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High quality superpixel generation through regional
decomposition

Yunyang Xu, Xifeng Gao, Caiming Zhang, Jianchao Tan, Xuemei Li

Abstract—Superpixel generation is increasingly an important
area for computer vision tasks. While superpixels with highly
regular shapes are preferred to make the subsequent processing
easier, the accuracy of the superpixel boundaries is also neces-
sary. Previous methods usually depend on a distance function
considering both spatial and color coherency regularization on
the whole image, which however is hard to balance between
shape regularity and boundary adherence, especially when the
desired number of superpixels is small. In addition, non-adaptive
parameters and insufficient contour information also affect the
performance of segmentation. To mitigate these problems, we
propose a robust divide-and-conquer superpixel segmentation
method, of which the core idea is that we apply a new contour
information extraction and a pixel clustering to separate the
input image into flat and non-flat regions, where the former
targets shape regularity and the latter emphasizes boundary
adherence, followed by an efficient hierarchical merging to
clean up tiny and dangling superpixels. Our algorithm requires
no additional parameter tuning except the desired number of
superpixels since our internal parameters are self-adaptive to the
image contents. Experimental results demonstrate that for public
benchmark datasets, our algorithm consistently generates more
regular superpixels with stronger boundary adherence than state-
of-the-art methods while maintaining a competitive efficiency. We
will release our code upon acceptance.

Index Terms—Regional partition, Superpixel, Self-adaption,
Saliency detection.

I. INTRODUCTION

SUPERPIXELS are clusters of pixels with similar proper-
ties, such as brightness, grayscale, color, or texture. The

idea of superpixel generation was firstly introduced in [1], and
its concept of over-segmentation is an increasingly important
pre-processing step that can reduce redundant information
of image and computational cost for downstream computer
vision and image processing tasks, such as image segmentation
[2]–[4], target tracking [5]–[7], object recognition [8], [9],
classification [10], [11], saliency detection [12]–[14], stereo
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(a) Original image (b) DBSCAN (c) LSC

(d) SLIC (e) TRS (f) WSS

Fig. 1. The region with similar colors.

matching [15] and so on. In the past two decades, many
superpixel segmentation algorithms have been proposed.

A superpixel segmentation algorithm may have diverse
advantages and evaluation metrics in different tasks. However,
a good superpixel segmentation algorithm should generally
meet all the following requirements:
• Regularity: the shape of superpixels should be as regular

as possible.
• Pixels similarity: pixels inside a superpixel should have

similar colors and brightness.
• Boundary adherence: the boundaries of superpixels

should adhere well to the non-trivial boundaries of the
image.

• Efficiency: the generation of superpixels should be fast
enough to speed up downstream applications.

To generate superpixels that have compact shape and similar
visual perceptions, existing methods utilize features derived
from image colors and pixel positions in Euclidean space
(e.g. SLIC [16], LSC [17], TRS [18], DBSCAN [19] and
WSS [20]). However, relying purely on these properties is not
enough to distinguish pixels with similar colors but different
semantic regions, which often leads to incorrect segmentation
(Fig. 1). Moreover, different regions of an image may be
treated adaptively to better satisfy the requirements, such as
regularity and boundary adherence. Previous methods typically
adopt unified processing for the whole image, which may
generate undesired results. As shown in Fig. 2, although SLIC
[16] and LSC [17] produce superpixels with high regularity,
the boundary adherence is not satisfied well in many regions.
On the contrary,ERS [21] and GMM [22] align the superpixels
with image boundaries excellently, but suffer from low shape
regularity. In addition, using the same set of parameters
and objective functions for general images usually leads to
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Fig. 2. Visualization of different superpixel segmentation algorithms.

inconsistent and sub-optimal performance since the content of
images may vary dramatically.

We solve the contradiction issue of achieving regularity
and maintaining boundary adherence of superpixels by first
grouping pixels (Section V) into flat and non-flat regions,
and then generating the corresponding superpixels for them,
respectively (Section VII). In this case, the regularity of super-
pixels in flat regions is ensured and the boundary adherence
in non-flat regions is achieved. We also design self-adaptive
parameters for extracting superpixels in non-flat regions that
account for images with varying scenes. Finally, we perform
a hierarchical merging operation to clean up tiny and isolated
pixels. The effectiveness of our approach has been verified
by comparing our method with 16 state-of-the-art methods
(Section VIII) on three datasets with ground truth. We also
apply our generated superpixels to the saliency detection
application, demonstrating the advantages of our generated
superpixels.

The main contributions are summarized below:
• In addition to the traditional color and position properties

of a pixel, we propose to include the contour information
into the similarity metric for pixel clustering.

• We propose to decompose an image into flat and non-flat
regions so that different segmentation strategies can be
adopted to achieve the balance between the high regular-
ity and the strong boundary adherence of superpixels.

• We propose a self-adaptive weight tuning approach to
combine the color, position, and contour information
of pixels to align superpixels in non-flat regions. As a
result, our approach can consistently produce high-quality
superpixels for images with varying contents.

II. RELATED WORK

In the past two decades, many algorithms have been
proposed to generate suitable superpixels. These algorithms
can be roughly classified into three categories: graph-based,
clustering-based, and deep learning-based.

A. Graph-based Methods

The graph-based superpixel generation methods treat each
pixel as a node in the graph and the edge weight between

two nodes is proportional to the similarity between adjacent
pixels. Superpixels are produced by minimizing the cost
function defined over the graph. ERS [21] uses an energy
function that includes a random walking entropy rate of an
image and an equilibrium term. SOHOE [23] optimizes the
k-means segmentation result by using a higher-order energy
function that can adaptively adjust the energy terms based on
texture measurements in different local regions of the image.
ANRW [24] first employs non-local random walk to obtain
the initial superpixel segmentation result, after merging small
superpixels, compact and regular superpixels will be obtained.
SH [25] adopts Boruvka’s minimum spanning tree (MST)
method to generate superpixels. This efficient algorithm has
high segmentation accuracy, but the produced superpixels are
very irregular. HSPDM [26] adopts a hierarchical superpixel-
to-pixel approach to determine the correspondence between
two images and uses superpixel-level pairing to drive pixel-
level matching to obtain finer texture details.

B. Clustering-based Methods

Various clustering methods are applied to cluster pixels
into superpixels. LSC [17] applies linear spectral clustering
to generate superpixels, which produce superpixels with good
shape regularity and high boundary adherence in a relatively
short time. WSGL [27] adopts a new strategy with two
distinct criteria for global and local refinement of the boundary
pixels. This algorithm can produce regular superpixels, and the
boundary adherence is good. Zhang et al. [28] propose a fast
density-based noise-applied spatial clustering (DBSCAN) and
superpixel binning with edge penalty to segment SAR images
adaptively. This method can quickly generate compact and
regular superpixels. Jing et al. [29] propose a shrink-expand
search strategy (CES) that explicitly exploits the continuity
information contained in neighboring pixels and enforces the
connectivity of superpixels without any post-processing steps.
This method can generate superpixels with high boundary
adherence. Our method introduces contour information into
pixel clustering to divide the image into flat and non-flat
regions and solve them with different strategies, achieving a
better balance between regularity and adherence.

C. Deep Learning-based Methods

Deep Neural Networks (DNN) is a powerful tool to perform
image tasks like classification, segmentation, and so on. SSN
[30] proposes a DNN model for superpixel sampling, which
can learn superpixel segmentation through the deep network
end-to-end. SSFCN [31] proposes a simple fully convolutional
network to predict superpixels on a regular image grid quickly.
LNSnet [32] proposes an unsupervised method based on
CNN, with a re-adjusting of the weight gradient based on
the channel and spatial context. FGSLT [33] proposes a local
similarity loss function to improve segmentation accuracy.
The generated superpixels are characterized by topological
consistency. AINet [34] proposes a novel association implant
(AI) module that allows the network to accurately capture the
relationship between a pixel and its surrounding grid, which
has good segmentation accuracy. However, these methods will
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Fig. 3. Algorithm flow. (a) Input. (b) and (c) are 4-neighborhood and 8-neighborhood contour information, respectively. (d) Clustering. (e) Superpixels in flat
regions. (f) Superpixels in non-flat regions. (g) Output.

suffer from the performance drop when the input image is out
of the distribution of the training dataset, as described in [35].

III. OVERVIEW

In order to obtain a satisfactory superpixel segmentation
result, we propose a robust approach by solving three critical
issues: how to distinguish pixels reasonably; how to balance
between keeping regularity and maintaining tight boundary ad-
herence; how to choose appropriate parameters. Our algorithm
consists of four steps: contour information calculation, cluster-
ing, seed point generation, and superpixel generation. Given
an input image (Fig. 3(a)), First, we perform a new contour
extraction step, i.e. 4 or 8 neighborhood contour information
(Fig. 3(b) and Fig. 3(c)), on the edge-enhanced image. The
purpose is to combine the extracted contour information with
the color and spatial properties to better distinguish pixels
with similar colors. Second, we decompose the image into flat
and non-flat regions by introducing a new clustering method
(Fig. 3(d)), where the former targets the shape regularity
and the latter emphasizes boundary adherence. Third, we
compute the seed points based on the clustering. While the
superpixels in flat regions can be generated in advance (Fig.
3(e)), the marking of superpixels in non-flat regions requires
special care. We design a new distance function with adaptive
parameters according to features in non-flat regions. The
corresponding superpixels are generated in an iterative process
(Fig. 3(f)). Finally, The superpixels (Fig. 3(g)) are obtained
after merging scattered and isolated pixels. Compared with
global approaches RSS [36], TRS [18] and SLIC [16], our
divide-and-conquer strategy generates superpixels with more
regularity in flat regions and tighter boundary adherence in
non-flat regions. Meanwhile, since our parameters are set
adaptively based on the image content of non-flat regions,
our approach can produce high-quality results consistently for
images with varying scenes.

IV. CONTOUR INFORMATION CALCULATION

When the pixels near the image edges have similar colors, it
is difficult to distinguish them only based on color information
and simple spatial distance information (see an example in Fig.

1). We propose to incorporate the contours of these pixels to
enhance the ability of our algorithm to distinguish such pixels.
Contour information has been used widely for segmenting
images. While a small threshold leads to false edges (Fig.
4(b)), a large threshold often results missing edges (Fig. 4(c)).
To obtain contour information more reliably, we calculate the
contour information on the edge-enhanced image, and the
result is shown in Fig. 4(d).

(a) Original image (b) Small threshold

(c) Large threshold (d) Result on edge-enhanced images

Fig. 4. Different contour information

Since the gradient of the boundary pixels is larger than
that of pixels in smooth regions, we estimate pixels’ contour
information using their gradients. Firstly, an edge detection
algorithm (i.e. RCF [37]) is used to obtain the edge image,
which is further processed by non-maximum suppression.
Then each edge has only one or two pixels width and some
boundary points are lost in certain areas, as shown in Fig.
5(b). However, contour information of pixels on both sides
of the boundary is needed for superpixel generation, thus the
partially lost boundary points are complemented to meet the
needs of contour information calculation.

For boundary completion, we assign the value of local-
regional (15 shifted neighborhoods, as shown in the Fig. 7(a))
of each boundary point to be the value of each boundary point,
i.e. Set the value of j1, j2, ..., j15 to the value of boundary point
p̂. The local-regional of boundary point can cover the pixels
on both sides of the boundary in most cases, partially deleted
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boundaries can be completed by modifying the value of the
local-regional of boundary points, as shown in Fig. 5(c). In
CIELAB color space, since human eyes are more sensitive to
brightness, contour information of pixels is calculated at the
edge-enhanced L channel of the image. Fig. 6(e) is the edge-
enhanced L channel of the input image, which is obtained by
adding Fig. 6(d) to Fig. 6(c).

(a) (b) (c)

Fig. 5. (a) Original image. (b) Edge image obtained by RCF and non-
maximum suppression. (c) The result of boundary point completion.

(a) (b)

(c) (d) (e)

Fig. 6. (a) Original image. (b) Edge image obtained by RCF and non-
maximum suppression. (c) L channel of the image. (d) The result of boundary
point completion. (e) Edge-enhanced L channel of the image.

A. 4-Neighborhood Contour Information

Let t̂ denote the 4-neighborhood gradient value of pixel p of
the edge-enhanced L channel of the image. The neighborhood
of the pixel p is shown in Fig. 7(b).

(a) (b)

Fig. 7. (a) The local-regional of boundary point p̂. (b) Pixel p and its neighbor
pixels.

t̂ is defined as:
t̂ =

√
t2h + t2v (1)

Where, th = p4− p5 and tv = p2− p7 represent horizontal
and vertical change of the gray scale value of the edge-
enhanced L channel of the image, respectively.

4-neighborhood contour information t is defined as:

t =

{
0, t̂ < T
t̂, otherwise

(2)

Where T is the threshold, if t̂ < T , the pixel is considered to
be in a flat region, and its 4-neighborhood contour information
is set to 0. In order to eliminate most of the false edges while
retaining the contour information of the object, we set T to 5
through experiments.

B. 8-Neighborhood Contour Information

Prewitt operator is applied to calculate 8-neighborhood
gradient values ĝ of the pixel p in the edge-enhanced L channel
of the image:

ĝ =
√
g2
h + g2

v (3)

Where:

gh = (p1 + p4 + p6)− (p3 + p5 + p8) (4)

gv = (p1 + p2 + p3)− (p6 + p7 + p8) (5)

8-neighborhood contour information g is defined as:

g =

{
0, ĝ < G
ĝ, otherwise

(6)

Where G is the threshold. When ĝ < G, the pixel is
considered to be in a flat region, and its 8-neighborhood
contour information is set to 0. In order to obtain more contour
information than the 4-neighborhood contour, G is set to 5
through experiments.

Fig. 8 demonstrates examples of the extracted 4-
neighborhood and 8-neighborhood contour information. It can
be seen that 8-neighborhood contour information has a higher
value than 4-neighborhood contour information and has more
details, but also contains more noise information.

(a) (b) (c)

Fig. 8. (a) Original images. (b) The 4-neighborhood contour information. (c)
The 8-neighborhood contour information.

V. CLUSTERING

We propose a new neighborhood distance for clustering
pixels to decompose the image into flat and non-flat regions.
Since the image has color space continuity, there is a certain
similarity between pixels in the same area without considering
the noise effect. Therefore, the similarity between pixels can
be judged by measuring the color distance of adjacent pixels
to cluster some pixels. However, in regions with low contrast,
only color similarity is often insufficient for a satisfactory
clustering result. It is necessary to define contour information
for each pixel p to determine whether p is on the flat regions.
Our neighborhood distance is obtained by aggregating both the
Euclidean distance in CIELAB color space and the contour
information. The contour information of pixel p should be
defined by its neighbors (4- and 8-neighborhood) pixels for
better locality. Next, we analyze how the contour information
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of p should be defined theoretically. p can be regarded as
obtained by sampling from a function P (x, y). According
to Taylor expansion formula and numerical approximation
theory, P (x, y) can be approximated by a relatively low-
order polynomial in flat regions, whereas P (x, y) needs to be
approximated by a relatively high-order polynomial in non-
flat regions. 4-neighborhood (five pixels) and 8-neighborhood
(nine pixels) can be fitted with bilinear and biquadratic
polynomial functions, respectively. The contour information
describes the shape of the fitting function. Consequently, the
contour information in the flat regions and the non-flat regions
is defined by the 4- and 8-neighborhood, that is, we use
Eq. (2) and (6) to define the contour information. In order
to obtain a better flat regions result and make the region
division more accurate, we use contour information defined
by 4-neighborhood. As can be seen from Fig. 7 (Supporting
Document), using 4-neighborhood contour information pro-
duces better clusters than 8-neighborhood contour information.
Better clustering means a more accurate division of regions.
When segmenting non-flat regions, 8-neighborhoods are used
to define the contour information of pixels in the region, which
will be described in Section VII.

A. Neighborhood Distance

For each pixel point p, we calculate the neighborhood
distance between pixel p and its neighboring pixel pm(m =
1, 2, . . . , 8) to measure the similarity between this pixel and
its surrounding pixels. Let d(p, pm) be the distance between
pixel p and its neighbor pixel pm. d(p, pm) is computed as:

d(p, pm) = tm +
√

(l − lm)2 + (a− am)2 + (b− bm)2 (7)

Where l, a, b and lm, am, bm are the values (l, a, b) of the
pixel p and the neighboring pixel pm in the CIELAB space,
and tm is the 4-neighborhood contour information of pixel
pm. Obviously, eight neighborhood distances can be used to
measure the similarity between p and pm. If the value of
d(p, pm) is small, the similarity between pixels p and pm
is large. Based on the above analysis, we propose a new
clustering algorithm based on the similarity between pixels.
At the beginning of clustering, we need to define an initial
similarity set C(p) for each pixel p. The elements in the set
C(p) are deemed to be similar pixels of the pixel p. We rank
all the neighboring pixels of p according to d(p, pm) and put
the pixels with the distance smaller than the third smallest
distance value into a set C(p). For example, for eight distances
(0,0,2,2,2,3,3,4), the smallest two sets are (0,0,2,2,2). Then
find all the most similar pixels of each pixel according to
the neighborhood distance to complete the pixel clustering.
Neighborhood distances are coerced to integers so that the
smallest two sets of distances can be found.

B. Clustering

Based on the similar set of pixels obtained in previous
step, for any pixel pm in the similar pixel set C(p) of the
pixel p, if pixel p is also in the similar pixel set C(pm) of
pm, pixel p and pm are considered to be in the same class.
In addition, if pixels p1 and p2 are in the same class and

p3 and p2 have the same class label, then they all belong
to the same class. The clustering of pixels is achieved by
repeating this recursive grouping. As shown in Fig. 9, large
cluster regions can be generated in flat regions, while small
clusters tend to appear in non-flat regions. The pseudo code
of the clustering is in Algorithm 1. The threshold used in
contour information computation and the way of similar pixels
selection for clustering in flat regions are discussed in the
Supporting Document.

(a) Original images (b) Our clustering results

Fig. 9. The same color represents the same clustering class.

VI. SEED POINT GENERATION

The generated clusters can be considered as an initial
superpixel segmentation result. In this way, the probability
of finding suitable superpixel seed points in the cluster is
significantly increased, and the number of iterations required
for generating superpixels will be greatly reduced. Like other
methods, we initialize the image with a regular hexagonal dis-
cretization to enhance superpixel regularity. We first generate
K hexagons over the clustering image, K is the number of
user-specified seed points. Two constraints should be met when
selecting seed points: one is that the seed points cannot be
boundary pixels, and the other is that they should be placed in
the middle of the hexagon as far as possible so that superpixels
are as large and symmetrical as possible and the number of
iterations can be reduced. To reduce the search space, we only
look for the seed point within a rectangular box bounded by
four vertices of the hexagon (the red rectangle in Fig. 10(a)).

(a) (b)

Fig. 10. (a)K initial hexagons. (b) The red point is the initial seed point.
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In order to prevent the seed point from becoming a boundary
pixel, our strategy is that if a pixel p in the rectangular box is
consistent with the class label of its eight neighboring pixels
pm, p is excluded as a boundary pixel and considered as a
candidate seed point. To make the seed point as close to the
hexagon’s center z as possible, we use the following strategy:

For each candidate seed point p, calculate its distance
ds(p, z) and choose the pixel with the lowest distance as the
seed point. The distance ds(p, z) is defined as:

ds(p, z) =
√

(x− xz)2 + (y − yz)2 (8)

Where (x, y) and (xz, yz) are spatial coordinates of the pixel
p and the center z of hexagon, respectively.

If no pixels located in the above rectangular search box
meet the criteria, then it implies the color information in this
hexagon is complicated. At this time, seed points should be
generated in areas where color information varies little. The
second derivative describes the acceleration, which is used to
describe the change of particle motion along the orbit. The
second derivative is proportional to the orbital curvature and
is generally approximated using the second-order difference
quotient. The relatively small second-order difference quotient
indicates that little color information has changed. Therefore,
we use the second-order difference quotient to measure the
complexity of color information in the hexagon. We select the
pixel that makes the formula (10) smallest as the seed point.
The computation is as follows:

Let the second-order difference quotient of the four di-
rections of the pixel p be ∆1,∆2,∆3,∆4. In the CIELAB
color space, ∆1,∆2,∆3,∆4 are the values of the second-
order difference quotient of four directions on l, a, b channel,
respectively. And the second-order difference quotient of the
four directions of L channel is defined as:

l∆1
= (l1−l)−(l−l8)

2

l∆2
= (l2−l)−(l−l7)

2

l∆3
= (l3−l)−(l−l6)

2

l∆4 = (l4−l)−(l−l5)
2

(9)

Likewise, the second-order difference quotient of a and b
channels are calculated. l∆, a∆, b∆ are the mean value of the
second-order difference quotient in four directions of each
l, a, b channel. We measure whether pixel point p is the seed
point by:

seed =p {l∆ + a∆ + b∆ + ds(p, z)} (10)

The smallest seed among all pixels in the current search
box is the seed point of this hexagon Fig. 10(b).

VII. SUPERPIXEL GENERATION

In order to ensure the superpixel regularity and improve the
boundary adherence, our method first generates superpixels
for flat regions based on the clustering result and the initial
seed points. Then we design a distance function with adaptive
parameters to partition pixels in non-flat regions only. By treat-
ing regions differently, we can generate superpixels with high
regularity in flat regions and with tight boundary adherence
for non-flat regions.

A. Flat Regions

As shown in Fig. 9, large clusters are usually generated in
flat regions of the image. We can complete the labeling of
superpixels for large clusters in advance. For pixel p in each
hexagon, if its class label is equal to that of the seed point
of the same hexagon, we consider pixel p and the seed point
to belong to the same superpixel and let the superpixel label
of the pixel p be equal to the superpixel label of the seed
point. We perform this procedure for all the hexagons of the
clustering.

Let the number of a hexagon containing pixels that have
completed superpixel labeling be h. A hexagon is classified
to be in a flat region if h is larger than 0.8 × R (R = N/K
is the average superpixel size and N is the number of pixels
of the image). Otherwise, hexagon belongs to non-flat regions.
Note that, we generate superpixels only in flat regions by now.
Since we perform comparison operations in the previous step
on all hexagons and some superpixel labels may appear in
hexagons of non-flat regions, we erase these superpixel labels
and postpone the superpixel labels generation of the entire
non-flat regions to the next step. After this step, flat regions
have superpixels with regular shapes, while pixels of non-flat
regions have not been labeled yet, as shown in Fig. 11.

(a) (b) (c)

Fig. 11. Superpixels in flat regions.

B. Non-Flat Regions

To complete the superpixel labeling of non-flat regions, we
propose a distance function using parameters that are adaptive
to the content of non-flat regions.

1) Distance Function: Considering the pixel q in non-flat
regions and the seed point s. The distance between pixel q
and seed point s is defined as D(q, s), where q and s are
two vectors with five components, i.e. [l, a, b, c, g]T where
l is lightness information, a and b are color component
information, c is spatial information represented by vector
[x, y]T and g is 8-neighborhood contour information. The
weighted average distance measurement is calculated as:

D(q, s) =
∑
j∈I

wjd
2
j (q, s) (11)

Where j indexes each component of the vector, wj is weight
parameter of the identification information j; dj(q, s) is the
distance between pixel q and seed point s in the component
j. In Eq. (11), we introduce the weight parameter wj to make
the distance between the components of two vectors play a
different role in calculating D(q, s). In theory, the similarity
between two vectors is determined by the similarity between
each component, but each component plays a different role
for different applications. In superpixel segmentation, we use
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the principle of “small distance and great weight” to calculate
similarity, i.e., to give a relatively large weight wj to a
relatively small distance dj(q, s). Our experimental results
show that adjusting the weights can achieve better superpixel
segmentation results than fixing the weights. Superpixel seg-
mentation is achieved by minimizing the following objective
function F :

F =
∑
s∈S

∑
q∈U

D(q, s) (12)

Where S is the set of seed points and U is the set of
non-flat regions pixels. We use Euclidean distance for the
spatial distance and adopt Manhattan Distance for both the
color distance and contour distance. Based on the theoretical
analysis at the beginning of Section V, 8-neighborhood is used
to define the contour information of pixels in non-flat regions.

By calculating the distance between pixel q and seed points
around q, the superpixel label of the seed point with the
minimum distance D(q, s) is chosen as the superpixel label
of q. We set the search scope of superpixel seed points to be
within a circle where the center is the current seed point and
the radius is 2.5 times the edge length of the hexagon. Once
each pixel q is assigned with a superpixel label, we update
the weights and seed points. Our superpixel segmentation will
converge after several iterations. Through experimental results
(Fig. 12), we find that when the iterations is 4, the numerical
results (VIII-B) begin to converge. As the number of iterations
increases, the numerical result tends to be constant. To trade
off the quality and efficiency, the iterations of our algorithm
are set to 4.
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Fig. 12. When the number of iterations is 2, 3,..., 7, our algorithm’s numerical
results on the BSD500 dataset.

2) Weights Adjustment: The principle of “small distance
and great weight” is used to calculate similarity. That is, a
larger weight wj is assigned to a smaller distance dj(q, s).

Let d̂j = dj(q, s). Vj is used to represent the average intra-
class distance of certain identification information j:

Vj =
1

K
sumj (13)

Where j ∈ {l, a, b, c, g}, sumj is the sum of d̂2
j of all

pixels that belong to non-flat regions in the component j. The
adjustment of wl is computed as:

wl = Qγ/[(Vl + σ)γ(
∑
j∈I

Qγ/(Vj + σ)γ)] (14)

Q = (Vl + σ)(Va + σ)(Vb + σ)(Vc + σ)(Vg + σ) (15)

Where I = {l, a, b, c, g}, σ is a very small constant
for preventing the divisor being 0 when Vj is 0, and γ is
a harmonic parameter. In our experiment, γ is set to 1.3.
Similarly wa, wb, wc and wg can be calculated. The smaller
Vj is, the larger wj is, according to Eq. (14). In this way,
the proportion of dj(q, s) in the calculation of D(q, s) will be
greater. Which realizes the mechanism that the components
with the short distances play a more significant role when
determining the similarity of two vectors.

Fig. 13 shows examples of superpixel generation for non-flat
regions and compares fixed and adaptive weights. Compared
with the fixed weighting (when all wj are 0.2), the results
by adaptive weights are better in terms of regularity, and the
numerical results (Fig. 15) are better than the existing methods.
In general, for non-flat regions of different images, the weights
of the identification information generated by the algorithm
are different. Such as, the final weights (wl, wa, wb, wc, wg)
of the two images in Fig. 13 are (0.0742, 0.1736, 0.2955,
0.3892, 0.0675) and (0.0682, 0.3246, 0.2209, 0.3684, 0.0178),
respectively. These verify the effectiveness of adjusting the
weight to meet the similarity calculation principle. And the
weight of different identification information is adaptive to
the nature of image non-flat regions.

(a) (b) (c)

Fig. 13. (a) Non-flat regions of images that are not segmented, (b) segmented
with wj = 0.2, and (c) adaptive w.

C. Seed Point Updating

The normalization of each identification information can
produce irrational numbers, but the computer’s accuracy is
limited. In order to prevent the accumulation of errors caused
by the normalization of each identification information of
pixel in seed point calculation, for the un-normalized data,
we calculate the mean value of 8-neighborhood contour in-
formation, spatial information, and color information of all
pixels contained in a superpixel. Then these mean values are
normalized as a new seed point. We do this for all superpixels.
The seed points are updated globally on the image to avoid
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a large number of seed points moving to the non-flat regions,
which may reduce the regularity of the generated superpixels
and affect the connectivity within superpixels.

D. Superpixel Combination

After the superpixel subdivision of the non-flat regions
is completed, to improve the regularity of superpixels and
eliminate some of the scattered pixels, we clean up these
isolated tiny superpixels by iteratively merging them with
adjacent superpixels that have the closest properties, based on
the PriorityQueue implementation, and one result is shown
in Fig. 14. Algorithm 2 summarizes the selection of seed
points and the steps of superpixels generation. Algorithm 1
and Algorithm 2 are shown below.

(a) (b)

Fig. 14. (a) The result before the superpixel merge. (b) The result after the
superpixel merge.

Algorithm 1 Contour information extraction and clustering
Require: Image I
Ensure: Class label Cl(p) and contour information

1: RCF is used to obtain the edge image of image I and then
perform non-maximum suppression on the edge image.

2: Complete part of the boundary points by setting the values
of the local-regional of each boundary point to be the value
of this boundary point.

3: Gaussian filtering is performed on image I in CIELAB
space.

4: Calculate 4-neighborhood and 8-neighborhood contour
information of pixel by Eq. (2) and Eq. (6), respectively.

5: Calculate neighborhood distance d(p, pm) between pixel
p and its neighbor pixels pm and generating similar pixels
set C(p).

6: Let Cl(p) be the class label of pixel p.
7: for each pixel p do
8: if pixel p and pm are similar then
9: Cl(pm) = Cl(p)

10: end if
11: Extend the number of elements in class.
12: end for

VIII. EXPERIMENT

We compare our method with state-of-the-art methods in
superpixel segmentation, including SLIC [16], ERS [21],
SSBC [38], LSC [17], GMM [22], SH [25], TRS [18], SSN
[30], WSS [20], ECCPD [39], WSGL [27], SSFCN [31],
LNSnet [32], RSS [36], FGSLT [33], and AINet [34]. The

Algorithm 2 Seed selection and superpixel generation
Require: Image I , expected number of superpixels K, Class

label Cl(p), contour information
Ensure: Superpixel label Sl(p) for image

1: Generate K hexagons on the clustering image.
2: Let Sl(p) be the superpixel label of pixel p and Sl(s) be

the superpixel label of seed point s.
3: Set superpixel label Sl(p) = 0 for each pixel p.
4: Set superpixel label Sl(s) = u for each seed point s, u is

the order of the seed points.
5: Generate seed points s in each hexagon.
6: Generate superpixels in the flat regions.
7: Pixel unlabeled in the non-flat region is defined as pixel
q.

8: Using five dimensions [l, a, b, s, g]T to represent q and s,
normalize q and s.

9: Set the distance D(q) =∞ for each pixel q.
10: Set weight parameters wj = 0.2, j ∈ {l, a, b, s, g}.
11: Set the iteration number k = 1.
12: repeat
13: for each seed point s do
14: for each pixel q belonging to the circle search range

of seed point s do
15: Calculate the distance D(q, s) between pixel q and

seed point s.
16: if D(q, s) < D(q) then
17: D(q) = D(q, s)
18: Sl(q) = Sl(s)
19: end if
20: end for
21: end for
22: for each identification information j do
23: Adapt the weight parameter wj for identification

information j by using Eq. (14).
24: end for
25: Update seed points.
26: k = k + 1
27: until k > 4
28: Re-divide the superpixel label of all pixels.
29: Put each superpixel into the Priority Queue with the num-

ber of pixels contained in the superpixel as the priority.
30: Merge isolated superpixels iteratively.

results of these algorithms are obtained by running the source
codes published online. Our implementation is in C++. All
experiments are conducted on a personal computer with Intel
Core i7 at 3.7 GHz and Nvidia graphics card GTX-1060.

A. Dataset

The standard Berkeley Segmentation Dataset (BSD500
[40]), the Fashionista Dataset (Fash [41]) and the PASCAL-S
[42] are used for evaluating the effectiveness of our approach
and performing comparisons. The BSD500 contains 200 train-
ing, 100 validation, and 200 test images. The Fash dataset
contains 685 fashion clothing images with semantic ground
truth segmentations. The PASCAL-S dataset contains 850
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TABLE I
NUMERICAL RESULTS ON THE PASCAL-S DATASET WHEN THE NUMBER OF SUPERPIXELS IS 300.

SSBC WSS LSC ERS SH SLIC GMM TRS RSS ECCPD WSGL SSN SSFCN LNSnet AINet FGSLT Our algorithm

Boundary recall (BR) 0.9056 0.9357 0.9329 0.9315 0.9466 0.8820 0.9315 0.8650 0.9386 0.7560 0.9476 0.8173 0.9081 0.8928 0.9040 0.9267 0.9654
Achievable segmentation accuracy (ASA) 0.9644 0.9703 0.9712 0.9685 0.9707 0.9625 0.9711 0.9639 0.9630 0.9568 0.9678 0.9511 0.9738 0.9629 0.9728 0.9670 0.9758

Under segmentation error (UE) 0.2216 0.1975 0.1957 0.1980 0.1902 0.2320 0.1900 0.2224 0.2313 0.2492 0.2106 0.2700 0.1692 0.2373 0.1751 0.2089 0.1608
Average time per image 1.1906 0.2104 0.3595 0.8550 0.0566 0.0715 0.1723 4.2835 0.0259 8.1812 0.0547 0.3294 0.0680 0.6215 0.0410 0.5672 0.1967

Bold indicates the best result

TABLE II
NUMERICAL RESULTS ON THE BSD500 DATASET WHEN THE NUMBER OF SUPERPIXELS IS 300.

SSBC WSS LSC ERS SH SLIC GMM TRS RSS ECCPD WSGL Our algorithm

Boundary recall (BR) 0.8802 0.9161 0.9086 0.9017 0.9305 0.8360 0.9159 0.8081 0.9083 0.6742 0.9365 0.9382
Achievable segmentation accuracy (ASA) 0.9497 0.9547 0.9559 0.9544 0.9559 0.9471 0.9582 0.9482 0.9428 0.9394 0.9533 0.9596

Under segmentation error (UE) 0.2434 0.2226 0.2212 0.2189 0.2186 0.2566 0.2035 0.2445 0.2795 0.2752 0.2326 0.1947
Average time per image 1.0942 0.2050 0.3008 0.6002 0.0385 0.0621 0.1603 4.2926 0.0213 5.4120 0.0560 0.1751

Bold indicates the best result

images of various object categories and sizes. Three datasets
are assigned with human-annotated ground-truth labels. In
addition, we used the images in the DIV2K [43] dataset to
verify the time complexity of our algorithm.

B. Evaluation Metrics
We use standard superpixel evaluation metrics, includ-

ing Boundary Recall (BR), Under-segmentation Error (UE),
Achievable Segmentation Accuracy (ASA), and Explained
Variation (EV). Let the standard segmentation region of an
image be Gi(i = 1, 2, · · · ,M) and Sl(l = 1, 2, · · · ,K)
represents each superpixel. Each pixel is designated p, with
1 ≤ n ≤ N (N is the number of pixels of the image I).

1) Boundary Recall: BR is used for evaluating superpixel
boundary adherence. It calculates the percentage of the ar-
tificially labeled boundaries that fall between at least two
superpixel boundary pixels. High BR means strong edge
preservation.

2) Achievable Segmentation Accuracy: ASA is used to de-
termine whether an object in the image is correctly recognized.
The highest recognition rate is calculated by labeling each
superpixel with a standard segmentation that has the largest
overlap area. The larger the ASA value is, the more objects
are correctly identified. We compute our method’s ASA value
by averaging the ASA values of all the images in the dataset.

ASA =

∑
l argi max |Sl ∩Gi|∑

i |Gi|
(16)

3) Under-segmentation Error: Based on the requirement
that each superpixel belongs to only one object, UE measures
the percentage of pixels inside the superpixel that is leaked
from the ground truth segmentation. If a superpixel effectively
overlaps with more than one true contour, the UE will increase
accordingly. The UE of the entire image is calculated as
follows:

UE =
1

N

[
M∑
i=1

( ∑
{Sl||Sl−Gi|>B}

Area(Sl)

)
−N

]
(17)

Where, N is the number of all pixels, Area(Sl) is the area
of superpixel Sl, and B is the area of the overlap region of
the minimum number. We set B to be 5% of Area(Sl). A
smaller UE value means that more objects are identified in an
image.

4) Explained Variation: The explained variation (EV) [44]
quantifies the color variation in the superpixels. Since image
boundaries tend to show great changes in color and structure,
EV assesses boundary adherence independent of human anno-
tations. EV is defined as

EV =

∑
Sl
|Sl| (µ (Sl)− µ(I))

2∑
pn

(pn − µ(I))
2 (18)

Where µ(Sl) and µ(I) are the mean colors of superpixel Sl
and image I, respectively. The higher the value is, the better
the quality is.

C. Numerical Comparisons

1) Results on PASCAL-S: As shown in Fig. 15, on the
PASCAL-S dataset, the BR of our algorithm is better than
other algorithms. When the number of superpixels is between
100 and 500, our algorithm is the best among all the algorithms
in terms of the ASA and UE metrics. As the number of
superpixels increases, the UE and ASA of our algorithm are
slightly weaker than SSFCN but better than other algorithms
and our BR and EV are better than SSFCN. Note that our
computation efficiency is competitive compared with WSS,
SLIC, LSC, GMM, LNSnet, and SSFCN, and much faster
than ERS, WSS, LSC, LNSnet, SSN and FGSLT, as shown
in Fig. 19.

2) Results on BSDS500: BSDS500 contains 200 training,
100 validation, and 200 test images. We run the SSFCN, SSN,
LSNet, FGSLT and AINet algorithms on the test images. For
other algorithms, we run them on the entire dataset. As shown
in Fig. 16, on the entire dataset of BSD500, when the number
of superpixels is between 100 and 800, our algorithm is the
best among all the algorithms, in terms of the BR, ASA, and
UE metrics. Similarly, our method achieved the best results on
the test images under EV and BR metrics, as shown in Fig.
17(a) and 17(d).

3) Results on FASH: The numerical results of our algorithm
on the FASH dataset are shown in Fig. 18. When the number
of superpixels is between 100 and 400, our algorithm is the
best among all the algorithms, in terms of the BR and ASA
metrics. As the number of superpixels increases, the BR of our
algorithm is the same as the algorithms SH and is better than
other algorithms. Similarly, when the number of superpixels
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TABLE III
NUMERICAL RESULTS ON THE FASH DATASET WHEN THE NUMBER OF SUPERPIXELS IS 300.

SSBC WSS LSC ERS SH SLIC GMM TRS RSS ECCPD WSGL SSN SSFCN LNSnet AINet FGSLT Our algorithm

Boundary recall (BR) 0.9391 0.9586 0.9647 0.9495 0.9659 0.9234 0.9508 0.9006 0.9576 0.6581 0.9570 0.7713 0.8933 0.9287 0.8744 0.9524 0.9720
Achievable segmentation accuracy (ASA) 0.9740 0.9760 0.9780 0.9762 0.9767 0.9728 0.9756 0.9717 0.9685 0.9545 0.9724 0.9543 0.9747 0.9663 0.9718 0.9751 0.9789

Under segmentation error (UE) 0.1289 0.1209 0.1086 0.1129 0.1151 0.1344 0.1214 0.1333 0.1557 0.1745 0.1381 0.2071 0.1189 0.1287 0.1305 0.1221 0.1109
Average time per image 1.5858 0.2740 0.4628 1.0315 0.0603 0.0975 0.2159 6.0202 0.0310 11.912 0.1375 0.4043 0.0510 0.9511 0.0260 0.7662 0.2610

Bold indicates the best result
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Fig. 15. The results of numerical comparison of different algorithms on the PASCAL-S dataset.
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Fig. 16. The results of numerical comparison of different algorithms on the BSD500 dataset.
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Fig. 17. The results of numerical comparison of different algorithms on the test images (BSD500 dataset).
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Fig. 18. The results of numerical comparison of different algorithms on the FASH dataset.

is between 100 and 200, the UE of our algorithm is better
than other algorithms. When the superpixel is between 200

and 500, our UE is slightly weaker than ERS, SH, and LSC,
and better than other algorithms.
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(a) PASCAL-S dataset
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(b) BSDS500 dataset
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(c) test images (BSD500 dataset)

100 200 300 400 500 600 700 800 900 1000

Number of Superpixels

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

T
im

e

SSBC

WSS

LSC

ERS

SH

SLIC

GMM

RSS

WSGL

SSN

SSFCN

LNSnet

AINet

FGSLT

Ours

(d) FASH dataset

Fig. 19. The time of different algorithms.

(a) ECCPD (b) RSS (c) SSFCN (d) TRS (e) WSGL (f) SLIC (g) LNSnet (h) Ours

Fig. 20. Visualization of different superpixel segmentation algorithms when the number of superpixels is 300.

To summarize briefly from the Fig. 15, 16 and 18, we claim
that our algorithm can achieve SOTA performance in terms of
the balance between the shape regularity and the boundary
adherence, especially when the superpixel number is small.
When superpixels number are large, many algorithms can work
well, since they can have enough freedom to balance the regu-
larity and boundary adherence. However, when the number is

small, those methods will have an obvious performance drop.
Our algorithm has obviously better balance instead, due to its
divide-and-conquer processing and self-adaptive parameters.

D. Visual Comparisons
Fig. 20 shows more representative results from ECCPD,

RSS, SSFCN, TRS, WSGL, SLIC, LNSnet, and our algorithm.
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(a) Original (b) GT (c) SLIC (d) RSS (e) SSFCN (f) SSN (g) WSGL (h) LNSnet (i) Ours

Fig. 21. Examples of the saliency detection on the PASCAL-S database by using different superpixel segmentation algorithms for pre-processing. Our
algorithm consistently generates saliency maps close to the ground truth.

TABLE IV
QUANTITATIVE RESULTS ON FIG. 20 WHEN THE NUMBER OF SUPERPIXELS

IS 300.

ECCPD RSS SSFCN TRS WSGL SLIC LNSnet Our

BR 0.7217 0.9456 0.9072 0.8595 0.9424 0.8804 0.8841 0.9618
ASA 0.9433 0.9601 0.9644 0.9573 0.9611 0.9597 0.9512 0.9667
UE 0.2717 0.2175 0.1778 0.2081 0.2011 0.2111 0.2407 0.1723
EV ——– 0.6493 0.6217 ——– 0.6480 0.6409 0.6277 0.6403

Bold indicates the best result

Compared with other algorithms, our method generates the
best results in boundary adherence and is good at handling
weak boundaries and small objects. This is because we use
the pixels’ contour information for calculating parameters of
superpixel generation for non-flat regions of the image and
adaptively adjusting the parameters to fit the image contents.
Our algorithm produces regular and compact superpixels. The
SSFCN and RSS adhere well to the boundary of the image, but
the regularity of their superpixels is not good enough. WSGL,
ECCPD, SLIC, and TRS can generate superpixels with regular
shapes. In addition, we also made five visual comparison GIF
files with the number of superpixels from 100 to 1000 in the
Multimedia folder. Finally, we calculated the BR, ASA, UE,
and EV of each image in Fig. 20, and then averaged these
values across all images as the final numerical result of the
algorithm. The quantitative results are shown in Table IV. The
results in Table IV agree with those reported in VIII-C.

E. Saliency Detection

The task of saliency detection is to identify the most
important and informative part of a scene. To illustrate the
effectiveness of our method on real vision tasks, we employ
a saliency detection application [45], which adopts superpixel
segmentation as a pre-processing step. We replaced the orig-
inally used superpixel segmentation (i.e. SLIC) with SSN,
RSS, WSGL, SSFCN, LNSnet, and our method, respectively.
Using the default parameter settings in [45], on PASCAL-S
[42] dataset (a well-known dataset for saliency detection), our
algorithm consistently highlights salient regions and preserves
better object boundaries than other methods, as shown in Fig.
21. Meanwhile, precision and recall are used to evaluate the
mentioned superpixel algorithms. The precision value is the
ratio of salient pixels correctly assigned to all the pixels of

extracted regions, while the recall value corresponds to the
percentage of detected salient pixels in relation to the ground-
truth number. We normalize the saliency map obtained by the
mentioned superpixel methods from 0 to 255 and use G as the
binarized ground truth. Then, we utilize the fixed threshold
changing among 0∼255 to binary the saliency map to get the
binarized map S. For each fixed threshold among 0∼255, a
pair of precision/recall values will be obtained by formula (19)
to form the PR curves.

Precision =
|S ∩G|
|S|

, Recall =
|S ∩G|
|G|

(19)

Where | ∗ | denotes the non-zero input value for a binary
image. Standard precision-recall curves are shown in Fig. 22.
When the recall is between 0.4 and 1, our precision is better
than other algorithms.
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Fig. 22. Precision-recall curves.

F. Time Complexity Analysis

Suppose an image contains N pixels, and it is desired to
generate K superpixels. The complexity of computing the
contour information and the neighborhood distance is O(N),
respectively. The time complexity of clustering is O(N). The
time complexity of calculating the seed point is O(K ∗ Sn),
where Sn is the average number of pixels to calculate in each
hexagon. The time complexity of generating superpixels in the
flat regions is O(N). The time complexity of each iteration
is O(K ∗ Sf ), where Sf is the average number of pixels to
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Fig. 23. The average running time of our algorithm on ten images where
we sample each image with an increased resolution, i.e. 300*300, 400*400...
1300 * 1300. The “Image size” is the number of pixels contained in the
current image.

be calculated for each seed point. Updating the seed points’
time complexity is O(N). The time complexity of adjusting
the weights is O(nf ), and nf is the number of pixels in
non-flat regions. Then, the time complexity of the step of
merging small superpixels is O(zn), where z represents the
total number of small superpixels that need to be merged
during the entire merging process, and n is the average number
of superpixels adjacent to them. So, the time complexity of the
algorithm is O((4+d)N +K ∗Sn+d∗K ∗Sf +d∗nf +zn),
where d is the number of iterations. Since (zn) is much smaller
than O((4 + d)N + K ∗ Sn + d ∗ K ∗ Sf + d ∗ nf ), when
considering the worst case, e.g. nf = N , K ∗ Sn = N ,
K ∗ Sf = 6.25N , the time complexity of our algorithm is
O((5 + 8.25d)N). So the time complexity of our algorithm
is O(N). For further verification, ten images in the DIV2K
dataset are used to evaluate our algorithm’s time complexity,
including landscapes, people, buildings, animals, and vehicles.
We ran our method on the same pictures of different sizes, and
the running time of the algorithm is shown in Fig. 23. It can
be seen from Fig. 23 and Fig. 19 that the running time of
our algorithm only increases linearly with the increase of the
image size.

IX. CONCLUSION

In this paper, we propose a high-quality superpixel genera-
tion through regional decomposition. The core idea is that we
separate the input image into flat and non-flat regions, where
different segmentation strategies were adopted to meet the bal-
ance between shape regularity and boundary adherence. Com-
pared with state-of-the-art methods, our algorithm consistently
generates more regular superpixels with stronger boundary ad-
herence while maintaining a competitive efficiency. Although
we have achieved higher numerical performance, superpixels
generated by our algorithm are sometimes still not very regular
in some boundary regions. In the future, we consider using a
new non-flat regions superpixel generation method to further
improve the superpixel regularity for those boundary regions
while maintaining strong boundary adherence. For example,
further adaptively divide non-flat regions, and adopt different
strategies for different regions. We also want to consider more
elegant ways to extract high-quality superpixels for the videos
with intensive sharp changes between frames.
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