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Abstract

Topology Optimization (TO) is an essential tool for optimizing the structural

robustness of load-bearing mechanical parts. An ideal TO solver should

be computationally efficient for designers to preview the results, while ul-

timately converge to locally optimal designs. However, existing TO solvers

either incur a high iterative cost or fail to provide the convergence guarantee.

Borrowing ideas from recent advances in first-order bilevel optimization, we

propose a new TO solver combining the Projected Gradient Descent (PGD)

algorithm and inexact Finite Element Analysis (FEA). We further show that

our method is convergent to a first-order critical point. Our proposed First-

Order Bilevel Topology Optimization (FBTO) can solve several, important

problems in the robot design paradigm, including TO under self-weight and

multiple external loads. Finally, we evaluate and compare FBTO with prior

TO solvers on a row of 2D and 3D problems.

Keywords: Topology Optimization, Bilevel Optimization, Low-Cost

Robotics, Mechanisms and Design

1. Introduction
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Figure 1: 3D mechanical parts computed via FBTO Algorithm 3. The red and yellow
blocks are external loads (arrows) and fixed regions.
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Figure 2: 2D mechanical parts computed via FBTO Algorithm 3. These problems are
selected from [1, 2] and 2D version of [3].

To determine the shape of mechanical parts, designers need to compro-

mise between several conflicting factors, such as total weight, manufacturing

cost, structural strength, and mobility. These factors are strongly corre-

lated in an obscure manner, and even experienced designers cannot figure

out the optimal design without massive trial and error. Topology Optimiza-

tion (TO) [4] can largely alleviate designers’ burden. TO algorithms fine

tune each mechanical part’s center-of-mass [5], inertia [6], infill pattern [7],

or material distribution [8] under hard constraints such as total weight and

material cost. In this paper, we focus on a subclass of TO problems assum-

ing stiff materials undergoing infinitesimal deformation due to external loads,

which is the most widely adopted setting in the mechanical design paradigm.

Prior works on automatic mechancial design rely on Finite Element Anal-

ysis (FEA) to predict the relationship between the extrinsic (boundary loads)

and intrinsic status (stress, strain, and energy densities) of a mechanical part,

from which a TO solver iteratively updates the design. However, we argue

that these off-the-shelf algorithms are less suitable in the mechanical design
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paradigm for two reasons. First, FEM predictions are made by solving gi-

gantic linear systems, which incur a high iterative cost. For example, an 643

design space illustrated in Figure 1 incurs 105 decision variables. As a result,

a designer needs to wait for hours [9, 10, 11] before a design is optimized,

significantly slowing down the overall design refinement loop. Second, some

fast TO solvers [12, 2, 13] rely on heuristic step size choices, which cannot

guarantee convergence to a locally optimize design.

To resolve the two above-mentioned issues, we propose a new method

for solving the subclass of TO problems known as Solid Isotropic Material

with Penalization (SIMP) [12] that searches for fine-grained mechanical part

design by optimizing the infill levels. We borrow ideas from recent advances in

first-order bilevel optimization [14] and revisit SIMP as a bilevel optimization

with a strictly convex, quadratic low-level objective function (Section 3). For

these bilevel problems, we propose a new class of solvers, namely First-Order

Bilevel Topology Optimization (FBTO). FBTO differs from all prior methods

by only requiring inexact FEA during each iteration. Through theoretical

analysis and a set of 2D and 3D computational benchmarks in Figure 1,2,

we show that FBTO exhibits the following desirable properties, making it a

stellar fit for mechanical design problems:

• By using inexact FEA, FBTO incurs a much lower iterative cost of

O(E logE) on CPU and O(logE) on GPU (Section 4.3, E is the num-

ber of decision variables), as compared with superlinear iterative cost

of conventional TO solvers. This feature allows designers to quickly

preview their designs and perform design refinements when necessary.

• Our theoretical analysis shows that FBTO is guaranteed to converge to
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the first-order critical point of SIMP problems. Our result also explains

the convergence behavior of off-the-shelf TO solvers [7, 13] that use

iterative algorithms to approximately perform FEA.

• Besides standard problem settings, FBTO can solve importance vari-

ants of SIMP problems, including TO under self-weights and multiple

external loads. These features are essential for modeling mechanical

parts built with heavy compound metals or working under various con-

ditions.

2. Related Work

We review representative TO formulations in various applications, nu-

merical solvers for TO problems, and bilevel optimizations from which our

method is derived.

TO Formulations & Applications: We deal with the SIMP model

[12] where the geometric shape is discretized using FEA and decision vari-

ables are infill levels. The same formulation has been used in [15] to design

the five-bar mechanism and in [16] to design humanoid arms. In [16], the

humanoid arm is considered under multiple load conditions. Jain and Saxena

[17] considered TO with self-weight. Our new method can solve TO in all the

above-mentioned cases. On the other hand, SIMP model is based on the lin-

ear elasticity theory that is accurate only under small deformations. To model

large deformations, we need to use nonlinear elasticity theory [18, 19]. In ad-

dition, standard SIMP model does not have hard constraints to limit defor-

mations, while alternative formulations include strain/stress constraints [20],

e.g., Sha et al. [21] used stress-constrained formulation to design lightweight
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robots. Unfortunately, our method does not apply to these extensions.

Numerical TO Solvers: Existing mechanical design tools rely on two

kinds of numerical approaches: truncated gradient method and general-

purpose method. The reference implementation [12] of the SIMP solver uses

the heuristic, truncated gradient method [22]. Amir et al., Amir [23, 24] pro-

posed to combine the SIMP solver with inexact FEA analysis, which shares

the main idea with our approach. These methods have good empirical per-

formance but do not have theoretical convergence guarantee. Recently, effi-

cient, inexact FEA system solvers such as the multigrid method [2, 25] have

been used with the truncated gradient method to achieve the best perfor-

mance so far, which further complicates the convergence analysis. General-

purpose methods are off-the-shelf optimization algorithms, e.g., sequential

quadratic programming (SQP)/interior point method [26], augmented La-

grangian method (ALM) [27], and method of moving asymptotes [28]). These

methods have second order convergence guarantee but incur a superlinear it-

erative cost by solving large FEA systems. In particular, Choi et al. [29]

proposed to use reduced-order modeling to acceleration the solution of linear

systems within each iteration of the interior point method, but their overall

iterative cost and convergence properties are not theoretically investigated.

Bilevel Optimization [30]: When a constraint of an optimization prob-

lem (high-level problem) involves another optimization (low-level problem),

the optimization is considered bilevel. In our formulation, the high-level prob-

lem determines the material infill levels, while the low-level problem performs

the FEA analysis. Bilevel formulation has been used in TO community for

years, which is also known as Nested Analysis and Design (NAND) [31]. How-
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ever, a NAND solver requires finding the (near) exact solution of low-level

problem, leading to a several performance penalty. More prominent meth-

ods rely on Simultaneous Analysis and Design (SAND), which use general-

purpose algorithms (see e.g. [32, 33]) to satisfy the first-order optimality

conditions of the underlying optimization problem, thus allowing inexact so-

lutions of the FEM system. However, these SAND solvers involve a Newton’s

step during each iteration, which incurs a high iterative solve. Empirical ac-

celeration techniques have been proposed [23, 24, 29] to use inexact Newton’s

step, but their overall iterative cost and convergence properties are not the-

oretically investigated. Recently, it has been shown that first-order bilevel

optimization is convergent [14, 34, 35]. We show that, when applied to TO

problems, first-order solvers are convergent and have a much lower iterative

cost of O(E logE) on CPU and O(logE) on GPU as compared with prior

TO solvers. In summary, our approach is built off of the NAND formulation,

while pertains the computational advantage of SAND, i.e., allowing inexact

solvers for the low-level PDE.

3. Problem Formulation

In this section we introduce the SIMP model and its extensions to self-

weight and multiple load conditions, using notations in [2]. (see Table 3 in

our appendix for a list of symbols)

3.1. The SIMP Model

SIMP uses FEA to discretize a mechanical part governed by the linear

elastic constitutive law. If the material is undergoing an internal displace-

ment u(x) ∶ Ω → R2 where Ω is the material domain, then the internal
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potential energy is accumulated according to the constitutive law as follows:

P [u(●), v(●)] = ∫
Ω

1

2
u(x)Tke(v(x), x)u(x)dx,

where P [●, ●] is the potential energy functional, ke is the spatially varying

stiffness tensor parameterized by infinite-dimensional decision variable v(x) ∶
Ω→ R that determines the infill levels. FEA discretizes the material domain

Ω into a set of E elements each spanning the sub-domain Ωe. The elements

are connected by a set of N nodes. By restricting P [●] to a certain finite-

dimensional functional space (the shape space), the potential energy can be

written as the following sum over elements:

P (u, v) =1
2
uT

K

∑
e=1

Ke(v)u ≜
1

2
uTK(v)u

Ke(v) ≜∫
Ωe

ke(v, x)dx.

Here Ke is the stiffness matrix of the eth element, K is the stiffness matrix

assembled from Ke. With a slight abuse of notation, we denote P (●, ●) as
a finite-dimensional potential energy function, u ∈ R2N without bracket as a

vector of 2D nodal displacements (u ∈ R3N in 3D), and v ∈ RE without bracket

as a vector of elementwise infill levels. The SIMP model is compatible with

all kinds of FEA discretization. The case with regular grid is illustrated in

Figure 3.

Suppose an external force f is exerted on the mechanical part, then the

total (internal+external) potential energy is:

Pf(u, v) =
1

2
uTK(v)u − fTu.

SIMP model works with arbitrary force setup, but external forces are only

applied to the boundary in practice. For example, if only the ith boundary

7



(a)

(b)

(c)

(d)

Figure 3: Key steps of the SIMP model and the design loop: define the SIMP
problem: external load (red) and fixture (brown); compute displacement u using
FEA (a); perform sensitivity analysis to compute ∇l (b); update infill levels (c);
repeat (b,c,d) until convergence.

node is under a force fi, then we have f = eifi with ei being the unit vector.

The equilibrium state is derived by minimizing Pf with respect to u, giving

uf =K−1(v)f . As the name suggests, the two variables uf , f are linearly re-

lated under the linear elastic constitutive law. The goal of TO is to minimize

the induced internal potential energy due to f :

argmin
v∈X

l(v) ≜1
2
uT
f (v)K(v)uf(v) =

1

2
fTK−1(v)f, (1)

where X is a compact, convex set bounding v away from potentially singular

configurations. Several widely used stiffness matrix parameterization ofK(v)
includes the linear law K(v) = ∑E

e=1 veKe or the power law K(v) = ∑E
e=1 v

η
eKe

where η > 0 is some constant. In both cases, we need to choose X such that

the spectrum of K is bounded from both sides:

0 < ρ1 ≤ ρ(K(v)) ≤ ρ̄1, (2)
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for any v ∈ X, where ρ(●) is the eigenvalues of a matrix. A typical choice of

X to this end is:

X = {v∣1 ≥ v ≥ v1 > 0 ∧ 1Tv ≤ v̄},

where ve is the infill level of the eth element, v is the minimal elementwise in-

fill level, v̄ is the total infill level, and 1,0 are the all-one and all-zero vectors,

respectively. In this work, we use the following more general assumption on

the stiffness matrix parameterization and the shape of X:

Assumption 3.1. X is a compact polytopic subset of RE, on which Equa-
tion 2 holds and K(v) is smooth.

Remark 3.2. The compactness of X is obvious. X is also polytopic because
we only have linear constraints, which is essential when we measure optimal-
ity using relative projection error (see Section 4 for details). Assumption 3.1
is more general than the standard SIMP model. Indeed, K(v) can be param-
eterized using any smooth activation function Ae(v) for the eth element as
K(v) = ∑E

e=1Ae(v)Ke, which obviously satisfies Assumption 3.1 as long as
Ae(v) is bounded from both above and below on X, away from zero. Our
assumption also allows a variety of topology modifications and constraints,
some of which are illustrated here. Symmetry-Constraint: We can plug in
a left-right symmetric mapping matrix S and define K(v) =K(Svs) where vs
is the infill levels for the left-half of the material block. Component-Cost-
Constraint: A mechanical part can be divided into different sub-components
and the amount of material can be assigned for each component as follows:

X ≜ {v∣v = (v1T , v2T ,⋯T , v#
T )T ∧ 1Tvi ≤ v̄i},

where # is the number of sub-components, vi is the sub-vector of v consist-
ing of decision variables for the ith component, and v̄i is the total allowed
amount of material for that sub-component. Material-Filtering: Guest
et al. [36] proposed to control the thickness of materials by filtering the in-
fill levels using some convolutional kernel denoted as C. As long as the
convolution operator C(●) is smooth, Assumption 3.1 holds by plugging in
K(v) = ∑E

e=1Ae(C(v))Ke.
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3.2. Self-Weight and Multiple Load Conditions

The standard SIMP model can be used to find mechanical designs under

a single external load f without any internal load. In practice, however,

a mechanical part must work under various load conditions, which depend

on its kinematic configuration. Furthermore, mechanical parts are typically

built from compound metals with non-trivial self-weight. We can extend the

SIMP model to consider these factors. To consider self-weight, we assume

that f depends on the infill levels v, denoted as a function f(v). A typical

choice of f(v) is as follows:

f(v) = ∫
Ω
v(x)ρgTu(x)dx, (3)

where ρ is the material density and g is the gravitational coefficient. The

function f(v) can be discretized using the same FEA scheme as that for the

internal energy. We further consider a row of Q external load conditions but

minimizing the sum of potential energy over each case. We use subscript to

denote the external load case. Putting things together, we have the following

extended objective function:

l(v) ≜ 1

2

Q

∑
q=1

f q(v)K−1(v)f q(v).

Accordingly, we define uq
f as the displacement corresponding to the qth ex-

ternal load.

3.3. TO Solvers for the SIMP Model
Existing methods such as the (GC)MMA [37, 28], SQP [33, 26], and [2]

for solving Equation 1 involve computing the exact gradient via sensitivity
analysis:

∇l =
1

2

Q

∑
q=1
(uqf)

T
[
∂f q

∂v
−
∂K

∂v
uqf] ,
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where we have used the derivatives of the matrix inverse. The major bottle-
neck lies in the computation of uq

f that involves exact matrix inversion. Here

we assume that ∂2K
∂v2 is a third-order tensor of size ∣u∣ × ∣u∣ × ∣v∣ and its left-

or right-multiplication means contraction along the first and second dimen-
sion. Note that the convergence of GCMMA and SQP solvers rely on the
line-search scheme that involves the computation of objective function val-
ues, which in turn requires matrix inversion. Practical methods [2] and [12]
avoid the line-search schemes using heuristic step sizes. Although working
well in practice, the theoretical convergence of these heuristic rules is difficult
to establish.

4. Bilevel Topology Optimization

In this section, we first propose our core formulation, then discuss exten-
sions to accelerate convergence via preconditioning (Section 4.1) and fast
projection operators (Section 4.2), and finally present GPU parallel im-
plementations (Section 4.3). Inspired by the recent advent of first-order
bilevel optimization algorithms [14, 34, 35], we investigate the reformulation
of Equation 1 as the following bilevel optimization:

argmin
v∈X

f(uq
f , v) ≜

1

2

Q

∑
q=1
(uq

f)TK(v)u
q
f

s.t. uq
f ∈ argmin

u

1

2
uTK(v)u − f q(v)Tu,

(4)

which is an well-known problem of NAND [31]. The low-level part of Equa-
tion 4 is a least-square problem in u and, since K(v) is always positive
definite when v ∈ X, the low-level solution is unique. Plugging the low-level
solution into the high-level objective function and Equation 1 is recovered.
The first-order bilevel optimization solves Equation 4 by time-integrating the
discrete dynamics system as described in Algorithm 1 and we denote this al-
gorithm as First-Order Bilevel Topology Optimization (FBTO). Line 3 of
Algorithm 1 is a single damped Jacobi iteration for refining the low-level so-
lution using an adaptive step size of βk. But instead of performing multiple
Jacobi iterations until convergence, we go ahead to use the inexact result
after one iteration for sensitivity analysis. Finally, we use a projected gradi-
ent descend to update the infill levels with an adaptive step size of αk. Here
ProjX (●) is the projection onto the convex set X under Euclidean distance.
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Algorithm 1 FBTO

1: for k← 1,2,⋯ do
2: for q← 1,2,⋯,Q do
3: uq

k+1 ← uq
k − βk(K(vk)uq

k − f q(vk))
4: vk+1 ← ProjX (vk + 1

2 ∑
Q
q=1(u

q
k)T [ ∂K∂vku

q
k −

∂fq

∂vk
])

The approximate low-level solve has a linear iterative cost of O(E) as com-
pared with conventional methods that have a superlinear iterative cost due
to sparse matrix inversions.

Remark 4.1. The succinct form of our approximate gradient (∑Q
q=1(u

q
k)T (

∂fq

∂vk
−

∂K
∂vk

uq
k)/2 in Line 4) makes use of the special structure of the SIMP model,

which is not possible for more general bilevel problems. If a general-purpose
first-order bilevel solver is used, e.g. [14] and follow-up works, one would
first compute/store ∇uvPf and then approximate ∇uuP −1f ∇uvPf via sampling.
Although the stochastic approximation scheme does not require exact matrix
inversion, they induce an increasing number of samples with a larger num-
ber of iterations. Instead, we make use of the cancellation between K(v) in
the high-level objective and K−1(v) in the low-level objective to avoid matrix
inversion or its approximations, which allows our algorithm to scale to high
dimensions without increasing sample complexity.

As our main result, we show that Algorithm 1 is convergent under certain
choices of parameters in Section 7 where we further show that the high-
level optimality error scales as O(km−1), so that m should be as small as
possible for the best convergence rate. Our analysis requires m > 3/4, so
the convergence rate can be arbitrarily close to O(k−1/4) as measured by the
following relative projection error [38]:

∆v
k ≜

1

α2
k

∥ProjX (vk − αk∇l(vk)) − vk∥2.

Although our analysis uses a similar technique as that for the two-timescale
method [34], our result is only single-timescale. Indeed, the low-level step
size βk can be constant and users only need to tune a decaying step size for
αk. We will further show that certain versions of our algorithm allow a large
choice of βk = 1 (see Section 8.5). In addition, our formula for choosing αk

does not rely on the maximal number of iterations of the algorithm.

12



Algorithm 2 PFBTO

1: for k← 1,2,⋯ do
2: for q← 1,2,⋯,Q do
3: δqk ←M−1(vk)(K(vk)uq

k − f q(vk))
4: uq

k+1 ← uq
k − βkK(vk)M−1(vk)δqk

5: vk+1 ← ProjX (vk + 1
2 ∑

Q
q=1(u

q
k)T [ ∂K∂vku

q
k −

∂fq

∂vk
])

Algorithm 3 CPFBTO

1: for k← 1,2,⋯ do
2: for q← 1,2,⋯,Q do
3: uq

k+1 ← uq
k − βkM−1(vk)(K(vk)uq

k − f q(vk))
4: vk+1 ← ProjX (vk + 1

2 ∑
Q
q=1(u

q
k)T [ ∂K∂vku

q
k −

∂fq

∂vk
])

4.1. Preconditioning

Our Algorithm 1 uses steepest gradient descend to solve the linear system
in the low-level problem, which is known to have a slow convergence rate
of (1 − 1/κ)2k/(1 + 1/κ)2k [39] with κ being the condition number of the
linear system matrix. A well-developed technique to boost the convergence
rate is preconditioning [40], i.e., pre-multiplying a symmetric positive-definite
matrix M(v) that approximates K(v) whose inverse can be computed at a
low-cost. Preconditioning is a widely used technique in the TO community
[2, 13] to accelerate the convergence of iterative linear solvers in solving
uq
f(v) = K(v)−1f q(v). In this section, we show that FBTO can be extended

to this setting by pre-multiplyingM(v) in the low-level problem and we name
Algorithm 2 as Pre-conditioned FBTO or PFBTO. Algorithm 2 is solving the
following different bilevel program from Equation 4:

argmin
v∈X

f(uq
f , v) ≜

1

2

Q

∑
q=1
(uq

f)TK(v)u
q
f

s.t. uq
f ∈ argmin

u
∥K(v)u − f q(v)∥2,

(5)

where the only difference is the low-level system matrix being squared to
K2(v). Since K(v) is non-singular, the two problems have the same solution
set. Equation 5 allows us to multiply M−1(v) twice in Algorithm 2 to get
the symmetric form of K(v)M−2(v)K(v). To show the convergence of Algo-
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rithm 2, we only need the additional assumption on the uniform boundedness
of the spectrum of M(v):

Assumption 4.2. For any v ∈X, we have:

0 < ρ
M

1 ≤ ρ(M(v)) ≤ ρ̄M1.

Assumption 4.2 holds for all the symmetric-definite preconditioners. The
convergence can then be proved following the same reasoning as that of Algo-
rithm 1 with a minor modification summarized in Section 7.5. Our analysis
sheds light on the convergent behavior of prior works using inexact FEA
system solvers such as geometric multigrid [2, 13] and conjugate gradient
method [41]. We further extend these prior works by enabling convergent
algorithms using a single iteration of a lightweight preconditioners, including
Jacobi/Gauss-Seidel iterations and approximate inverse schemes, to name
just a few. The practical performance of Algorithm 2 would highly depend
on the design and implementation of specific preconditioners.

On the down side of Algorithm 2, the system matrix in the low-level
problem of Equation 5 is squared and so is the condition number. Since the
convergence speed of low-level problem is (1−1/κ)2k/(1+1/κ)2k, squaring the
system matrix can significantly slow down the convergence, counteracting the
acceleration brought by preconditioning. This is because we need to derive
a symmetric operator of form K(v)M−2(v)K(v). As an important special
case, however, only a single application of M−1(v) suffice if M(v) commutes
withK(v), leading to the Commutable PFBTO or CPFBTO Algorithm 3. A
useful commuting preconditioner is the Arnoldi process used by the GMRES
solver [42], which is defined as:

M−1
(v)b ≜

D

∑
i=0

c∗iK
i
(v)b

c∗i ≜ argmin
ci

∥b −
D+1
∑
i=1

ci−1K
i
(v)b∥2,

(6)

where D is the size of Krylov subspace. By sharing the same eigenvectors,
M(v) is clearly commuting with K(v). This is a standard technique used
as the inner loop of the GMRES solver, where the least square problem
Equation 6 is solved via the Arnoldi iteration. The Arnoldi process can
be efficiently updated through iterations if K(v) is fixed, which is not the
case with our problem. Therefore, we choose the more numerically stable
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Householder QR factorization to solve the least square problem, and we
name Equation 6 as Krylov-preconditioner. To show the convergence of
Algorithm 3, we use a slightly different analysis in Section 7.5, which allows
the choice of a large, constant step size βk = 1 when the Krylov-preconditioner
is used.

4.2. Efficient Implementation

We present some practical strategies to further accelerate the compu-
tational efficacy of all three Algorithm 1,2,3 that are compatible with our
theoretical analysis. First, the total volume constraint is oftentimes active as
noted in [37]. Therefore, it is useful to maintain the total volume constraint
when computing the approximate gradient. If we define the approximate
gradient as ∇̃l ≜ ∑Q

q=1(u
q
k)T (

∂fq

∂vk
− ∂K

∂vk
uq
k)/2 and consider the total volume

constraint 1Tvk = v̄, then a projected gradient can be computed by solving:

∇̃P l ≜ argmin
1T ∇̃P l=0

∥∇̃P l − ∇̃l∥2,

with the analytic solution being ∇̃P l = ∇̃l − 11T ∇̃l/E. In our experiments,
using ∇̃P l in place of ∇̃l in the last line of FBTO algorithms can boost the
convergence rate at an early stage of optimization. On the other hand, if the
volume constraint is detected to be inactive, then we could use the original
gradient without hindering the convergence of the overall algorithm.

Second, the implementation of the projection operator ProjX (●) can be
costly in high-dimensional cases. However, our convex set X typically takes
a special form that consists of mostly bound constraints 1 ≥ v ≥ v1 with
only one summation constraint 1Tv ≤ v̄. Such a special convex set is known
as a simplex and a special O(E log(E)) algorithm exists for implementing
the ProjX (●) as proposed in [43]. Although the original algorithm [43] only
considers the equality constraint 1Tv = 1 and single-sided bounds v ≥ 0, a sim-
ilar technique can be adopted to handle our two-sided bounds and inequality
summation constraint and we provide its derivation for completeness. We
begin by checking whether the equality constraint is active. We can imme-
diately return if 1TProj{1≥v≥v} (vk) ≤ v̄. Otherwise, the projection operator
amounts to solving the following quadratic program:

argmin
1≥v≥v1

1

2
∥v − vk∥2 s.t. 1Tv = v̄,
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whose Lagrangian L and first-order optimality conditions are:

L =
1

2
∥v − vk∥

2
+ λT

1 (1 − v) + λ
T
v (v − v1) + λ(1T v − v̄)

v =vk + λ1 − λv − λ1 ∧ 0 ≤ λ1 ⊥ 1 − v ≥ 0 ∧ 0 ≤ λv ⊥ v − v1 ≥ 0,

where λ1, λv, λ are Lagrange multipliers. We can conclude that v = Clamp(vk−
λ1, v1,1) and the following equality holds due to the constraint 1Tv = v̄ being
active:

v̄ = 1TClamp(vk − λ1, v1,1), (7)

which is a piecewise linear equation having at most 2E pieces. There are
E left-nodes in the form of vk − v1 and E right-nodes in the form of vk − 1,
separating different linear pieces. The piecewise linear equation can be solved
for λ and thus v by first sorting the 2E nodes at the cost of O(E logE) and
then looking at each piece for the solution. We summarize this process in
Algorithm 4 where we maintain the sorted end points of the line segments
via running sums.

4.3. Fine-Grained Parallelism

Prior work [2] proposes to accelerate TO solver on GPU, but they require
a complex GPU multgrid implementation which is also costly to compute
per iteration. In comparison, our Algorithm 1,2,3 can make full use of many-
core hardwares with slight modifications. In this section, we discuss necessary
modifications for a GPU implementation assuming the availability of basic
parallel scan, reduction, inner-product, and radix sort operations [44]. A bot-
tleneck in Algorithm 1,2,3 is matrix-vector production K(v)u, of which the
implementation depends on the type of FEA discretization. If the discretiza-
tion uses a regular pattern, then the element-to-node mapping is known and
can be hard coded, so the computation for each node is independent and
costs O(1) if E thread blocks are available. For irregular discretizations, we
have to store the sparse matrix explicitly and suggest using a parallel sparse
matrix-vector product routine [45]. To implement the Krylov-preconditioner,
we perform in-place QR factorization to solve for c∗i . The in-place QR factor-
ization involves computing the inner-product for D2 times and then solving
the upper-triangular system. Altogether, the least square solve in Equation 6
costs O(D2 logE +D2) when E threads are available. Here we use a serial
implementation of the upper-triangular solve, which is not a performance
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Algorithm 4 Project vk onto X (SLOPE is the slope of each line segment,
RHS is the righthand side of Equation 7)

1: if 1TProj{1≥v≥v} (vk) ≤ v̄ then
2: Return Proj{1≥v≥v} (vk)
3: ARRAY← ∅
4: for vek ∈ vk do
5: ARRAY← ARRAY⋃{vek − v, vek − 1}
6: Sort ARRAY from low to high ▷ O(E logE)
7: SLOPE← 0, RHS← E, NODES← ∅, λ∗last ← 0
8: for λ∗ ∈ ARRAY do ▷ O(E)
9: RHS← RHS + SLOPE(λ∗ − λ∗last)

10: if λ∗ of form vek − 1 then
11: SLOPE← SLOPE − 1
12: else SLOPE← SLOPE + 1 ▷ λ∗ of form vek − v
13: NODES← NODES⋃{< λ∗,RHS >}, λ∗last ← λ∗

14: for Consecutive NODE,NODE′ ∈ NODES do ▷ O(E)
15: if Segment < NODE,NODE′ > passes through v̄ then
16: Solve for λ and return Clamp(vk − λ1, v1,1)

penalty when D ≪ E. Finally, Algorithm 4 involves one radix sort that costs
O(logE) and three for loops, the first and last for loops do not have data
dependency and cost O(1). The second for loop accumulates two variables
(Slope,Total) that can be accomplished by a parallel scan taking O(logE).
In summary, the cost of each iteration of Algorithm 1,2,3 can be reduced
to O(D2 logE) when O(E) threads are available. We profile the parallel
acceleration rate in Figure 4.

5. Evaluation

We implemented FBTO using native C++ on a laptop machine with
a 2.5G 6-core Intel i7 CPU and a 1.48G Nvidia GTX 1060 mobile GPU
having 1280 cores. Our implementation makes full use of the cores on CPU
via OpenMP and GPU via Cuda and we implement the regular grid FEA
discretization. In all the examples, we apply a 32 − 72 separable Gaussian
kernel C as our material filter (see Remark 3.2), which can be implemented
efficiently on GPU as a product of multiple linear kernels. The exact kernel
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Figure 4: The acceleration rate of low-end mobile GPU (1280 cores) versus CPU (6
cores) implementation under different resolutions of discretization. We achieve a maximal
speedup of 16 times.

size varies across examples. Unless otherwise stated, we choose Algorithm 3
with v = 0.1, η = 3, αk = α0k−3/4, βk = 1,D = 20 for our Krylov-preconditioner
in all the experiments where α0 varies across different experiments. We
justify these parameter choices in Section 8.5. For the three algorithms in
Section 4, we terminate when the relative change to infill levels over two
iterations (∥vk+1 − vk∥∞) is smaller than 10−4 and the absolute error of the
linear system solve ( max

q=1,⋯,Q
∥K(vk)uq

k − f q(vk)∥∞) is smaller than 10−2, which

can be efficiently checked on GPU by using a reduction operator that costs
O(logE). The two conditions are measuring the optimality of the high- and
low-level problems, respectively.

Low-Iterative Cost. We run FBTO on a row of standard 2D and 3D compu-
tational benchmarks described in [1, 2, 3]. These benchmarks only consider
a single load condition without self-weight. We summarize the iterative cost
and total computational cost in Table 1 and Table 2. The iterative cost
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Benchmark Res. Frac. #Iter.
Time
(Total)

Time
(Iter.)

Mem.

Figure 2a 192 × 576 0.3 14600 584 0.040 24
Figure 2b 192 × 576 0.3 8900 356 0.040 24
Figure 2c 192 × 384 0.3 37400 1159 0.031 18
Figure 2d 160 × 240 0.4 20400 346 0.017 8
Figure 2e 160 × 160 0.5 13300 146 0.011 4
Figure 2f 128 × 384 0.5 9300 195 0.021 10
Figure 2g 128 × 256 0.3 19400 252 0.013 8

Table 1: Statistics of 2D benchmark problems in Figure 2: benchmark index, grid res-
olution, volume fraction (v̄), iterations until convergence, total computational time(s),
iterative cost(s), and GPU memory cost (mb).

ranges from 4 − 24ms in 2D and 40 − 120ms in 3D. We further compare our
method with Projected Gradient Descent (PGD). Using a single-level for-
mulation, PGD differs from Algorithm 3 by using exact matrix inversions,
i.e., replacing Line 3 with uq

k+1 ←K−1(vk)f q(vk). Since exact, sparse matrix
factorization is a serial algorithm, we implement other steps of PGD on GPU
while revert to CPU for the factorization. According to Table 1, our method
incurs an order of magnitude lower iterative cost. We further plot the con-
vergence history of both methods for the benchmark in Figure 1a, where our
method converges after 576s on this example. In Figure 5, we plot the design
evolution against iteration numbers for the benchmark in Figure 1g. Even
at an early stage of optimization, the design is already very similar to the
converged solution. As a result, our low iterative cost provides the unique
opportunity for designers to quickly preview the optimized design.

Convergent Behavior. Our algorithm relies on two critical parameters: ini-
tial high-level step size α0 and Krylov subspace size D for preconditioning.
We profile the sensitivity with respect to α0 in Figure 6 for benchmark prob-
lem in Figure 2e. We find our method convergent over a wide range of α0,
although an overly large α0 could lead to excessive initial fluctuation. In
practice, matrix-vector product is the costliest step and takes up 96% of the
computational time, so the iterative cost is almost linear in D. Algorithm 1
would require an extremely small α0 and more iterations to converge, while
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Benchmark Res. Frac. #Iter.
Time
(Total)

Time
(Iter.)

Mem.

Figure 1a 32 × 96 × 32 0.3 37700 4524 0.120 10
Figure 1b 32 × 32 × 32 0.3 17400 696 0.040 3
Figure 1c 32 × 96 × 32 0.3 49000 5880 0.120 10
Figure 1d 32 × 96 × 32 0.3 42600 5112 0.120 10
Figure 1e 32 × 64 × 32 0.3 29100 2328 0.080 7

Table 2: Statistics of 3D benchmark problems in Figure 1: benchmark index, grid res-
olution, volume fraction (v̄), iterations until convergence, total computational time(s),
iteration cost(s), and GPU memory cost (mb).

Algorithm 3 even with a small D can effectively reduce the low-level error
and allow a wide range of choices for α0, leading to a faster overall conver-
gence speed. We profiled the sensitivity to subspace size D in Figure 7, and
we observe convergent behaviors for all α0 when D ≥ 15, so we choose D = 20
in all examples and only leave α0 to be tuned by users.

Comparison with Optimality Criteria (OC). We compare our method with
the heuristic solver OC [12]. For fairness, we implement a GPU-based OC
in our framework. During each iteration, we use the standard conjugate
gradient algorithm to solve the FEA system to sufficiently high-precision on
GPU. We use all the parameters suggested in [12]. Note that it is inherently
difficult to find a single performance indicator for both solvers. We find a
reasonable indicator to be the relative projection error

√
∆v

k. However, even

computing
√
∆v

k requires the exact gradient, which is intractable for our

method, so we use our inexact gradient as a replacement of ∇l(vk) in
√
∆v

k.
For OC, a trust-region-like move limit is adopted, which is set to 0.2, so we set
all αk = 0.2 in

√
∆v

k. As illustrated in Figure 8, OC visually converges within
100 outer iterations, while numerically the projection error cannot be reduced
to zero, i.e., OC does not converge to locally optimal solution. Instead, our
projection error is continually reducing to zero. On the other hand, the
visual quality of both methods are comparable as illustrated in Figure 9.
After 100s of computation, both methods can find the coarse structures,
while the detailed structures are optimized after 200s of computation.
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Figure 5: We plot the intermediary designs at different iteration numbers for the bench-
mark in Figure 1g. The result after 3000 iterations is already quite similar to the ultimate
solution.

Self-Weight and Multiple Load Conditions. In Figure 10, we show 3D me-
chanical designs optimized under different conditions. We use the same
power law to discretize Equation 3 with η = 3. Drastically different designs
are found under self-weight or multiple load conditions. The additional cost
of considering self-weight is marginal, while considering multiple load condi-
tions lead to a major computational overhead. Since low-level solve is the
most costly step of our method, considering C external loads can lead to an
approximately C times higher iterative cost. For the example in Figure 10,
we use a resolution of 32 × 64 × 32 and the iterative cost with a single, and
four loads are 80ms and 350ms, respectively.

6. Conclusion & Limitation

We present a new solver for a subclass of TO problems: the SIMP
model. Our method revisits the TO formulation as a bilevel program and
solve the optimization via first-order algorithms with inexact FEA system
solvers. Both theoretical analysis and computational benchmarks show that
our method has a much lower iterative cost of O(E logE) on CPU and
O(logE) on GPU, and our method is guaranteed to converge. In practice,
the iterative cost is less than 1 second, allowing designers to interactively
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Figure 6: For the benchmark problem in Figure 2e, we compared the convergence history
of three choices of α0. A larger α0 would lead to more fluctuations at an early stage, but all
three optimizations would ultimately converge. When α0 > 10

−2, we observe divergence.

preview the optimized design and accelerate the design refinement loop. We
further show that our method can solve TO under self-weight and multiple
external load conditions, which is essential for designing mechanical parts
built from heavy materials and work under a variety of conditions.

Our theoretical framework has several limitations that open doors to fu-
ture research. First, our method falls into the category of first-order method
that can quickly converge to a solution of medium accuracy. For highly accu-
rate solutions, our method can take a large number of iterations making the
performance inferior than convention method [12] using exact FEA solvers.
Second, our theoretical convergence speed is not optimal and techniques such
as momentum acceleration [46] can be adopted for an improvement, although
it introduces additional parameters to be tuned. In addition, our Krylov
preconditioner cannot scale to high-resolution FEA meshes because its con-
vergence speed is not resolution-independent. A widely used method for
resolution-independent performance is multigrid [25], but the convergence
properties of our method under such preconditioner require further investi-
gation. In particular, it is unknown whether we can still use βk = 1 with
a multigrid preconditioner. Finally, there are many advanced TO formula-
tions using additional constraints for stress [20] and minimum length-scale
controls [47, 48]. It is unclear whether inexact FEA solvers can be utilized
in these formulations.
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Figure 7: We run our method for 5000 iterations and plot the final exact energy value
against α0 where log(l(vk)) > 9 indicates divergence. When D ≥ 15, our method is
convergent under all the step sizes. Therefore, we choose D = 20 in all examples and
only leave α0 to be tuned by users.

7. Convergence Analysis of Algorithm 1

In this section, we introduce a set of assumptions on the choices of param-
eters, under which we prove the convergence of our method. For simplicity
of presentation, we always assume a single load condition C = 1 and no
self-weight. The analysis with multiple load conditions or self-weight follows
exactly the same reasoning, with only minor notational changes.

Assumption 7.1. We choose constant βk and some constant p > 0 satisfying
the following condition:

0 < βk <
2ρ

ρ̄2
∧ p >

1 − 2βkρ + β̄2β2
k

2βkρ − β̄2β2
k

. (8)

Assumption 7.2. Define ∆k ≜ ∥uk − uf(vk)∥2 and suppose ∆1 ≤ U2, we
choose the following uniformly bounded sequence {Γk} with constant Γ̄, Θ̄:

Θ̄ ≜ p + 1
p
(1 − 2βkρ + β2

k ρ̄
2) ∧ Γk ≤ Γ̄ ≤

U2(1 − Θ̄)
(U +Uf)4

,

where Uf is the finite upper bound of uf(v) on X.
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Figure 8: We plot the relative projection error
√
∆v

k against computational time for both
our method and OC [12] on benchmark of Figure 2a. OC visually converges to a non-
optimal solution within 100 outer iterations, while our method takes more iterations to
converge to a locally optimal solution.

Assumption 7.3. We choose αk as follows:

αk =
1

km

¿
ÁÁÀ Γ̄

L2
uL

2
∇K

4

p + 1 ,

for positive constants m,p, where Lu is the L-constant of uf and L∇K is the
upper bound of the Frobenius norm of ∂K(v)/∂v when v ∈X.

Assumption 7.4. We choose positive constants m,n satisfying the following
condition:

max(1 − 2m +mn,2 − 2m −mn,2 − 3m) < 0 ∧m < 1.

Theorem 7.5. Suppose {vk} is the sequence generated by Algorithm 1 un-
der Assumption 3.1, 7.1, 7.2, 7.3, 7.4, with a single load condition and no

24



O
u
rs

O
C

50s 100s 200s

O
u
rs

O
C

50s 100s 200s

Figure 9: We show the intermediary result of our method and OC after 50s, 100s, and
200s of computation.

self-weight. For any ϵ > 0, there exists an iteration number k such that
∥∇X l(vk)∥ ≤ ϵ, where ∇X l(vk) is the projected negative gradient into the tan-
gent cone of X, TX , defined as:

∇X l(vk) = argmin
d∈TX

∥d +∇l(vk)∥.

To prove Theorem 7.5, we start from some immediate observations on
the low- and high-level objective functions. Then, we prove the rule of error
propagation for the low-level optimality, i.e., the low-level different between
uk and its optimal solution uf(vk). Next, we choose parameters to let the
difference diminish as the number of iterations increase. Finally, we focus on
the high-level objective function and show that the difference between vk and
a local optima of l(v) would also diminish. Our analysis resembles the recent
analysis on two-timescale bilevel optimization, but we use problem-specific
treatment to handle our novel gradient estimation for the high-level problem
without matrix inversion.

7.1. Low-Level Error Propagation

If Assumption 3.1 holds, then the low-level objective function is ρ-strongly
convex and Lipschitz-continuous in u for any v with ρ̄ being the L-constant,
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(c) (d)

Figure 10: We show 3D mechanical parts optimized under different conditions: (a) single
load without self-weight; (b) single load with self-weight; (c) 4 loads without self-weight;
(d) 4 loads with self-weight. For this example, we set the volume fraction to be 0.3. The
existence of self-weight and multiple load conditions can drastically change the design.

so that:

Pf(uk+1, vk) ≤ Pf(uk, vk) + ⟨uk+1 − uk,∇uPf(uk, vk)⟩+

ρ̄

2
∥uk+1 − uk∥

2
≤ Pf(uk, vk) + [

ρ̄

2
−

1

βk
] ∥uk+1 − uk∥

2. (9)

Similarly, we can immediately estimate the approximation error of the low-
level problem due to an update on u:

Lemma 7.6. Under Assumption 3.1, the following relationship holds for all
k ≥ 1:

∆k+1 ≤
p + 1

p
(1 − 2βkρ + β

2
k ρ̄

2
)∆k +L

2
uL

2
∇Kα2

k

p + 1

4
∥uk∥

4.

Proof. The following result holds by the triangle inequality and the bounded
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spectrum of K(v) (Equation 2):

∥uk+1 − uf(vk)∥2

=∥uk+1 − uk∥2 + ∥uk − uf(vk)∥2+
2 ⟨uk+1 − uk, uk − uf(vk)⟩
=∥uk+1 − uk∥2 + ∥uk − uf(vk)∥2−
2βk ⟨K(vk)uk − f, uk − uf(vk)⟩
≤∥uk+1 − uk∥2 + (1 − 2βkρ)∥uk − uf(vk)∥2

≤β2
k ρ̄

2∥uk − uf(vk)∥2 + (1 − 2βkρ)∥uk − uf(vk)∥2. (10)

The optimal solution to the low-level problem is uf(v), which is a smooth
function defined on a compact domain, so any derivatives of uf(v) is bounded
L-continuous and we have the following estimate of the change to uf due to
an update on v:

∥uk+1 − uf(vk)∥∥uf(vk) − uf(vk+1)∥

≤ 1

2p
∥uk+1 − uf(vk)∥2 +

p

2
∥uf(vk) − uf(vk+1)∥2

≤ 1

2p
∥uk+1 − uf(vk)∥2 +

pL2
u

2
∥vk − vk+1∥2

≤ 1

2p
∥uk+1 − uf(vk)∥2 +

pL2
uα

2
k

8
∥uT

k

∂K

∂vk
uk∥2, (11)

where we have used Young’s inequality and the contractive property of the
ProjX (●) operator. Here we denote Lu as the L-constant of uf . By triangular
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inequality, we further have:

∥uk+1 − uf(vk+1)∥
2

≤∥uk+1 − uf(vk)∥
2
+ ∥uf(vk) − uf(vk+1)∥

2
+

2∥uk+1 − uf(vk)∥∥uf(vk) − uf(vk+1)∥

≤
p + 1

p
∥uk+1 − uf(vk)∥

2
+ ∥uf(vk) − uf(vk+1)∥

2
+

pL2
uα

2
k

4
∥uTk

∂K

∂vk
uk∥

2

≤
p + 1

p
∥uk+1 − uf(vk)∥

2
+L2

u∥vk − vk+1∥
2
+

pL2
uα

2
k

4
∥uTk

∂K

∂vk
uk∥

2

≤
p + 1

p
∥uk+1 − uf(vk)∥

2
+L2

uα
2
k

p + 1

4
∥uTk

∂K

∂vk
uk∥

2

≤
p + 1

p
(1 − 2βkρ + β

2
k ρ̄

2
)∥uk − uf(vk)∥

2
+

L2
uα

2
k

p + 1

4
∥uTk

∂K

∂vk
uk∥

2

≤
p + 1

p
(1 − 2βkρ + β

2
k ρ̄

2
)∥uk − uf(vk)∥

2
+

L2
uL

2
∇Kα2

k

p + 1

4
∥uk∥

4, (12)

where we have used Equation 10 and Equation 11.

The result of Lemma 7.6 is a recurrent relationship on the low-level op-
timality error ∆k, which will be used to prove low-level convergence via
recursive expansion.

7.2. Low-Level Convergence
We use the following shorthand notation for the result in Lemma 7.6:

∆k+1 ≤ Θk∆k + Γk∥uk∥
4

Θk ≜
p + 1

p
(1 − 2βkρ + β

2
k ρ̄

2
) Γk ≜ L

2
uL

2
∇Kα2

k

p + 1

4
. (13)

By taking Assumption 7.1 and direct calculation, we can ensure that Θk ≤
Θ̄ < 1 (i.e., the first term is contractive). To bound the growth of the second
term above, we show by induction that both ∆k and uk can be uniformly
bounded for all k via a sufficiently small, constant Γk ≤ Γ̄.
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Lemma 7.7. Taking Assumption 3.1, 7.1, 7.2, we have ∆k ≤ U2, ∥uk∥ ≤
Uf +U for all k ≥ 1, where Uf is the uniform upper bound for ∥uf(v)∥.
Proof. First, since v ∈X and X is compact, we have ∥uf(v)∥ ≤ Uf <∞. Next,
we prove ∆k ≤ U2 by induction. We already have ∆1 ≤ U2. Now suppose
∆k ≤ U2, then Equation 13 and our assumption on Γ̄ immediately leads to:

∆k+1 ≤Θ̄U2 + Γ̄(∥uk − uf(vk)∥ + ∥uf(vk)∥)4

≤Θ̄U2 + Γ̄(U +Uf)4 ≤ U2.

Finally, we have: ∥uk∥ ≤ ∥uk − uf(vk)∥ + ∥uf(vk)∥ ≤ U + Uf and our lemma
follows.

The shrinking coefficient Θ̄ and the uniform boundedness of ∆k, uk allows
us to establish low-level convergence with the appropriate choice of αk =
O(k−m) with m ≥ 1.
Theorem 7.8. Taking Assumption 3.1, 7.1, 7.2, 7.3, we can upper bound
∆k+1 as:

∆k+1 ≤ Θ̄
k−1∆1 + (U +Uf)

4Γ1

k−1
∑
i=0

Θ̄i

(k − i)2m
= O(k1−2m).

Proof. Recursively expand on Equation 13 and we have:

∆k+1 ≤ Θ̄∆k + Γk∥uk∥
4

≤Θ̄(Θ̄∆k−1 + Γk−1∥uk−1∥
4
) + Γk∥uk∥

4

=Θ̄2∆k−1 + Θ̄Γk−1∥uk−1∥
4
+ Γk∥uk∥

4

≤Θ̄2
(Θ̄∆k−2 + Γk−2∥uk−2∥

4
) + Θ̄Γk−1∥uk−1∥

4
+ Γk∥uk∥

4

⋯

≤Θ̄k∆1 + (U +Uf)
4
k−1
∑
i=0

Θ̄iΓk−i

≤Θ̄k∆1 + (U +Uf)
4Γ1

k−1
∑
i=0

Θ̄i

(k − i)2m

≤Θ̄k∆1 + (U +Uf)
4Γ1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⌈ k−1
2
⌉

∑
i=0

Θ̄i

(k − i)2m
+

k−1
∑

i=⌈ k+1
2
⌉

Θ̄i

(k − i)2m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤Θ̄k∆1 + (U +Uf)
4Γ1

⎡
⎢
⎢
⎢
⎢
⎣

⌈k+12 ⌉

(k − ⌈k−12 ⌉)
2m
+

Θ̄⌈
k
2
⌉

1 − Θ̄

⎤
⎥
⎥
⎥
⎥
⎦

= O(k1−2m),

where we have used our choice of αk and Lemma 7.7.
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Theorem 7.8 is pivotal by allowing us to choose m and tune the conver-
gence speed of the low-level problem, which is used to establish the conver-
gence of high-level problem.

7.3. High-Level Error Propagation

The high-level error propagation is similar to the low-level analysis, which
is due to the L-continuity of any derivatives of l(v) in the compact domain
X. The following result reveals the rule of error propagation over a single
iteration:

Lemma 7.9. Under Assumption 3.1, 7.1, 7.2, 7.3, the following high-level
error propagation rule holds for all k ≥ 1, q > 0:

l(vk+1) − l(vk) ≤ −
1

αk

∥vk+1 − vk∥2+

L2
∇Kα

2
k(L∇lq + 1)
8q

(U +Uf)4 +
L2
∇Kq

8
∆k(U + 2Uf)2.

Proof. By the smoothness of l(v), the compactness of X, and the obtuse
angle criterion, we have:

l(vk+1) − l(vk) ≤ ⟨vk+1 − vk,∇l(vk)⟩ +
L∇l
2
∥vk+1 − vk∥

2

≤ ⟨vk+1 − vk,−
1

2
uTf (vk)

∂K

∂vk
uf(vk)⟩ +

L∇lL
2
∇Kα2

k

8
∥uk∥

4

= ⟨vk+1 − vk,−
1

2
uTk

∂K

∂vk
uk⟩ +

L∇lL
2
∇Kα2

k

8
∥uk∥

4
+

⟨vk+1 − vk,
1

2
uTk

∂K

∂vk
uk −

1

2
uTf (vk)

∂K

∂vk
uf(vk)⟩

≤ −
1

αk
∥vk+1 − vk∥

2
+
L∇lL

2
∇Kα2

k

8
∥uk∥

4
+

⟨vk+1 − vk,
1

2
uTk

∂K

∂vk
uk −

1

2
uTf (vk)

∂K

∂vk
uf(vk)⟩ , (14)

where L∇l is the L-constant of ∇l on X. For the last term above, we can
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bound it by applying the Young’s inequality:

⟨vk+1 − vk,
1

2
uTk

∂K

∂vk
uk −

1

2
uTf (vk)

∂K

∂vk
uf(vk)⟩

≤
1

2q
∥vk+1 − vk∥

2
+
q

2
∥
1

2
uTk

∂K

∂vk
uk −

1

2
uTf (vk)

∂K

∂vk
uf(vk)∥

2

≤
L2
∇Kα2

k

8q
∥uk∥

4
+
q

2
∥
1

2
uTk

∂K

∂vk
uk −

1

2
uTf (vk)

∂K

∂vk
uf(vk)∥

2

=
L2
∇Kα2

k

8q
∥uk∥

4
+
q

2
∥
1

2
(uk − uf(vk))

T ∂K

∂vk
(uk + uf(vk))∥

2

≤
L2
∇Kα2

k

8q
∥uk∥

4
+
L2
∇Kq

8
∆k∥uk + uf(vk)∥

2. (15)

The lemma follows by combining Equation 14, Equation 15, and Lemma 7.7.

7.4. High-Level Convergence

We first show that ∆v
k is diminishing via the follow lemma:

Lemma 7.10. Under Assumption 3.1, 7.1, 7.2, 7.3, we have the following
bound on the accumulated high-level error ∆v

k:

1

2

k

∑
i=1

αi∆
v
i ≤ l(v1) − l+

L2
∇K

8
(U +Uf)4

k

∑
i=1

α2−n
i (L∇lαn

i + 1)+

L2
∇K

8
(U + 2Uf)2

k

∑
i=1

αn
i ∆i +

L2
∇K

4
(U + 2Uf)2

k

∑
i=1

αi∆i,

where l is the lower bound of l on X.

Proof. By choosing q = αn
k for some constant n and summing up the recursive

rule of Lemma 7.9, we have the following result:

l(vk+1) − l(v1) ≤ −
k

∑
i=1

1

αi

∥vi+1 − vi∥2+

L2
∇K

8
(U +Uf)4

k

∑
i=1

α2−n
i (L∇lαn

i + 1)+

L2
∇K

8
(U + 2Uf)2

k

∑
i=1

αn
i ∆i. (16)
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Equation 16 can immediately lead to theO(k−1) convergence of ∥vi+1−vi∥2/αi.
However, the update from vi to vi+1 is using the approximate gradient. To
show the convergence of l(v), we need to consider an update using the exact
gradient. This can be achieved by combining Equation 16 and the gradient
error estimation in Equation 15:

∆v
k ≤

1

α2
k

∥vk+1 − vk∥
2
+

1

α2
k

∥
αk

2
uf(vk)

T ∂K

∂vk
uf(vk) −

αk

2
uTk

∂K

∂vk
uk∥

2
+

2

α2
k

∥vk+1 − vk∥∥
αk

2
uf(vk)

T ∂K

∂vk
uf(vk) −

αk

2
uTk

∂K

∂vk
uk∥

≤
2

α2
k

∥vk+1 − vk∥
2
+

2

α2
k

∥
αk

2
uf(vk)

T ∂K

∂vk
uf(vk) −

αk

2
uTk

∂K

∂vk
uk∥

2

≤
2

α2
k

∥vk+1 − vk∥
2
+
L2
∇K
2

∆k(U + 2Uf)
2. (17)

We can prove our lemma by combining Lemma 7.9, Equation 16, Equation 17.

The last three terms on the righthand side of Lemma 7.10 are power series,
the summand of which scales at the speed ofO(k−2m+mn),O(k1−2m−mn),O(k1−3m),
respectively. Therefore, for the three summation to be upper bounded for
arbitrary k, we need the first condition in Assumption 7.4. The following
corollary is immediate:

Corollary 7.11. Under Assumption 3.1, 7.1, 7.2, 7.3, 7.4, we have mini=1,⋯,k αi∆v
i ≤

Ck−1 and there are infinitely many k such that ∆v
k ≤ Cvkm−1 for some con-

stants C,Cv independent of k.

Proof. By Lemma 7.10 and Assumption 7.4, we have ∑k
i=1αi∆v

i ≤ C for some
constant C. Now suppose only finitely many k satisfies ∆v

k ≤ Cvkm−1, then
after sufficiently large k ≥K0, we have:

k

∑
i=K0

αi∆
v
i ≥
¿
ÁÁÀ Γ̄

L2
uL

2
∇K

4

p + 1Cv

k

∑
i=K0

1

i
,

which is divergent, leading to a contradiction.

Our remaining argument is similar to the standard convergence proof of
PGD [38], with minor modification to account for our approximate gradient:
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Proof of Theorem 7.5. We denote by ṽk+1:

ṽk+1 ≜ ProjX (vk − αk∇l(vk)) .

Note that ṽk+1 is derived from vk using the true gradient, while vk+1 is de-
rived using our approximate gradient. Due to the polytopic shape of X in
Assumption 3.1, for vk ∈X, we can always choose a feasible direction dk from
TX(vk) with ∥dk∥ ≤ 1 such that:

∥∇X l(vk)∥ ≤ − ⟨∇l(vk), dk⟩ +
ϵ

4
.

We further have the follow inequality holds for any z ∈ X due to the obtuse
angle criterion and the convexity of X:

⟨αk∇l(vk), ṽk+1 − z⟩
≤ ⟨αk∇l(vk), ṽk+1 − z⟩ + ⟨vk − αk∇l(vk) − ṽk+1, ṽk+1 − z⟩
= ⟨vk − ṽk+1, ṽk+1 − z⟩ ≤ ∥vk − ṽk+1∥∥ṽk+1 − z∥.

Applying Corollary 7.11 and we can choose sufficiently large k such that:

− ⟨∇l(ṽk+1),
τkdk
τk∥dk∥

⟩ ≤ 1

αk

∥vk − ṽk+1∥

≤ 1

αk

∥vk − vk+1∥ +
1

αk

∥vk+1 − ṽk+1∥

=
√
∆v

k +
1

αk

∥vk+1 − ṽk+1∥

≤ ϵ
4
+
√

L2
∇K

4
∆k∥uk + uf(vk)∥2 =

ϵ

4
+O(k(1−2m)/2).

Here the first inequality holds by choosing sufficiently small k-dependent
τk such that z = ṽk+1 + τkdk ∈ X and using the fact that ∥dk∥ ≤ 1. The
third inequality holds by choosing sufficently large k and Corollary 7.11.
The last equality holds by the contractive property of projection operator,
Theorem 7.8, and Lemma 7.9.
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7.5. Convergence Analysis of Algorithm 2

Informally, we establish convergence for the preconditioned Algorithm 2
by modifying Equation 10 as follows:

∥uk+1 − uf(vk)∥2

=∥uk+1 − uk∥2 + ∥uk − uf(vk)∥2+
2 ⟨uk+1 − uk, uk − uf(vk)⟩
=∥uk+1 − uk∥2 + ∥uk − uf(vk)∥2−
2βk ⟨K(vk)M−2(vk)(K(vk)uk − f), uk − uf(vk)⟩

≤∥uk+1 − uk∥2 + (1 − 2βk

ρ2

ρ̄2M
)∥uk − uf(vk)∥2

≤β2
k

ρ̄4

ρ4
M

∥uk − uf(vk)∥2 + (1 − 2βk

ρ2

ρ̄2M
)∥uk − uf(vk)∥2.

Assumption 7.1 must also be modified to account for the spectrum M(v).
All the other steps are identical to those of Theorem 7.5.

8. Convergence Analysis of Algorithm 3

The main difference in the analysis of Algorithm 3 lies in the use of a
different low-level error metric defined as Ξk ≜ ∥K(vk)uk − f∥2. Unlike ∆k

which requires exact matrix inversion, Ξk can be computed at a rather low
cost. We will further show that using Ξk for analysis would lead to a much
larger, constant choice of low-level step size βk = 1. Our result is formalized
below:

Assumption 8.1. We choose constant βk and some constant p > 0 satisfying
the following condition:

0 < βk <
2ρρ2

M

ρ̄2ρ̄M
∧ p >

1 − 2βk
ρ

ρ̄M
+ β2

k
ρ̄2

ρ2
M

2βk
ρ

ρ̄M
− β2

k
ρ̄2

ρ2
M

. (18)

Assumption 8.2. Define Ξk ≜ ∥K(vk)uk − uf∥2 and suppose Ξ1 ≤ U2, we
choose the following uniformly bounded sequence {Γk} with constant Γ̄, Θ̄:

Θk ≜
p + 1
p
(1 − 2βk

ρ

ρ̄M
+ β2

k

ρ̄2

ρ
M

) ∧ Γk ≤ Γ̄ ≤
U2(1 − Θ̄)
(U/ρ +Uf)6

,

where Uf is the finite upper bound of uf(v) on X.
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Assumption 8.3. We choose αk as follows:

αk =
1

km

¿
ÁÁÀ Γ̄

L2
KL

2
∇K

4

p + 1 ,

for some positive constants m,p, where LK is the L-coefficient of K(v)’s
Frobenius norm on X.

Theorem 8.4. Suppose M(v) commutes with K(v), {vk} is the sequence
generated by Algorithm 3 under Assumption 3.1, 8.1, 8.2, 8.3, 7.4, 4.2, with
a single load condition and no self-weight. For any ϵ > 0, there exists an
iteration number k such that ∥∇X l(vk)∥ ≤ ϵ, where ∇X l(vk) is the projected
negative gradient into the tangent cone of X.

To prove Theorem 8.4, we follow the similar steps as Theorem 7.5 and
only list necessary changes in this section.

8.1. Low-Level Error Propagation

Lemma 8.5. Assuming M(v) commutes with K(v) and 3.1, the following
relationship holds for all k ≥ 1:

Ξk+1 ≤
p + 1

p
(1 − 2βk

ρ

ρ̄M
+ β2

k

ρ̄2

ρ2
M

)Ξk +L
2
KL2
∇Kα2

k

p + 1

4
∥uk∥

6,

where we define: ∥K(vk+1) −K(vk)∥2F ≤ LK∥vk+1 − vk∥2 for any vk, vk+1 ∈X.

Proof. The following result holds by the triangle inequality and the bounded
spectrum of K(v) (Equation 2):

∥K(vk)uk+1 − f∥2

=∥K(vk)(uk+1 − uk)∥2 + ∥K(vk)uk − f∥2+
2 ⟨K(vk)(uk+1 − uk),K(vk)uk − f⟩
=∥K(vk)(uk+1 − uk)∥2 + ∥K(vk)uk − f∥2−
2βk ⟨K(vk)M−1(vk)(K(vk)uk − f),K(vk)uk − f⟩

≤∥K(vk)(uk+1 − uk)∥2 + (1 − 2βk

ρ

ρ̄M
)∥K(vk)uk − f∥2

≤(1 − 2βk

ρ

ρ̄M
+ β2

k

ρ̄2

ρ2
M

)∥K(vk)uk − f∥2. (19)
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Next, we estimate an update due to vk via the Young’s inequality:

∥(K(vk+1) −K(vk))uk+1∥∥K(vk)uk+1 − f∥

≤ 1

2p
∥K(vk)uk+1 − f∥2 +

p

2
∥(K(vk+1) −K(vk))uk+1∥2

≤ 1

2p
∥K(vk)uk+1 − f∥2 +

pL2
Kα

2
k

8
∥uT

k

∂K

∂vk
uk∥2∥uk+1∥2.

Putting the above two equations together, we have:

∥K(vk+1)uk+1 − f∥
2

≤∥(K(vk+1) −K(vk))uk+1∥
2
+ ∥K(vk)uk+1 − f∥

2
+

2∥(K(vk+1) −K(vk))uk+1∥∥K(vk)uk+1 − f∥

≤
p + 1

p
(1 − 2βk

ρ

ρ̄M
+ β2

k

ρ̄2

ρ2
M

)∥K(vk)uk − f∥
2
+

L2
Kα2

k

p + 1

4
∥uTk

∂K

∂vk
uk∥

2
∥uk+1∥

2, (20)

which is a recursive relationship to be used for proving the low-level conver-
gence.

8.2. Low-Level Convergence

We use the following shorthand notation for the result in Lemma 8.5:

Ξk+1 ≤ ΘkΞk + Γk∥uk∥
6

Θk ≜
p + 1

p
(1 − 2βk

ρ

ρ̄M
+ β2

k

ρ̄2

ρ
M

) Γk ≜ L
2
KL2
∇Kα2

k

p + 1

4
. (21)

By taking Assumption 7.1 and direct calculation, we can ensure that Θk ≤
Θ̄ < 1 (i.e., the first term is contractive). To bound the growth of the second
term above, we show by induction that both Ξk and uk can be uniformly
bounded for all k via a sufficiently small, constant Γk ≤ Γ̄.

Lemma 8.6. Assuming M(v) commutes with K(v), 3.1, 8.1, 8.2, we have
Ξk ≤ U2, ∥uk∥ ≤ Uf +U for all k ≥ 1, where Uf is the uniform upper bound for
∥uf(v)∥.

Proof. First, since v ∈ X and X is compact, we have ∥uf(v)∥ ≤ Uf < ∞.
Next, we prove Ξk ≤ U2 by induction. We already have Ξ1 ≤ U2. Now
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suppose Ξk ≤ U2, then Equation 21 and our assumption on Γ̄ immediately
leads to:

Ξk+1 ≤Θ̄U2 + Γ̄(∥K−1(vk)(K(vk)uk − f)∥ + ∥uf(vk)∥)6

≤Θ̄U2 + Γ̄(U/ρ +Uf)6 ≤ U2.

Finally, we have: ∥uk∥ ≤ ∥uk − uf(vk)∥ + ∥uf(vk)∥ ≤ U + Uf and our lemma
follows.

The shrinking coefficient Θ̄ and the uniform boundedness of Ξk, uk allows
us to establish low-level convergence.

Theorem 8.7. Taking Assumption 3.1, 8.1, 8.2, 8.3, we can upper bound
Ξk+1 as:

Ξk+1 ≤ Θ̄
k−1Ξ1 + (U +Uf)

6Γ1

k−1
∑
i=0

Θ̄i

(k − i)2m
= O(k1−2m).

Proof. Recursively expand on Equation 13 and we have:

Ξk+1 ≤ Θ̄
kΞ1 + (U +Uf)

6
k−1
∑
i=0

Θ̄iΓk−i

≤Θ̄kΞ1 + (U +Uf)
6Γ1

⎡
⎢
⎢
⎢
⎢
⎣

⌈k+12 ⌉

(k − ⌈k−12 ⌉)
2m
+

Θ̄⌈
k
2
⌉

1 − Θ̄

⎤
⎥
⎥
⎥
⎥
⎦

= O(k1−2m),

where we have used our choice of αk, Lemma 8.6, and a similar argument as
in Theorem 7.8.

Theorem 8.7 allows us to choose m and tune the convergence speed of
the low-level problem, which is used to establish the convergence of high-level
problem.

8.3. High-Level Error Propagation

We first establish the high-level rule of error propagation over a single
iteration:

Lemma 8.8. Assuming M(v) commutes with K(v), 3.1, 7.1, 7.2, 7.3, the
following high-level error propagation rule holds for all k ≥ 1, q > 0:

l(vk+1) − l(vk) ≤ −
1

αk

∥vk+1 − vk∥2+

L2
∇Kα

2
k(L∇lq + 1)
8q

(U +Uf)4 +
L2
∇Kq

8ρ
Ξk(U + 2Uf)2.
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Proof. Equation 14 holds by the same argument as in Lemma 7.9. For the
last term in Equation 14, we have:

⟨vk+1 − vk,
1

2
uTk

∂K

∂vk
uk −

1

2
uTf (vk)

∂K

∂vk
uf(vk)⟩

≤
L2
∇Kα2

k

8q
∥uk∥

4
+
q

2
∥
1

2
(uk − uf(vk))

T ∂K

∂vk
(uk + uf(vk))∥

2

≤
L2
∇Kα2

k

8q
∥uk∥

4
+
L2
∇Kq

8ρ
Ξk∥uk + uf(vk)∥

2. (22)

The lemma follows by combining Equation 14, Equation 22, and Lemma 8.6.

8.4. High-Level Convergence

We first show that Ξv
k is diminishing via the follow lemma:

Lemma 8.9. Assuming M(v) commutes with K(v), 3.1, 8.1, 8.2, 8.3, we
have the following bound on the accumulated high-level error ∆v

k:

1

2

k

∑
i=1

αi∆
v
i ≤ l(v1) − l+

L2
∇K

8
(U +Uf)4

k

∑
i=1

α2−n
i (L∇lαn

i + 1)+

L2
∇K

8ρ
(U + 2Uf)2

k

∑
i=1

αn
i Ξi +

L2
∇K

4ρ
(U + 2Uf)2

k

∑
i=1

αiΞi,

where l is the lower bound of l on X.

Proof. By choosing q = αn
k for some constant n and summing up the recursive

rule of Lemma 8.8, we have the following result:

l(vk+1) − l(v1) ≤ −
k

∑
i=1

1

αi

∥vi+1 − vi∥2+

L2
∇K

8
(U +Uf)4

k

∑
i=1

α2−n
i (L∇lαn

i + 1)+

L2
∇K

8ρ
(U + 2Uf)2

k

∑
i=1

αn
i Ξi. (23)
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We further estimate the update using true gradient:

∆v
k ≤

2

α2
k

∥vk+1 − vk∥
2
+
L2
∇K
2ρ

Ξk(U + 2Uf)
2. (24)

We can prove our lemma by combining Lemma 8.8, Equation 23, and Equa-
tion 24.

The following corollary can be proved by the same argument as Corol-
lary 7.11:

Corollary 8.10. Assuming M(v) commutes with K(v), 3.1, 8.1, 8.2, 8.3,
7.4, we have mini=1,⋯,k αiΞv

i ≤ Ck−1 and there are infinitely many k such that
Ξv
k ≤ Cvkm−1 for some constants C,Cv independent of k.

Finally, we list necessary changes to prove Theorem 8.4:

Proof of Theorem 8.4. We choose ṽk+1, dk, τk as in proof of Theorem 7.5. Ap-
plying Corollary 8.10 and we can choose sufficiently large k such that:

− ⟨∇l(ṽk+1),
τkdk
τk∥dk∥

⟩ ≤ 1

αk

∥vk − ṽk+1∥

≤ 1

αk

∥vk − vk+1∥ +
1

αk

∥vk+1 − ṽk+1∥

=
√
∆v

k +
1

αk

∥vk+1 − ṽk+1∥

≤ ϵ
4
+
¿
ÁÁÀL2

∇K

4ρ
Ξk∥uk + uf(vk)∥2 =

ϵ

4
+O(k(1−2m)/2).

The last inequality holds by the contractive property of projection operator,
Theorem 8.7, and Lemma 8.8.

8.5. Parameter Choices

We argue that βk = 1 is a valid choice in Algorithm 3 if a Krylov-
preconditioner is used. Note that choosing βk = 1 is generally incompat-
ible with Assumption 8.1, which is because we make minimal assumption
on the preconditioner M(v), only requiring it to be commuting with K(v)
and positive definite with bounded spectrum. However, many practical pre-
conditioners can provide much stronger guarantee leading to βk = 1 being a
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valid choice. To see this, we observe that the purpose of choosing βk accord-
ing to Assumption 8.1 is to establish the following contractive property in
Equation 19:

∥K(vk)uk+1 − f∥2 ≤ Θ̄∥K(vk)uk − f∥2. (25)

Any preconditioner can be used if they pertain such property with βk = 1.
The following result shows that Krylov-preconditioner pertains the property:

Lemma 8.11. Suppose M(v) is the Krylov-preconditioner with positive D
and βk = 1, then there exists some constant Θ̄ < 1 where Equation 25 holds
in Algorithm 3 for any k.

Proof. We define b ≜K(vk)uk − f and, by the definition of M(v), we have:

∥K(vk)uk+1 − f∥2 = ∥K(vk)(uk −M−1(vk)b) − f∥2

=∥b −K(vk)M−1(vk)b∥2 = ∥b −
D+1
∑
i=1

c∗iK
i(vk)b∥2

≤∥(I − 1

ρ̄
K(vk))b∥2 ≤ (1 −

ρ

ρ̄
)∥b∥2 ≜ Θ̄∥K(vk)uk − f∥2,

where the first inequality holds by the definition of c∗i .

Unfortunately, it is very difficult to theoretically establish this property
for other practical preconditioners, such as incomplete LU and multigrid,
although it is almost always observed in practice.
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[6] Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-
Hornung. Spin-it: Optimizing moment of inertia for spinnable objects.
ACM Trans. Graph., 33(4), 07 2014. ISSN 0730-0301. doi: 10.1145/
2601097.2601157. URL https://doi.org/10.1145/2601097.2601157.

[7] Jun Wu, Anders Clausen, and Ole Sigmund. Minimum compliance
topology optimization of shell–infill composites for additive manufactur-
ing. Computer Methods in Applied Mechanics and Engineering, 326:358–
375, 2017. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2017.08.
018. URL https://www.sciencedirect.com/science/article/pii/

S0045782517305984.

[8] Thanh T. Banh and Dongkyu Lee. Topology optimization of multi-
directional variable thickness thin plate with multiple materials. Struct.
Multidiscip. Optim., 59(5):1503–1520, 05 2019. ISSN 1615-147X.
doi: 10.1007/s00158-018-2143-8. URL https://doi.org/10.1007/

s00158-018-2143-8.
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Table 3: Table of Symbols

Variable Definition

x ∈ Ω a point in material domain
u displacement field
P internal potential energy
ke stiffness tensor field
v, ve infill level, infill level of eth element
uk, vk, δk solutions at kth iteration
v, v̄ infill level bounds
Ωe sub-domain of eth element
E,N number of elements, nodes
K,Ke stiffness matrix, stiffness of eth element
f external force field
Pf total energy
ei unit vector at ith element
uf displacement caused by force f
l induced internal potential energy
η power law coefficient
ρ(●) eigenvalue function
ρ, ρ̄ eigenvalue bounds

1,0 all-one, all-zero vectors
Ae activation function of eth element
S symmetry mapping matrix
vs infill levels of the left-half material block
# number of sub-components
v̄i total infill level of ith component
C material filter operator
αk, βk high-level, low-level step size
∆k,∆v

k low-level, high-level error metrics
Ξk low-level error metric used to analyze Algorithm 3
U upper bound of

√
∆1

Γk,Θk coefficients of low-level error
Γ̄, Θ̄ upper bounds of Γk,Θk

p,m,n algorithmic constants
Lu, LKL∆K , L∇l L-constants of uf ,K,∆K,∇l
C,Cv coefficients of reduction rate of ∆v

k

TX tangent cone of X
dk, τk feasible direction in TX and step size
l lower bound of l
Uf uniform upper bound of ∥uf∥
∇X projected gradient into normal cone
ϵ error tolerance of gradient norm
ProjX (●) projection operator onto X
κ condition number
M preconditioner
ρ
M
, ρ̄M eigenvalue bounds of preconditioner

ci coefficients of Krylov vectors
D dimension of Krylov subspace
∇̃l approximate gradient
∇̃P l mean-projected approximate gradient
λ1, λv Lagrangian multiplier for projection problem
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