 implies [Ūm]T dŪm = 0, which in turn implies dŪm = Ūm

⊥ dB for some dB.

Suppose we have a loss function L ○ v̄+(v̄, P̄m) with v̄ as the constant, we can composite the loss function with the map
πSt(n,p)↦Gr(m,p)(Ū) = D̄T Ū ŪT D̄ = P̄m. The domain of this composite function is the intersection of D(n, p) and St(n, p),
which is an embedded sub-manifold of Rn×p. In order to calculate the gradient on the manifold, we can smoothly extend
the composite function to the entire Rn×p, calculate the Euclidean-space gradient denoted by G ∈ Rn×p, and then project the
gradient onto the tangent space. Such projection is defined by Lemma 4.2 as:

∇ŪL = P̄⊥D̄D̄TG, (4)

where multiplying by D̄D̄T ensures∇ŪL ∈ D(n, p) and multiplying by P̄⊥ ensures ŪT∇ŪL = 0. Note that, although computing
the entire D̄ is intractable, evaluating D̄D̄TG is tractable. Indeed, this involves projecting each column of G into the divergence-
free vector subspace, which can be calculated by solving a discrete Poisson’s equation (Petrila and Trif 2004) via a sparse linear
solve at a complexity of O(nω) (Zhang 1998), where ω ≥ 1 depends on the numerical linear system solver. Therefore, the
entire projection has a cost of O(nωp), as compared with the complexity of computing D̄ being O(nωm). We refer readers
to Appendix 4 for the derivation of Euclidean space gradient G. The computation of ∇ŪL over a long trajectory with T ≫ p
timesteps is rather efficient. Indeed, we can precompute and accumulate G for each timestep, and finally apply divergence-free
projection operator to compute ∇ŪL, the total cost of which is O(nωp + Tnp + Tp3).

Derivative Formulation in Euclidean Space
We derive the formula for G in the following lemma:
Lemma 4.3. If we introduce the third order tensor:

Φαβγ ≜∑
ij

C(eβ , Ūi, Ūj)δαγ
z+i + zi

2

z+j + zj
2

+∑
j

C(Ūα, eβ , Ūj)
z+γ + zγ

2

z+j + zj
2
+

∑
i

C(Ūα, Ūi, eβ)
z+i + zi

2

z+γ + zγ
2

,

and consider an arbitrary differentiable function L(v̄), then the Euclidean space gradient G of function L ○ v̄+(v̄, Ū) with
respect to Ū is defined as:

G =v̄∇LT Ū[I + δt∇C(z+)]−1[I − δt∇C(z+)] −∇LT Ū[I + δt∇C(z+)]−1Φ+
∇L [z+ − z]T − v̄∇LT Ū . (5)

Proof. Assuming v̄ is fixed, we first derive some useful fundamental results:

dz = [dŪm]T D̄T v̄ = dBT [Ūm
⊥]

T
D̄T v̄

d [P̄ v̄] =d [D̄Ūmz] = D̄dŪmz + D̄Ūmdz =

=D̄ [Ūm
⊥ dB [Ūm]T + ŪmdBT [Ūm

⊥]
T] D̄T v̄

=D̄Qm (dBT

dB
) [Qm]T D̄T v̄ = dP̄ v̄ = −dP̄⊥v̄.

Plugging Φ into the first-order expansion of Equation 4 and we have:

[I + δt∇C(z+)]dz+ +Φ ∶ dŪ = [I − δt∇C(z+)]dz = [I − δt∇C(z+)]dŪT v̄,

where ∶ denotes tensor contraction of the last two indices. The remaining derivation follows the chain rule:

dv̄+ =Ūdz+ + dŪz+ + dP̄⊥v̄ = Ū[I + δt∇C(z+)]−1 [[I − δt∇C(z+)]dŪT v̄ −Φ ∶ dŪ]+
dŪ [z+ − z] − ŪdŪT v̄

dL =∇LT dv̄+ = tr(dŪTG).
By comparing the two sides of the last equation, our result follows.

Alternative Lifted Function
The above derivation is based on the definition of v̄+(v̄, Ū) in Equation 5, which assumes that the orthogonal component of v̄
is kept across timesteps. An useful alternative is to assume that the orthogonal component is discarded, which is:

v̄+(v̄, Ū) ≜ Ūz+(ŪT v̄). (6)

By a similar argument, we can derive the following derivatives for Equation 6:

∂v̄+

∂v̄
=Ū [I + δt∇C(z+)]−1 [I − δt∇C(z+)] ŪT

G =v̄∇LT Ū[I + δt∇C(z+)]−1[I − δt∇C(z+)] −∇LT Ū[I + δt∇C(z+)]−1Φ +∇L [z+]T .

5 Decoupled Reduced-Order Model
We observe that energy preservation and time-reversibility discussed in Appendix 2 only requires the tensor Ckij to be anti-
symmetric. In other words, the construction of the tensor Ckij via Equation 3 is not necessary. We speculate that using a learned
antisymmetric tensor Ckij can expose a larger search space, leading to a better match with the full-order model. We denote such
model as decoupled reduced-order model, where Ckij are separate decision variables not constructed from Ū . The formula for
∂v̄+/∂v̄ Equation 3 stays the same and the formula for G takes the following simpler form:

G =v̄∇LT Ū[I + δt∇C(z+)]−1[I − δt∇C(z+)] +∇L [z+ − z]T − v̄∇LT Ū .

Benchmark n p coupled #variable (np) decoupled #variable (np + p3)
Taylor Vortices 8192 8/11/16/25 65536/90112/131072/204800 66048/91443/135168/220425
Plume Rise 8064 6/9/15/26 48384/72576/120960/209664 48600/73305/124335/227240
Plume Rise+Obstacles 7416 5/8/16/30 37080/59328/118656/222480 37205/59840/122752/249480
Spherical Plume 8064 36 290304 -
Two Plume 8064 59 475776 -

Table 1: We summarized the number of decision variables in each example. In the coupled case, our decision parameter is Ū
having np variables. In the decoupled case, our decision variables are Ū ,Ckij having np + p3 variables.

Finally, the derivative with respect to Cijk reads:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L ≜ [I + δt∇C(z+)]−T ŪT∇L
∂L

∂Ckij
= 1

2
[Lk

z+i +zi
2

z+j +zj

2
−Lj

z+i +zi
2

z+k+zk
2
] ,

where we have projected the derivative onto the antisymmetric subspace. On the downside, there is no universally valid δt to
make our objective function globally differentiable for all Ū and Ckij , because discrete time reversibility requires a sufficiently
small δt that depends on Ckij . Empirically, however, we have not observed any convergence issue. In Figure 2, we compare
the coupled and decoupled versions on the Taylor vortices and the smoke plume benchmark, their convergence histories are
almost identical. Therefore, we recommend always using the coupled model due to its theoretical differentiability guarantee.
In Table 1, we summarize the number of decision variables in our various experiments.

0 10 20
Elapsed Time (hr)

1

2

3

4

Di
sc

re
pa

nc
y

coupled(11)
decoupled(11)

(a)

0 10 20
Elapsed Time (hr)

5

10

15

20

25

Di
sc

re
pa

nc
y

coupled(9)
decoupled(9)

(b)

Benchmark Loss-Init. Loss-10k-Iter.

Taylor Vortices Coupled 3.93 0.39
Taylor Vortices Decoupled 3.93 0.42

Plume Rise Coupled 28.23 5.38
Plume Rise Decoupled 28.23 3.84

Figure 2: We compare the performance of coupled and decoupled versions on the Taylor vortices benchmark (a), with ϵ = 0.01
and p = 11, and the smoke plume benchmark (b), with ϵ = 0.01 and p = 9.

6 Comparison with Alternative Loss
To highlight the effectiveness of our physics correctness loss, we conduct a comparison with two other loss functions: the L1

and L2 losses defined as:

L1(v̄+, v̂) ≜ ∥v̄+ − v̂∥1 L2(v̄+, v̂) ≜ ∥v̄+ − v̂∥2,

where we denote v̂ as the velocity generated by the groundtruth fullspace fluid simulator (Pavlov et al. 2011). We note that
these loss functions are impractical for large-scale test cases because they require solving for the groundtruth data of a different
initial condition during each iteration of training. Therefore, we choose to only evaluate them on our first three benchmarks
in Table 2, where there is only a single trajectory so v̂ can be precomputed. For these benchmarks, we both train and evaluate
them on the three losses Ldyn,L1,L2, and summarize the results in Table 2. We also plot the convergence history of the first
benchmark (Taylor Vertices) in Figure 3. Our plots show that, when the first benchmark is trained using L1,2, L1,2 will both
decrease by at most 64%, but our Ldyn can increase drastically by at most 1083%. Instead, when trained using Ldyn, L1,2 will
increase or decrease by at most 3.3% but our Ldyn can decrease significantly by 76.8%. Considering these properties and the
fact that L1,L2 is impractical to compute by requiring the groundtruth data, we conclude that our Ldyn is overall more practical
in training reduced fluid systems.

Taylor Vertices (p=8)
PPPPPPPTrain

Eval. Ldyn L1(10−4)L2(10−4)
Ldyn 0.58 1.23 0.27
L1 37.81 0.44 0.04
L2 165.41 0.27 0.06

Plume Rise (p=6)
PPPPPPPTrain

Eval. Ldyn L1(10−4)L2(10−4)
Ldyn 6.37 2.37 0.79
L1 57.50 0.67 0.07
L2 114.20 0.43 0.05

Plume Rise+Obstacle (p=5)
PPPPPPPTrain

Eval. Ldyn L1(10−4)L2(10−4)
Ldyn 10.48 1.92 0.53
L1 132.68 0.49 0.06
L2 87.83 0.69 0.06

Table 2: We evaluate our first three benchmarks when trained and evaluated using Ldyn,L1,L2.

0.0 0.5 1.0 1.5
#Iteration 1e4

0.5

1.0

1.5

2.0

2.5
Ou

r L
os

s
Our Loss

0.4

0.6

0.8

1.0

1.2

l 1
,2

 L
os

s

1e 4

l1 Loss
l2 Loss

(a) 0.0 0.5 1.0 1.5
#Iteration 1e4

50

100

150

Ou
r L

os
s

Our Loss

2

4

6

8

l 1
,2

 L
os

s

1e 5
l1 Loss
l2 Loss

(b) 0.0 0.5 1.0 1.5 2.0
#Iteration 1e4

10

20

30

Ou
r L

os
s

Our Loss

0.00

0.25

0.50

0.75

1.00

l 1
,2

 L
os

s

1e 4
l1 Loss
l2 Loss

(c)

Figure 3: For our first benchmark (Taylor Vortices), we plot the convergence history when trained using Ldyn (a), L1 (b), and
L2 (c). The scale of Ldyn is shown on the left and L1,2 is shown on the right of each plot.

7 Comparison with DMD
We have shown that our method works best with POD initialization. In this section, we conduct additional experiments with
DMD. DMD extends POD by assuming that the data is generated from a linear dynamic system. DMD can be used both as
an intrusive and non-intrusive method. In the intrusive mode, we use DMD to compute a bases Ū and compute Ckij from
Ū via Equation 3. In the non-intrusive mode, we simply use the DMD-assumed linear dynamic system as the surrogate. To
evaluate the performance of DMD, we use two metrics. For the intrusive DMD, we use our physics correctness loss Equation 6.
Unfortunately, our physics correctness loss is not suitable for evaluating non-intrusive methods that can be non-reversible.
Indeed, it is always possible to let Ldyn = 0 by setting v̄+ = v̄ = 0. Therefore, we also measure the energy gain ∆e = (∥v̄T ∥ −
∥v̄0∥)/∥v̄0∥ as an indication of dynamic system stability.

We perform the experiments using the open source DMD library (Demo, Tezzele, and Rozza 2018) on our first three bench-
marks. Their results are shown in Table 3. The results show that the performance of intrusive DMD is worse than either POD
or our method, in terms of the physics correctness loss. This is because the main assumption of DMD, i.e., the dynamic system
being linear, is invalid for the bilinear dynamic system Equation 3. Instead, POD does not make any assumption on the time
dependency between frames and serves as a better initialization for our method. On the other hand, the non-intrusive DMD
leads to better performance in terms of Ldyn but the dynamic system tends to be rather unstable due to a drastic energy gain of
1.9 × −73.3×.

Benchmark Ldyn/∆e
p POD I-DMD NI-DMD Ours

Taylor Vortices 8 4.84/0 20.81/0 4.77/4.77 0.58/0
Plume Rise 6 57.04/0 127.18/0 2.21/1.94 6.37/0
Plume Rise+Obstacle 5 133.16/0 245.20/0 2.32/73.3 10.48/0

Table 3: We compare the POD baseline and our method with intrusive DMD (I-DMD) and non-intrusive DMD (NI-DMD) in
terms of trajectory-wise physics correctness loss and energy gain.

8 Comparison with PINNs
We conduct comparisons with PINNs (Raissi, Perdikaris, and Karniadakis 2019). PINNs was originally designed for solving
PDEs, while our divergence-free Navier-Stokes equation is an DAE. In order to extend PINNs to handle DAE, we learn a neural
network DAE solution function, denoted as NN(x, y, t) = (vx, vy, λ) and represented as an MLP with 3 hidden layers each
having H neurons and Tanh activation function, and minimize the following physics violation loss:

∥v̇ +∇ × v × v +∇λ∥2 + ∥∇ ⋅ v∥2.
We also enforce additional temporal and spatial boundary conditions as loss functions. All the loss functions have weights equal
to 1. For fairness of comparison, we use the same training data for both our method and PINNs. Note that our method uses
grid-based spatial discretization, so we use all the grid centers as spatial samples of training data and we sample the temporal
domain at a regular interval of δt = 0.01, which equals to our timestep size. We aim to predict a trajectory of the same length
as our method, i.e. Tδt. We use Adam as our optimizer and we train both methods on CPU for 24 hours. Since PINNs can
lead to non-divergent-free velocity fields, we measure the accuracy of both methods via three metrics: Ldyn, ∆e, and average
divergence error: ∥v̄ − v̄∗∥∞ where v̄∗ is the closest divergence-free velocity field to v̄. The results are summarized in Table 4.

PINNs mostly perform worse than our method in terms of Ldyn. In the Taylor Vortices benchmark using H = 128, the Ldyn
metric generated by PINNs is slightly better than our method. But this is again because Ldyn is only designed for measuring
time-reversible flows, which is not an effective metric for comparing reversible and non-reversible flows due to its trivial

Benchmark PINNs(H = 64) PINNs(H = 128) Ours
Ldyn/∆e ∥v − v∗∥∞ Ldyn/∆e ∥v − v∗∥∞ Ldyn/∆e ∥v − v∗∥∞

Taylor Vortices 17.46/0.32 0.000027 8.96/0.64 0.000018 0.58/0 0
Plume Rise 6.74/1.06 0.005159 6.29/0.91 0.004466 6.37/0 0

Table 4: We compare our method and PINNs in terms of Ldyn and ∥v̄ − v̄∗∥∞.

solutions. Such trivial solutions are indeed exhibited in PINNs, as illustrated in Figure 4. After a very short period of time, the
solution predicted by PINNs become significantly smeared out and meaningless.

(a)

(b)

(c)

Figure 4: We compare frames generated by groundtruth (a), PINNs(H = 128) (b) and our method (ϵ = 0.0001, p = 25) (c) on
the Taylor Vortices benchmark. After very short time period, the results generated by PINNs become significantly smeared out
and meaningless.

9 Additional Results
We demonstrate additional experimental results. Some snapshots of our 4 benchmark scenarios are shown in Figure 5, 6, 7, 8,
and 9, respectively.

(a)

(b)

(c)

Figure 5: Velocity magnitude field snapshots of the Taylor vortices benchmark, generated by full-order model (a), our method
with ϵ = 0.0001 and p = 25 (b), and POD with ϵ = 0.0001 and p = 25 (c).

References
Aitken, V.; and Schwartz, H. 1994. On the exponential stability of discrete-time systems with applications in observer design.
IEEE Transactions on Automatic Control, 39(9): 1959–1962.
Bendokat, T.; Zimmermann, R.; and Absil, P.-A. 2020. A Grassmann manifold handbook: Basic geometry and computational
aspects. arXiv preprint arXiv:2011.13699.
Demo, N.; Tezzele, M.; and Rozza, G. 2018. PyDMD: Python dynamic mode decomposition. Journal of Open Source Software,
3(22): 530.
Golub, G. H.; and Van Loan, C. F. 2013. Matrix computations. JHU press.
Murray, R. M.; Li, Z.; and Sastry, S. S. 2017. A mathematical introduction to robotic manipulation. CRC press.
Pavlov, D.; Mullen, P.; Tong, Y.; Kanso, E.; Marsden, J. E.; and Desbrun, M. 2011. Structure-preserving discretization of
incompressible fluids. Physica D: Nonlinear Phenomena, 240(6): 443–458.
Petrila, T.; and Trif, D. 2004. Basics of fluid mechanics and introduction to computational fluid dynamics, volume 3. Springer
Science & Business Media.
Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019. Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics,
378: 686–707.
Still, G. 2018. Lectures on parametric optimization: An introduction. Optimization Online.
Zhang, J. 1998. Fast and high accuracy multigrid solution of the three dimensional Poisson equation. Journal of Computational
Physics, 143(2): 449–461.

(a)

5 10 15 20 25
#Bases

0

20

40

Di
sc

re
pa

nc
y

POD
Our Method

(b)
0 10 20

Elapsed Time (hr)

0

20

40

Di
sc

re
pa

nc
y

coupled(6)
coupled(9)
coupled(15)
coupled(26)

(c)

Figure 6: (a) Velocity magnitude field snapshots of the smoke plume benchmark, generated by full-order model (top row),
our method with ϵ = 0.0001 and p = 26 (middle row), and POD with ϵ = 0.0001 and p = 26 (bottom). (b) Trajectory-wise
discrepancy loss of POD and our method, under different p. (c) The convergence history of our method over 24 hours.

(a)

(b)

(c)

Figure 7: Velocity magnitude field snapshots of the smoke plume benchmark with an spherical obstacle, generated by full-order
model (a), our method with ϵ = 0.0001 and p = 26 (b), and POD with ϵ = 0.0001 and p = 26 (c).

→
(a)

→
(b)

→
(c)

Figure 8: Velocity magnitude field snapshots of the spherical plume benchmark, generated by full-order model (a), our method
with ϵ = 0.01 and p = 36 (b), and POD with ϵ = 0.01 and p = 36 (c). The plume moves along θ = 7.5○ (arrow), which is not
covered by our training dataset.

→

→

→

→

→

→

→

→

Figure 9: Fluid dye field snapshots of the two cubical plume benchmark generated by our method (time flows to the right). The
fluid dye field is initialized as the two cubes (black) and passively advected by the velocity field. With ϵ = 0.01 and only p = 59
bases, we can predict a family of trajectories with the two plumes moving at different directions (arrow).

