
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2023 1

Differentiable Learning of Scalable Multi-Agent
Navigation Policies

Xiaohan Ye1,2, Zherong Pan1, Xifeng Gao1, Kui Wu1, Bo Ren3†

Abstract—We present an end-to-end differentiable learning al-
gorithm for multi-agent navigation policies. Compared with prior
model-free learning algorithms, our method leads to a significant
speedup via the gradient information. Our key innovation lies
in a novel differentiability analysis of the optimization-based
crowd simulation algorithm via the implicit function theorem.
Inspired by continuum multi-agent modeling techniques, we
further propose a kernel-based policy parameterization, allowing
our learned policy to scale up to an arbitrary number of agents
without re-training. We evaluate our algorithm on two tasks
in obstacle-rich environments, partially labeled navigation and
evacuation, for which loss functions can be defined making the
entire task learnable in an end-to-end manner. The results show
that our method can achieve more than one order of magnitude
speedup over model-free baselines and readily scale to unseen
target configurations and agent sizes.

I. INTRODUCTION

Multi-agent systems find various robotic applications and
there has been an ever-increasing interest in the automatic
learning of multi-agent behaviors. Complex behaviors can
be automatically acquired, e.g., by Multi-Agent Reinforce-
ment Learning (MARL) algorithms, through a gazillion of
reward- or curiosity-guided random behavior explorations. On
the other hand, the overwhelming computational overhead of
offline learning makes it difficult to develop and experiment
with new solutions.

In this paper, we focus on collision-free, multi-agent nav-
igation, a common sub-task of high-level collective behav-
iors. Learning-based navigation algorithms use RL [1, 2, 3]
or MARL [4, 5] to combine the merits of centralized and
decentralized algorithms. The learned policies are informed
of the local configuration of other robots and/or the global
environment and infer a control signal. However, all these
methods inherit the drawback of their underlying learning
algorithms. Specifically, (MA)RL requires a huge number of
environment-interacting experiences, and supervised learning
algorithms rely on a dataset of groundtruth control signals.

To alleviate the computational burden of offline training,
multiple recent efforts propose the use of model-based algo-
rithms using learned [6, 7, 8] or differentiable dynamics [9,
10, 11]. These methods have achieved orders of magnitude
speedup over their model-free counterparts, especially in the
locomotive and manipulation control of complex dynamic

Manuscript received: November 4, 2022; Revised January 18, 2023; Ac-
cepted February 13, 2023.

This paper was recommended for publication by Editor Ashis Banerjee
upon evaluation of the Associate Editor and Reviewers’ comments.

† indicates corresponding author. 1LightSpeed Studios, Tencent
({xiaohanye, zrpan, xifgao, kwwu}@global.tencent.com). 2College of
Computer Science, Nankai University (2120200463@mail.nankai.edu.cn).
3College of Computer Science, Nankai University (rb@nankai.edu.cn).

Digital Object Identifier (DOI): see top of this page.

systems. However, deriving differentiable dynamics is a non-
trivial task by involving non-differentiable steps or stiff be-
haviors leading to an unstable differentiation scheme.

Main Result: We propose the first differentiable and scal-
able learning method for collision-free multi-agent navigation
policies. We first conduct a differentiability analysis on two
existing local navigation algorithms, Optimal Reciprocal Col-
lision Avoidance (ORCA) [12] and Implicit Crowds (IC) [13].
We show that both algorithms lead to ill-defined gradient
information. Instead, we derive a new algorithm based on a
weaker assumption on collision-free paths, with well-defined
gradient information. We then derive a compact and scalable
parameterization of navigation policies. Inspired by contin-
uum multi-agent modeling [14, 15], we propose to control
the agents using a boundary-aligned, divergence-free velocity
field. We further borrow ideas from vortex-based sparse ve-
locity representation [16] and parameterize the velocity field
using a sparse set of Lagrangian kernel functions. By using the
parameters of kernel functions as the low-dimensional action
space, our navigation policy can control an arbitrary number
of agents with an invariant representation. Complementary to
the general neural network analysis approach [17, 18], our
action space representation improves the AI explainability in
a domain-specific manner. Our kernel functions inherently
summarize the key information of the underlying velocity
field. We train our controller to solve two tasks: partially
labeled navigation and evacuation, where our method achieves
at least one order of magnitude speedup over model-based
counterparts and the learned policies can be readily general-
ized to unseen target configurations and agent sizes.

II. RELATED WORK

We review relevant research directions in multi-agent navi-
gation and differentiable physics.

Multi-agent navigation has garnered long-lasting research
interest over the past decades. The focus has shifted from
theoretical hardness analysis [19], centralized robot routing al-
gorithm [20], all the way to decentralized real-time navigation
algorithms [12, 21, 22] and learning-based semi-centralized
navigation policy search [2, 1]. Compared to centralized
methods, local navigation algorithms suffer from deadlock
configurations [23, 24] and can fail to provide completeness
guarantees. Heuristic algorithms [25, 26] have been provided
over the years to improve the success rate empirically. In
particular, fluid dynamics have been used to model large agent
crowds as a continuum flow [14, 15, 27].

Learning-based local navigation [2, 1] can infer control
signals in real-time while accounting for global information
via rich observations and inter-agent communications. How-
ever, all existing navigation policy search algorithms incur a



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2023

(a)

(b)

(c)

(f)

(d)

(e)

CNNθ

M
L

P(
o,
θ)

R
as

te
ri

ze
r

Pr
oj

ec
to

r

In
te

rp
ol

at
or

o
κk

V

f
(
x
t i
,v

t i
)

vti πi

V∗

R(xt+∆t
i )

Fig. 1: An illustration of our centralized policy representation for both training and test time. Our policy π takes two images, the global
environmental map (a) and the target configuration (b), as inputs. Latent features are extracted using a CNN to form the observation o.
The kernel estimator is a fully-connected MLP that estimates the parameters of a small set of velocity kernels κk (c). The velocity field V
generated by these kernels (d) is extracted by a rasterizer. This velocity field is not divergence-free, and we then extract the divergence-free
component V∗ (e) via a projector. The final preferred moving directions πi are then extracted by interpolating V∗ (f). The interpolated
control signal is fed into the differential collision-free navigation simulation function f . Finally, the new agent locations are feed into the
reward signal R(xt+∆t

i ).

high offline training cost. For example, the average RL training
cost is around 10 hours on average, as reported by [1]. For
the class of navigation tasks considered in this work, we show
that our differentiable learning method not only allows faster
training but also saves inference costs by deploying a single
policy for all the agents.

Differentiable physics has recently arisen as a promis-
ing direction of high-dimensional manipulation. Indeed, the
development of stochastic, large-scale non-smooth optimiza-
tion [28] enables optimization-based control of ultra-high-
dimensional, non-smooth dynamic systems. This include fluid
bodies [11], stoke flows [29, 30], deformable solids [31],
and thin shells [9]. The key idea is to use only first-order
gradient information computed via the adjoint method while
using the stochastically approximate, bundled gradient instead
of the exact gradient in the face of non-smooth dynamics.
The differentiability of a dynamic system significantly depends
on the underlying discretization scheme. Certain discretization
schemes, such as explicit Euler integration, incur stiff dynamic
systems, leading to gradient explosion. Therefore, existing
differential models are based on more stable discretization
schemes such as projective dynamics [32, 33] and (semi-
)implicit time integrators [9]. Recently, Karamouzas et al. [13]
proposed an implicit time-integration scheme for guaranteed
collision-free multi-agent navigation, based on which we pro-
pose a weaker assumption on collision-free paths that is more
amenable to differentiability.

III. PROBLEM FORMULATION & BACKGROUND

In this section, we formulate the problem of multi-agent
collision-free navigation tasks. We assume a group of N
holonomic agents, in which the ith agent is located at xt

i ∈ R2

at time instance t. All the agents are assumed to have the same
spherical shape with a unified radius of r. We further introduce
a set of M static obstacles, with the jth obstacle taking up
volume oj ⊂ R2. The problem of multi-agent navigation is to
search for a discrete trajectory over a horizon of T steps, such

that any pair of two agents do not overlap at any time instance,
i.e.:

∀α ∈ [t, t +∆t] ∶

⎧⎪⎪
⎨
⎪⎪⎩

dist(xα
i , x

α
j ) ≥ 2r

dist(xα
i , oj) ≥ r

, (1)

where ∆t is the timestep size. Since the agents are assumed
to be holonomic, their dynamics are dominated by collision-
free constraints and the control signal. A common choice [12,
13] represents the control signal of xi as the preferred moving
velocity, denoted as vti . The next position xt+∆t

i can then be
predicted using a multi-agent simulation function f(xt

i, v
t
i) =

xt+∆t
i . The goal of navigation is encoded in a reward function

R(xt
i) summed over all the agents and time instances. A

navigation policy for the ith agent could be modeled as a
function πi(o, θ) = vti , where o is the observation of the
local and global features around the agent, and θ are the
decision variables that parameterizes πi. The goal of multi-
agent navigation is then formulated as the following Markov
Decision Process (MDP):

argmax
θ

Eτi∼(f,πi),x0
i∼S

⎡
⎢
⎢
⎢
⎢
⎣

∑
xt
i∈τi

γtR(xt
i)

⎤
⎥
⎥
⎥
⎥
⎦

, (2)

where S is the initial distribution of agent configurations, τi is
the trajectory of xi generated by the state transition function f
and the policy πi, and γ is the discount factor. Recent learning-
based methods [1, 2, 34] considered variants of Equation (2)
with different choices of f,R,πi and algorithms for solving
the stochastic optimization. We discuss these choices in more
detail below.

In all previous works, the transition function f is imple-
mented using the ORCA algorithm [12] during the training
phase. This algorithm assumes each agent’s trajectory within
a time interval [t, t + ∆t] is a straight line. Under this
assumption, a subset of collision-free straight-line trajectories
can be specified by locally linear constraints between pairs of
neighboring agents, which can then be satisfied by solving
a number of small-sized linear programming problems. In



YE et al.: DIFFERENTIABLE LEARNING OF SCALABLE MULTI-AGENT NAVIGATION POLICIES 3

terms of the reward function, prior works [1, 2] considered
the labeled navigation task where the reward signal measures
the distance between each agent and their goal positions. Li
et al. [35] and Ji et al. [34] considered labeled and unlabeled
navigation tasks, respectively, but they optimize θ via imitation
learning, and the reward is some discrepancy measure against
the expert policy. Finally, the design of πi poses a key point of
departure among different works. Prior works [1] assumed a
decentralized setting where agents receive only the local sens-
ing information as the observation o. Tan et al. [2] assumed
a centralized setting where agents can receive a snapshot of
the global map and the locations of all other agents. Other
works [35, 34] assume a semi-centralized setting where agents
can communicate with others in a small vicinity. Despite these
differences, all prior works formulate the learning problem as
a model-free algorithm, i.e., the learning algorithm updates the
policy parameter θ using reward signal on each trajectory τi,
treating the underlying dynamics f as a black box.

IV. DIFFERENTIABLE & SCALABLE POLICY SEARCH

We describe our differentiable and scalable policy search
algorithm as outlined in Figure 1. Our method consists of
novel designs of functions f , R, and πi, such that the gradient
information could be brought all the way back through the
entire trajectory τ to efficiently update θ. Our design further
allows the use of a small network to control an arbitrary
number of agents in a centralized manner.

A. Differentiable Multi-Agent Simulator

xt
i

xt
j

xt
k

lij

ljk

(a) xt
i

xt
j

xt
klij

ljk

(b)

Fig. 2: ORCA confines three agents xt
i,j,k to one side of linear

constraints denoted as lij , ljk (a). If the preferred velocity of xt
i ,

arrow vti , is larger, the constraint lij will be pushed toward xj (b),
but this can never influence xk unless xk is in the direct neighborhood
of xi. This phenomenon limits the range of gradient propagation.

To bring the gradient information through function f , we
need a differentiable collision-free multi-agent simulator. At
the early stage of this research, we tried to use an auto-
differentiation system [36] to re-implement the ORCA algo-
rithm. Note the linear programming algorithm in ORCA is
locally differentiable [37]. However, we find that the model-
based learning algorithm cannot efficiently optimize policies
using this gradient information. This is because ORCA and
its variants [38, 39, 40] confine each agent to independent
feasible subdomains so that linear programming problems can
be solved separately. Although this method significantly lowers
the computational overhead, it prevents gradient information
from propagating to neighboring agents, as illustrated in
Figure 2.

Instead, we turn to the more recently proposed IC algo-
rithm [13]. This method formulates the agent simulation as

an implicit time integration problem, identifying the predicted
agent position as the minimizer of the following energy:

xt+∆t
1 ,⋯, xt+∆t

N ≜argmin
x1,⋯,xN

E(xi, x
t
i, vi) (3)

E(xi, x
t
i, vi) ≜∑

i

1

2∆t2
∥xi − x

t
i − v

t
i∆t∥2 +∑

i≠j
U(xi, xj),

where U(xi, xj) is a stiff potential function defined as:

U(xi, xj) ≜
1

∥xi − xj∥ − 2r
, (4)

which tends to infinity when ∥xi, xj∥ → 2r. By maintaining
the solution in the feasible domain via a line-search, xt+∆t

i

are guaranteed to satisfy Equation (1) at the time instance
t+∆t. Time integrating the dynamic system with the potential
function U can suffer from stability issues because U can
generate extremely large forces. Therefore, Karamouzas et
al. [13] uses the implicit scheme and reformulates the time
integrator as an optimization Equation (1). This method is way
more amenable to a differentiable system. By not fixing the
decision variables in the constraint, the gradient information
can be readily propagated to faraway agents.

Algorithm 1: Differentiable Crowd Simulation: f(xt
i, v

t
i)

Input: xt
i, v

t
i , ϵg > 0, γ ∈ (0,1)

Output: xt+∆t
i

1: xt+∆t
i ← xt

i

2: while ∥∂E/∂xt+∆t
i ∥∞ > ϵg do

3: Find search direction di using Newton’s method
4: α← 1
5: while True do
6: if Segments xt+∆t

i ↔ xt+∆t
i + αdi intersects then

7: α← γα
8: else if E(xt+∆t

i ) ≥ E(xt+∆t
i + αdi) then

9: α← γα
10: else
11: xt+∆t

i ← xt+∆t
i + αdi

12: Break
13: Return xt+∆t

i

However, satisfying Equation (1) at t + ∆t alone is not
enough, as Equation (1) should be satisfied at any time instance
α ∈ [t, t + ∆t], which could be achieved via continuous
collision check. To this end, Karamouzas et al. [13] considered
an alternative definition of distance, aka., the minimal distance
along a straight line between xt

i and xi, leading to the
following new definition of U ′:

U ′(xi, xj) ≜
1

argmin
α∈[0,1]

∥(1 − α)(xi − xj) + α(xt
i − x

t
j)∥ − 2r

.

Unfortunately, it is well-known that the distance between line
segments is non-differentiable [41] at nearly parallel config-
urations, again hindering the well-definedness of gradient in-
formation. To resolve this problem, we consider replacing the
straight-line assumption with the following weaker assumption
on collision-free paths:

Assumption 4.1: Agents xα
i are collision-free at any α ∈

[t, t+∆t] if there exists a piecewise linear trajectory satisfying
Equation (1).



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2023

Based on Assumption 4.1, we propose an “inconsistent”
optimizer where the potential energy U considers a single
time instance t + ∆t, while the line-search algorithm takes
care of the entire time period [t, t+∆t] by ensuring that each
search step represents a collision-free linear sub-trajectory.
As a result, the entire trajectory generated by the optimizer
of Equation (3) is exactly piecewise linear. Our key obser-
vation is that such “inconsistent” optimizer belongs to the
class of primal interior point method [42] and is guaranteed to
converge to the locally optimal solution of Equation (3) and
generate a collision-free trajectory. By relying on U instead
of U ′, our objective function is twice-differentiable at any
point in its feasible domain. We summarize this method in
Algorithm 1. Note our weaker assumption is more difficult
to be deployed on a physical hardware because the control
signal needs to change multiple times within a single control
loop, but this is less important during the training phase. We
further borrow ideas from [41] and use the following locally
supported U :

U(xi, xj) =
1

2

∞
∑
l=1

l3max [0,
l0

l
1
4

− (∥xi − xj∥ − 2r)]
2

, (5)

where l0 is the support range parameter. Unlike Equation (4)
that is non-zero throughout the domain, the above-defined
U is zero when ∥xi − xj∥ ≥ 2r + l0, so we could compute
the double summation in Equation (3) efficiently using local
neighborhood search with a radius of 2r + l0 and all the
agent pairs with distance larger than 2r + l0 can be excluded
from consideration. Finally, the gradient information can be
computed using the implicit function theorem as:

∂xt+∆t

∂(xt vt )
= − [

∂2E

∂xt+∆t2
]

−1
∂2E

∂xt+∆t∂(xt vt )
,

where we denote x, v without subscript as a vector concate-
nating x, v of all agents.

B. Kernel-Based Policy Parameterization

Aside from a differentiable navigation simulator, the key to
efficient and robust training lies in a compact parameterization
of policy πi. Indeed, a redundant parameterization is prone to
over-fitting or requires an excessively large dataset or amount
of explorations. Our policy parameterization is inspired by
the continuum model of crowd motions [14, 15, 27]. These
methods model agents as infinitesimal material particles im-
mersed in a velocity field denoted by V . It has been shown that
the collision-free constraints can be approximated by the re-
quirement that V is divergence-free or volume-preserving [14,
15], i.e., ∇ ⋅ V = 0. Such representation has two advantages.
First, divergence-free constraints are linear, which can be ef-
ficiently enforced by fast linear system solvers. Without using
learnable parameters, divergence-free constraints can already
prevent a considerable portion of local, inter-agent collisions
or boundary penetrations. As a result, a neural network policy
could focus on solving high-level tasks. Second, several prior
works [43, 44] have demonstrated that a divergence-free vector
field can be sparsely represented as a set of kernel functions.

Indeed, a vector field is smooth except at a set of singular
points.

In order to represent a centralized and scalable control
policy, we propose to learn a sparse representation of the
velocity field. We assume there are K kernel functions denoted
as κk(p, ϕ) with k = 1,⋯,K, where p ∈ R2 is a spatial
location and ϕ is a small set of parameters. Two kinds of kernel
functions have been proven effective in generating structured
motions of immersed particles.Rotating motions are generated
by the following kernel:

κ(p, ϕ) ≜ β (0 −1
1 0
) (p − p0) exp (−α∥p − p0∥2) ϕ ≜ (α β p0 ) ,

while directional motions can be generated by defining:

κ(p, ϕ) ≜ d exp (−α∥p − p0∥
2) ϕ ≜ (α d p0 ) . (6)

Here β and d control the strength of swirl and motion velocity,
respectively. Both functions are called kernel functions that
attenuate quickly with distance from a kernel center x0 with a
parameter α. However, since robots are mostly moving along
a fixed direction during navigation tasks, we choose only to
use directional kernels. We speculate that curl kernels could
be useful in other tasks as well. The velocity field can then
be defined as an accumulation of the K kernels:

V(p) ≜
K

∑
k=1

κ(p, ϕk). (7)

In practice, the accumulated velocity field V is then rasterized
onto a dense grid. To further enforce the divergence-free
condition, we solve a discrete Poisson’s equation using a
staggered grid discretization as proposed in [45], which is
denoted as:

V
∗
≜ argmin

V∗

1

2
∫
x
∥V
∗
(p) − V(p)∥2 s.t.∇ ⋅ V∗ = 0, (8)

where we always enforce the Dirichlet boundary condition
that the normal velocity on the boundary is zero. Equation (8)
involves solving a large linear system. However, for a fixed
obstacle setup, the left-hand side of the linear system is fixed
and can be pre-factorized. As a result, solving for V∗ at both
training and inference time can be very efficient. Finally, the
preferred velocity of each agent is derived by interpolating
V∗ at xt

i. As a remarkable feature, all the above derivations
do not involve any learnable parameters and only expose
a small number of kernel parameters ϕk to be determined.
We propose to use a fully connected neural network to infer
ϕ1,⋯, ϕK using a small Multi-Layer Perceptron (MLP) from
observations:

MLP(o, θ) = (ϕ1 ⋯ ϕK ) . (9)

In summary, the definition of our compact policy parameter-
ization of πi combines Equation (6),7,8,9. In practice, MLP
outputs less than 100 parameters to define an entire velocity
field, which could be used to control an arbitrary number of
agents without re-training.



YE et al.: DIFFERENTIABLE LEARNING OF SCALABLE MULTI-AGENT NAVIGATION POLICIES 5

Layer Kernel Stride #Filters/#Neuron Activation

Conv1 (7,7) 1 8 MaxPool.+ReLU
Conv2 (7,7) 1 12 MaxPool.+ReLU
Conv3 (5,5) 1 16 MaxPool.+ReLU
Conv4 (3,3) 1 20 MaxPool.+ReLU
MLP1 / / 128 ReLU
MLP2 / / 5K Sigmoid

TABLE I: Parameters for the MLP and CNN.
Since our policy is centralized, the observation must contain

global information, which could be the global map in [2]. We
find our policy achieves the best performance using two global
maps, one encoding the obstacle with agent configurations and
the other encoding the target configuration. The observation
consists of features extracted from these two images using
two CNNs of the same structure. Our network architecture is
summarized in Table I.

To highlight the advantage of our policy parameterization,
we compare the inference-time complexity of several learning-
based multi-agent navigation methods [2, 1, 35]. All these
methods concatenate two kinds of networks to form the control
policy: CNN for (local or global) feature encoding and MLP
for action prediction, while some technique [35] optionally
involves a Graph Neural Network (GNN) to enable inter-
agent communication. The detailed parameterization of each
network is task-specific, so we only compare the number of
inferences for each type of network during a single timestep.
We further distinguish local feature encoder (LCNN) and
global feature encoder (GCNN). Encoding local features is
much cheaper than global ones, using small images [35] or 1D
convolution of LiDAR data [2]. As indicated in Table II on
page 5, our method is the only one that incurs a inference-time
complexity independent of N and utilizes global information.

C. Policy Search Algorithm
As long as the reward signal R is differentiable, our learning

architecture could bring gradient information through each
and every component to facilitate self-supervised, model-based
learning. To train robust control policies, however, we still
need to feed the learning algorithm with enough trajectories
sampled according to the current functions f, πi. To stabilize
training, we propose to maintain a replay buffer similar to
Q-learning, but instead of storing the entire transition tuple
< xt

i, v
t
i , x

t+∆t
i ,R(xt+∆t

i ) >, we only need to store the current
state xt

i. During each iteration of training, we sample a batch B
of xt

i and optimize R over a receding horizon of H timesteps,
i.e.:

θ ← θ + αlr∇θ ∑
xt
i∈B

∑
h=1,⋯,H

γtR(xt+h∆t
i ). (10)

The replay buffer is constructed by sampling an initial config-
uration x0

i ∈ S and running the current policy πi to generate
trajectories τ . To minimize the distribution bias between the
replay buffer and the policy, we only keep a set of the
latest trajectories. The overall algorithm is summarized in
Algorithm 2.

V. EVALUATION

We implement our neural network policy using PyTorch
and the differentiable simulator in C++ as a custom network

Method Global #LCNN #GCNN #GNN #MLP

[2] No N(LiDAR) 0 No N
[1] Yes N(LiDAR) 1 No N
[35] Yes N(Image) 0 Yes N
Ours Yes 0 1 No 1

TABLE II: We summarize the number of network inferences during
each timestep. The second column indicates whether the network
gets access to the global map information, which can be acquired
either through a GCNN [1] or a GNN [35]. The local features can
be represented as a small image or the LiDAR data, as indicated in
the third column.

Algorithm 2: Model-Based Policy Learning

Input: S, αlr, θ
Output: Optimized θ

1: D ← ∅
2: while Stopping criterion not met do
3: for Each sampling iteration do
4: Sample a trajectory τ ∼ f, πi, x

0
i ∼ S

5: D ← D⋃ τ

6: Delete old trajectories from D
7: for Each learning iteration do
8: Sample a batch B ⊂ D
9: Update θ according to Equation (10)

10: Return θ

layer. One computational bottleneck is the divergence-free
projection, for which we pre-factorize the lefthand side matrix
on the CPU before training, and then solve linear systems on
GPU. All experiments are performed on a desktop machine
with an i7-10750H CPU and Nvidia GTX-1080 GPU. All
the forward-backward gradient propagations are performed on
GPU, except for the differentiable simulator on CPU. We
evaluate our method on two tasks, partially labeled navigation
and evacuation. We compare our method with three model-free
RL baselines (PPO [46], SAC [47], and DDPG [48]) to train
our policy using the same reward function. All the training
uses maze-like environments with randomized obstacle shapes,
and we use parameters r = 1 unit, l0 = 10 unit, ∆ = 0.1s,
αlr = 3 × 10

−5, and γ = 0.98. We terminate a trajectory after
128 timesteps. Thanks to our stable agent simulator allowing
a large timestep size ∆t = 1, we find short trajectories is
sufficient for agents to reach their goals, which significantly
boosts training speed. We use 128 timesteps for evacuation
task and 256 for others. We use a minimal replay buffer size,
i.e., D only stores the latest sampled trajectory, and we train
a single epoch after sampling one trajectory.

0 250 500 750 1000 1250 1500 1750 2000
Epoches

100

200

300

400

500

600

700

Av
er

ag
e 

Re
wa

rd
s

Ours 1-horizon
Ours 16-horizon
ORCA
PPO
SAC
DDPG

Fig. 3: On the navigation task, we evaluate the convergence history
of our method with H = 1 and H = 16, the model-free baselines, and
a variant of our method using ORCA to provide gradient information.
The performance is measured by the average ultimate agent-to-region
distance, over a fixed subset of unseen, testing problems.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2023

The partially labeled navigation task is illustrated in Fig-
ure 7a and b. We assume there are M = 3 groups of agents,
each of which has a distinct goal position. All the groups use
the same control policy π. Each policy takes three images: 1)
the agent positions of the current group, 2) the agent positions
of the M −1 other groups, and 3) the target configuration. We
use a single CNN to digest all three images. For this task, we
use the reward function:

R(xt+∆t
i ) = dist(xt

i) − dist(xt+∆t
i ), (11)

where the function dist measures the distance from the agent
to the target. The initial distribution S of problem settings
involves the randomized agent and target positions, as well
as a number of agents in each group. Our random sampler
ensures that initial agent positions are collision-free and target
positions are at least 2r apart. In Figure 3, we compare the
performance of our method with H = 1 and H = 16, the
model-free baselines, and a variant of our method using ORCA
to provide gradient information. model-free methods fail by
having the agents stuck among large obstacles, while learning
with ORCA converges slowly. Our method with either a
short- or long-horizon achieves similarly ideal performance. In

10 15 20 25 30 35 40

Agent Number Per Group

0.0

0.1

0.2

0.3

0.4

0.5

A
ve
ra
ge
 D
is
ta
nc
e

(a)

(b)

Fig. 4: We plot the average ultimate agent-to-target distance, against
the number of agents in each group. All the target positions are
randomized and unseen. The blue region is the agent number used
during training. Even if we use a lower or higher number of agents,
our policy maintains similar performance. Note the agent-to-target
distance increases with the number of agents because the agents
cluster around the target position due to the collision-free constraints
as illustrated in (a) and (b).

Figure 4, we evaluate the learned navigation policy on unseen,
randomized target positions and agent sizes. Our method
generalizes to both higher and lower numbers of agents than
the training setting, achieving similar policy performance.

0 200 400 600 800 1000 1200 1400
Epoches

20

40

60

80

100

120

Av
er

ag
e 

Re
wa

rd
s

Ours 1-horizon
Ours 16-horizon
PPO
ORCA
SAC
DDPG

Fig. 5: Comparison as Figure 3 in a congested scenario (right).

To further highlight the benefits of our method. We setup a
navigation task involving 4 groups of agents moving towards

each other to reach the other side of a workspace with no
obstacles. In this case, there can be many collisions among
agents leading to congestion. As illustrated in Figure 5, our
method trained with H = 32 converges to a much better
policy than one trained using H = 1. We observe that, without
obstacles, model-free methods also converge to a good policy,
still inferior to our method with H = 32 though.

0 500 1000 1500 2000 2500 3000 3500 4000
Epoches

25

50

75

100

125

150

175

200

Av
er

ag
e 

Re
wa

rd
s

Ours 1-horizon
Ours 16-horizon
ORCA
PPO
SAC
DDPG

Fig. 6: Comparison as Figure 3 but on the evacuation task.

Our second evacuation task is illustrated in Figure 7c and
d. We assume there are M exits in the area and the agents’
goal is to reach one of the exit as fast as possible. Our reward
signal is formulated as:

R(xt+∆t
i ) = min

j=1,⋯,M
distj(xt

i) − min
j=1,⋯,M

distj(xt+∆t
i ), (12)

where distj measures the distance between the agent and the
jth exit. As compared with our first task, the evacuation task
is more challenging by involving the exit assignment problem.
In this case, our policy only takes two images: 1) the agent
positions and 2) the target configuration. All other settings are
the same as the partially labeled navigation task. We again
compare all the baselines in Figure 6, while our method with
H = 1 and H = 16 achieves a similarly ideal performance.

Task DDPG SAC PPO ORCA Ours(H = 1) Ours(H = 32)

Navigation(M = 2) 4.206 5.518 5.223 0.775 0.488 0.390
Navigation(M = 3) 4.169 4.934 5.683 1.013 0.476 0.389
Navigation(M = 4) 4.681 5.222 5.510 1.812 0.500 0.400

Evacuation(M = 2) 3.861 3.374 3.991 0.932 0.631 1.286
Evacuation(M = 3) 1.637 1.941 2.881 0.973 0.721 0.820
Evacuation(M = 4) 1.228 1.330 2.597 0.925 0.714 0.907

TABLE III: The average agent-to-target distance on a set of unseen
testing problems, achieved by difference methods on the two tasks.

We find our navigation policy can also be generalized to dif-
ferent numbers of agent groups. In the first block of Table III,
we train on M = 3 but test on M = {2,3,4}. The results
show that our method with H = 32 consistently performs the
best. On the other hand, the more challenging evacuation task
does not allow generalization on M , so we train 3 different
policies for M = {2,3,4} as summarized in the second block
of Table III. For the navigation task, we find our method with
H = 1 consistently performs the best. This is because long-
horizon reasoning is particularly useful for resolving congested
scenarios. For the evacuation task, agents tend to find the
closest exit to avoid collisions so that short-horizon training
would provide more stable gradient information.

VI. CONCLUSION & LIMITATION

We present an end-to-end differentiable learning algorithm
for multi-agent navigation tasks. Our method combines a novel



YE et al.: DIFFERENTIABLE LEARNING OF SCALABLE MULTI-AGENT NAVIGATION POLICIES 7

(a) (b) (c) (d)

Fig. 7: (a): The initial configuration of a partially labeled navigation task with M = 4 groups of agents (yellow, green, brown, and red),
with the final configuration shown in (b). (cd): The initial and final configurations of the evacuation task with three exits in red.

differentiable navigation simulator, a kernel-based compact
policy parameterization, and a model-based learning algorithm
utilizing the gradient information. On the two learning tasks,
partially labeled navigation and evacuation, we show that our
method outperforms the model-free RL algorithm by more
than one order of magnitude. The major limitation of our
method lies in the requirement of a differentiable reward func-
tion. For more complex tasks, such differentiable reward can
be acquired via inverse reinforcement learning such as [49].

REFERENCES

[1] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed
multi-robot collision avoidance via deep reinforcement
learning for navigation in complex scenarios,” The In-
ternational Journal of Robotics Research, vol. 39, no. 7,
pp. 856–892, 2020.

[2] Q. Tan, T. Fan, J. Pan, and D. Manocha, “Deepmnav-
igate: Deep reinforced multi-robot navigation unifying
local & global collision avoidance,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), 2020, pp. 6952–6959.

[3] P. Xu and I. Karamouzas, “Human-inspired multi-
agent navigation using knowledge distillation,” in
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2021, pp. 8105–
8112.

[4] F. Martinez-Gil, M. Lozano, and F. Fernández, “Multi-
agent reinforcement learning for simulating pedestrian
navigation,” in International Workshop on Adaptive and
Learning Agents, Springer, 2011, pp. 54–69.

[5] Y. A. Hasan, A. Garg, S. Sugaya, and L. Tapia, “De-
fensive escort teams for navigation in crowds via multi-
agent deep reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5645–5652, 2020.

[6] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and
stabilization of complex behaviors through online tra-
jectory optimization,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE,
2012, pp. 4906–4913.

[7] Y. Li, J. Wu, J.-Y. Zhu, J. B. Tenenbaum, A. Torralba,
and R. Tedrake, “Propagation networks for model-based
control under partial observation,” in 2019 International
Conference on Robotics and Automation (ICRA), IEEE,
2019, pp. 1205–1211.

[8] Y. Li, H. He, J. Wu, D. Katabi, and A. Torralba,
“Learning compositional koopman operators for model-
based control,” in International Conference on Learning
Representations, 2020.

[9] J. Liang, M. Lin, and V. Koltun, “Differentiable cloth
simulation for inverse problems,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[10] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin, “Effi-
cient differentiable simulation of articulated bodies,” in
International Conference on Machine Learning, PMLR,
2021, pp. 8661–8671.

[11] T. Takahashi, J. Liang, Y.-L. Qiao, and M. C. Lin,
“Differentiable fluids with solid coupling for learning
and control,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, 2021, pp. 6138–6146.

[12] J. v. d. Berg, S. J. Guy, M. Lin, and D. Manocha,
“Reciprocal n-body collision avoidance,” in Robotics
research, Springer, 2011, pp. 3–19.

[13] I. Karamouzas, N. Sohre, R. Narain, and S. J. Guy, “Im-
plicit crowds: Optimization integrator for robust crowd
simulation,” ACM Transactions on Graphics (TOG),
vol. 36, no. 4, pp. 1–13, 2017.

[14] R. L. Hughes, “The flow of human crowds,” Annual
review of fluid mechanics, vol. 35, no. 1, pp. 169–182,
2003.

[15] S. Chenney, “Flow Tiles,” in Symposium on Computer
Animation, R. Boulic and D. K. Pai, Eds., The Euro-
graphics Association, 2004.

[16] S. Weißmann, U. Pinkall, and P. Schröder, “Smoke rings
from smoke,” ACM Trans. Graph., vol. 33, no. 4, Jul.
2014.

[17] P. W. Koh and P. Liang, “Understanding black-box pre-
dictions via influence functions,” in International con-
ference on machine learning, PMLR, 2017, pp. 1885–
1894.

[18] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler,
F. Viegas, et al., “Interpretability beyond feature at-
tribution: Quantitative testing with concept activation
vectors (tcav),” in International conference on machine
learning, PMLR, 2018, pp. 2668–2677.

[19] J. Yu, “Intractability of optimal multirobot path plan-
ning on planar graphs,” IEEE Robotics and Automation
Letters, vol. 1, no. 1, pp. 33–40, 2015.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2023

[20] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant,
“Conflict-based search for optimal multi-agent pathfind-
ing,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[21] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R.
Siegwart, “Reciprocal collision avoidance for multiple
car-like robots,” in 2012 IEEE International Conference
on Robotics and Automation, IEEE, 2012, pp. 360–366.

[22] D. Bareiss and J. van den Berg, “Generalized recip-
rocal collision avoidance,” The International Journal
of Robotics Research, vol. 34, no. 12, pp. 1501–1514,
2015.

[23] J. S. Grover, C. Liu, and K. Sycara, “Deadlock analysis
and resolution for multi-robot systems,” in International
Workshop on the Algorithmic Foundations of Robotics,
Springer, 2020, pp. 294–312.

[24] S. Dergachev and K. Yakovlev, “Distributed multi-agent
navigation based on reciprocal collision avoidance and
locally confined multi-agent path finding,” in 2021 IEEE
17th International Conference on Automation Science
and Engineering (CASE), IEEE, 2021, pp. 1489–1494.

[25] T. Weerakoon, K. Ishii, and A. A. F. Nassiraei, “An
artificial potential field based mobile robot navigation
method to prevent from deadlock,” Journal of Artificial
Intelligence and Soft Computing Research, vol. 5, no. 3,
pp. 189–203, 2015.

[26] J. E. Godoy, I. Karamouzas, S. J. Guy, and M. Gini,
“Implicit coordination in crowded multi-agent naviga-
tion,” in Thirtieth AAAI Conference on Artificial Intel-
ligence, 2016.

[27] A. Treuille, S. Cooper, and Z. Popović, “Contin-
uum crowds,” ACM Transactions on Graphics (TOG),
vol. 25, no. 3, pp. 1160–1168, 2006.

[28] L. Bottou, “Stochastic gradient descent tricks,” in Neu-
ral networks: Tricks of the trade, Springer, 2012,
pp. 421–436.

[29] T. Du, K. Wu, A. Spielberg, W. Matusik, B. Zhu, and
E. Sifakis, “Functional optimization of fluidic devices
with differentiable stokes flow,” ACM Trans. Graph.,
vol. 39, no. 6, 2020.

[30] Y. Li et al., “Fluidic topology optimization with an
anisotropic mixture model,” ACM Trans. Graph., 2022.

[31] Y. Hu et al., “Chainqueen: A real-time differentiable
physical simulator for soft robotics,” in 2019 Interna-
tional conference on robotics and automation (ICRA),
IEEE, 2019, pp. 6265–6271.

[32] Y. Li, T. Du, K. Wu, J. Xu, and W. Matusik, “Diffcloth:
Differentiable cloth simulation with dry frictional con-
tact,” ACM Transactions on Graphics (TOG), 2022.

[33] T. Du et al., “Diffpd: Differentiable projective dynam-
ics,” ACM Trans. Graph., vol. 41, no. 2, 2021.

[34] X. Ji, H. Li, Z. Pan, X. Gao, and C. Tu, “Decen-
tralized, unlabeled multi-agent navigation in obstacle-
rich environments using graph neural networks,” in
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2021, pp. 8936–
8943.

[35] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph
neural networks for decentralized multi-robot path plan-

ning,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2020,
pp. 11 785–11 792.

[36] A. Paszke et al., “Automatic differentiation in pytorch,”
2017.

[37] B. Amos and J. Z. Kolter, “Optnet: Differentiable
optimization as a layer in neural networks,” in Interna-
tional Conference on Machine Learning, PMLR, 2017,
pp. 136–145.

[38] A. Best, S. Narang, and D. Manocha, “Real-time re-
ciprocal collision avoidance with elliptical agents,” in
2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 298–305.

[39] Y. Ma, D. Manocha, and W. Wang, “Efficient reciprocal
collision avoidance between heterogeneous agents using
ctmat,” in Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems,
ser. AAMAS ’18, Stockholm, Sweden: International
Foundation for Autonomous Agents and Multiagent
Systems, 2018, 1044–1052.

[40] K. Guo, D. Wang, T. Fan, and J. Pan, “Vr-orca: Variable
responsibility optimal reciprocal collision avoidance,”
IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 4520–4527, 2021.

[41] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E.
Grinspun, “Asynchronous contact mechanics,” in ACM
SIGGRAPH 2009 papers, 2009, pp. 1–12.

[42] A. Forsgren, P. E. Gill, and M. H. Wright, “Inte-
rior methods for nonlinear optimization,” SIAM review,
vol. 44, no. 4, pp. 525–597, 2002.

[43] A. Treuille, A. McNamara, Z. Popović, and J. Stam,
“Keyframe control of smoke simulations,” in ACM
SIGGRAPH 2003 Papers, 2003, pp. 716–723.

[44] K. Polthier and E. Preuß, “Identifying vector field
singularities using a discrete hodge decomposition,”
in Visualization and mathematics III, Springer, 2003,
pp. 113–134.

[45] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual sim-
ulation of smoke,” in Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’01, New York, NY, USA:
Association for Computing Machinery, 2001, 15–22.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[47] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor,” in Interna-
tional conference on machine learning, PMLR, 2018,
pp. 1861–1870.

[48] T. P. Lillicrap et al., “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971,
2015.

[49] J. Ho and S. Ermon, “Generative adversarial imitation
learning,” Advances in neural information processing
systems, vol. 29, 2016.


	Introduction
	Related Work
	Problem Formulation & Background
	Differentiable & Scalable Policy Search
	Differentiable Multi-Agent Simulator
	Kernel-Based Policy Parameterization
	Policy Search Algorithm

	Evaluation
	Conclusion & Limitation

