
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2022 1

Graph Embedding for Multi-Robot Path Planning in Complex Environments

Xifeng Gao1, Zherong Pan1, and Ruiqi Ni2

Abstract—We propose a graph-embedding approach to ap-
proximate continuous multi-robot path planning (MPP) problems
as discrete ones, allowing known discrete planning techniques be
exploited in realistic, complex continuous environments. We first
design a special pebble graph with a set of conditions, under
which MPP problems have the feasibility guarantee. We then
develop a mesh optimization algorithm to embed our pebble
graph into arbitrarily complex environments. We show that
our feasibility conditions can be converted into differentiable
geometric constraints, such that our mesh optimizer can find
feasible solutions via constrained numerical optimization. Two
algorithms can be used to solve MPP problems on our peb-
ble graphs. Conflict-Based Searches (CBS) are preferred for
finding (near) optimal solutions. We further introduce a space-
time parallel scheduling approach to find sub-optimal solutions
for large swarms of congested robots. We have evaluated the
effectiveness of our approach on a set of environments with
complex geometries, where our method achieves an average of
99.0% free-space coverage and 30.3% robot density, ensuring a
large solution space of discrete MPP algorithms executed on the
graphs.

Index Terms—Computational Geometry, Path Planning for
Multiple Mobile Robots or Agents, Planning, Scheduling and
Coordination

I. INTRODUCTION

MPP aims at routing multiple robots from their distinct
start to goal positions in a complex environment, which

is a unified theoretical model of various applications, including
warehouse arrangement, coverage planning for floor vacuum-
ing [1, 2], and inspection planning for search and rescue [3].
These real-world applications often require MPP planners to
answer queries in continuous space. However, determining the
feasibility of continuous MPP instances have been shown to
be PSPACE-hard [4] (for rectangular objects) and strongly
NP-hard [5] (for polygonal environments), even for simplified
MPP instances, let along environments with complex shapes.
It is thus unsurprising that brute-force search algorithms [6, 7,
8] are only practical for tens of robots.

Prior works [9, 10, 11] show that MPP becomes much more
tractable in discrete space by assuming that robots can only
move on a discrete graph, i.e. robots reside in a discrete set of
vertices and move along a discrete set of paths connecting the
vertices. MPP in discrete space is also referred as multi-agent
path finding (MAPF), for which polynomial-time algorithms
exist for checking the feasibility and finding feasible solutions

Manuscript received: February, 24, 2022; Revised April, 15, 2022; Accepted
April, 15, 2022.

This paper was recommended for publication by Editor Editor M. Ani Hsieh
upon evaluation of the Associate Editor and Reviewers’ comments.

1First Author and Second Author are with Lightspeed & Quantum Studios,
Tencent America {gxf.xisha, zherong.pan.usa}@gmail.com

2Second Author is with Department of Computer Science, Florida State
University rn19g@my.fsu.edu

Digital Object Identifier (DOI): see top of this page.

[9, 12, 11]. For special graphs, the sub-optimality of solutions
can even be bounded [13]. As a result, a common practice is
to convert continuous spaces into discrete problems.

While many works have studied discrete MPP, compara-
tively fewer work has focused on the quality of discretization
and its affect on the quality of discrete MPP solutions. As an
example, start and goal positions in continuous space need to
be associated with discrete start/goal nodes after discretization.
If the positions and nodes are close enough, robots can simply
move to the start node without conflict. However, a poor
discretization can prevent this. In Figure 1 for example, a
lattice-style triangulation is not boundary aligned and can miss
start/goal positions in the corners of the star-shaped world.
Another example is to capture environments with narrow
passages, where regular titling can easily miss the narrow
regions.

Fig. 1: For an environment with non-axis aligned boundaries, compared to
a triangulation in the lattice style (left) and its resulting graph (middle left),
our method generates a boundary aligned triangulation (middle right) that
can produce a graph with the full coverage of the entire environment (right),
capturing the maximum solution space of discrete MPP solutions. Discrete
MPPs on the graph are always feasible when robots (orange) are arranged on
the graph vertices. The M#rc/D/Coverage for regular lattice and ours are
74/0.24/60.5% and 91/0.28/100%, respectively.

This paper focuses on techniques to translate complex,
continuous spaces into graph representations in a way that
maximizes free space coverage (to ensure problem fidelity),
ensures collision-free motion when moving along the graph,
and guarantees feasibility of discrete MPP problems posed on
the graph. Specifically, we make the following contributions:

● We design a graph with special topology and geometry
conditions, on which any MAPF instance is guaranteed
to be feasible;

● We prove the designed graph can be topologically iden-
tified with a planar triangle mesh, where the feasibility
conditions of the discrete MPP instances can be mapped
to differentiable geometric constraints;

● We propose a greedy triangle mesh optimization frame-
work to embed the graph on environments with complex
boundaries, so that both the robot capacity and the free
space coverage of the graph can be optimized under the
feasibility conditions;

● For the obtained graph, we propose a space-time search
algorithm to quickly answer discrete MPP queries for
a large number of congested robots, making use of our
guaranteed feasibility.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2022

We have evaluated our graph-embedding method on a set of
complex environments including 2D real floor plans of houses,
malls, and gaming maps. Our generated graph embedding not
only aligns well with the curved input boundary but also has
high free-space coverage ratio of 99.0% and robot density
ratio of 30.3% on average. For the generated graphs, we also
demonstrate the benefits of the proposed space-time search
algorithm in handling highly congested robot swarms.

II. RELATED WORK

We review representative related works.
Graph Embedding applies the discrete graph theory to

continuous environments. It has been used in [14, 15, 13] that
consider rectangular, triangular, and hexagonal grids. These
works do not allow the graph topology or the geometry to
be modified. We show that the special feasibility conditions
in discrete MPP problems can be preserved during mesh
optimization by limiting the set of legal remeshing opera-
tors in [16] and using differentiable geometric constraints.
Mesh Optimization algorithm was originally proposed in
[16], which exhaustively applies a set of remeshing operators
to monotonically improve a given quality metric. Although
this method only achieves local optimality, it is capable of
exploring a large portion of the solution space.

Method Boundary-Aligned Highly-Congested Optimality

CBS [8] N/A No Optimal
Divide-and-Conquer [13] No Yes Bounded
Our Method (Section VII) Yes Yes No

TABLE I: Features of different discrete MPP planners in terms of
generating boundary-aligned graphs (CBS can handle any graph, so we put
N/A), handling highly congested robot swarms, and finding optimal solutions.

MPP problems in a general setting is intractable [4, 5] and
practical methods target at problem subclasses. Early works
[6, 17] use RRT or PRM to solve continuous MPP problems.
However, as the number of robots goes large, e.g. more
than 30 in [17], RRT-like methods would incur exponentially
increasing running time. When robots are restricted to move
on a graph, their motions can be enumerated using CBS [8] or
integer programming [18]. These algorithms are practical for
finding optimal solutions of a small group of robots. CBS has
been extended in several ways to handle more robots [19, 20],
some of which sacrifices optimality. However, CBS and its
variants become intractable when the environment is highly
congested. In the later case, pebble-graph-based feasibility
check [9, 12, 11] is the only way to find sub-optimal solutions,
to the best of our knowledge. Optimal solutions are intractable
to find but sub-optimality can be bounded in some methods
[13]. The features of various planning algorithms that can be
used on our embedded graphs are summarized in Table I.

III. PROBLEM STATEMENT

Continuous MPP problems for large number of robots are
notoriously difficult to solve. Instead, we leverage computer
graphics and graph embedding techniques to approximate
continuous MPP problems as discrete ones with high fidelity.
For a workspaceW ⊂ R2 with piecewise linear boundaries, we
assume all the robots involved in the discrete MPP problems

are disk-shaped with an identical radius r so the ith robot
centered at xi ∈ W takes up the space of a circular region:
C(xi) ≜ {x∣∥x−xi∥ ≤ r} ⊂W . In this work, we use a graph
G = ⟨X ,E⟩ that can be embedded into W to construct the
discrete subset MPP problems. G restricts the robot motions,
i.e., robots can only reside on X and move along E . Here
X is the set of vertices X ≜ {x1,⋯,x∣X ∣}. E is the set of
edges connecting vertices in X and we refer to a direct path
connecting two positions in W and a graph edge interchange-
ably. Our goal is to compute a graph embedding G of W so
that: 1) discrete MPP problems on G is guaranteed to have
feasible collision-free solutions, where the ith robot moves
from xi to xσ(i) with σ being a position permutation; 2) the
number of vertices of G is maximized to enable large swarms
of robots in simultaneous navigation; 3)W is covered as much
as possible to provide “good” approximations for continuous
MPP problems.

IV. OVERVIEW

Our method is based on the observation that a special
graph G not only allows guaranteed feasible collision-free
solutions, but also is constructible from a triangulation of W
by enforcing collision-free conditions on the triangle mesh.

Fig. 2: 3-loops of our designed graph.

As illustrated in Figure 2, the graph we consider consists
of simple loops (red edges) with 3 vertices. These 3-loops are
connected by extra edges into a single, connected components.
Two kinds of moves are available for the robot: A cyclic move
allows a group of 3 robots to cyclically permute locations
along a 3-loop (black, arced arrows). A vacant move allows
a robot to move along any blue edge e ∈ E connecting xi and
xj , as long as xj is not occupied by any other robot (a white
vacant vertex). We will show that discrete MPP problems are
feasible on such graphs, as long as the number of robots is
less than ∣X ∣.

In the following sections, we first present a list of condi-
tions to embed G into a triangulation of W , while allowing
robots to perform cyclic and vacant moves in a collision-free
manner (Section V). We then introduce a mesh optimization
algorithm to maximize a metric function M(G) that encodes
different requirements for a “good” G (Section VI). Finally, we
propose a space-time path planning algorithm that schedules
simultaneous robot motions on a discrete graph (Section VII).

V. GRAPH EMBEDDING AND MESH DISCRETIZATION

In this section, we consider the geometric properties of G
that allows robots to move in a collision-free manner within a
W . Our key innovation is a mapping from a mesh discretizing
W to a graph embedded inW . As illustrated in Figure 3 (a), a
mesh discretizing W , denoted as Ḡ = ⟨X̄ , Ē⟩, is another graph
that is also a simplicial-complex, cell-decomposition ofW and
we denote all the variables defined on the mesh using a bar



GAO et al.: GRAPH EMBEDDING FOR MULTI-ROBOT PATH PLANNING IN COMPLEX ENVIRONMENTS 3

over variables. Given a mesh Ḡ, we can convert it into a graph
using Algorithm 1, which is denoted as a mapping Φ(Ḡ) = G.
Algorithm 1 consists of 4 general steps. First, we place robots
on inner corner points of each cell, i.e. points inside a cell
that are distance-r away from two consecutive edges of the
cell. Next, we assume that 3 robots inside the same cell form
a loop, along which cyclic moves can be performed, and we
add 3 loop edges to G. We then add inter-cell edges to G
between the two pairs of corner points sharing an edge ē in
Ḡ, along which vacant move can be performed. Note that some
cells may be too small and robots placed on inner corners are
not collision-free. Even when corner points are collision-free,
robots inside the same cell can still collide when performing
cyclic moves. Therefore, we add a fourth and final step to
remove from G all the corner points (and incident edges) in
invalid cells. We define a cell as invalid if the 3 corner points
or cyclic moves are not collision-free. In the following, we
show that the collision-free conditions of G can be converted
to three differentiable geometric constraints on Ḡ.

(a) (b) (c)

Fig. 3: (a): A mesh discretizing W is another graph Ḡ that is also a cell
decomposition with straight-line edges and triangular cells. (b): We map Ḡ
to G by first putting robots (gray) on the cell’s corner points. (c): We then
create loop edges for robots in a single cell (red), and finally create inter-cell
edges between robots of neighboring cells (blue).

Algorithm 1: Evaluate Φ(Ḡ).

1: X ← ∅ and E ← ∅

2: for Each triangular cell in Ḡ do
3: for Corner point x1,2,3 in the cell do
4: X ← X ⋃{xi}

5: for e between two points in x1,2,3 do
6: E ← E ⋃{e}

7: for e between neighboring corner points sharing edge in Ḡ do
8: E ← E ⋃{e}

9: G ←< X ,E >
10: for Corner points x of invalid cell do
11: Remove x from G
12: Return G

A. Condition 1: Planner Embedding

Since Ḡ is a simplicial complex, each cell is a triangle
and we denote the 3 vertices of this triangle as: x̄1,2,3. The
distance-r corner points can be computed using the following
formula, as illustrated in Figure 4 (a):

x2 = x̄2 + r
(x̄3 − x̄2)∥x̄1 − x̄2∥ + (x̄1 − x̄2)∥x̄3 − x̄2∥

∥(x̄3 − x̄2) × (x̄1 − x̄2)∥
. (1)

We only show formula for x2 and the formulas for x1,3 are
symmetric. We will mark the cell as invalid and remove the 3
vertices from G if there are overlappings between C(x1,2,3).

B. Condition 2: Collision-Free Cyclic Moves

Even when the 3 corner points are not overlapping, robots
can still collide when they perform cyclic moves along the

3 loop edges with constant speed, as illustrated in Figure 4
(b). To derive a condition for collision-free cyclic moves, we
assume that the 3 robots trace out a trajectory τ1,2,3(t) where
t ∈ [0,1]. At time t, the 3 robots are at positions:

x1,2,3(t) ≜ x1,2,3(1 − t) + x2,3,1t,

and we have collision-free cyclic moves if:

∥x1,2,3(t) − x2,3,1(t)∥ ≥ 2r ∀t ∈ [0,1]. (2)

Here we use cyclic subscripts to denote 3 symmetric con-
ditions. The left-hand side of Equation 2 is quadratic when
squared and determining the smallest value of a quadratic
equation in [0,1] has closed-form solution, which can be used
for determining whether a cell is invalid in Algorithm 1.

r

x̄1

x̄2

x̄3

x1

x2

x3

(a) (b) (c)

Fig. 4: (a): For a thin triangle, corner points will not be collision-free,
violating condition 1. (b): Even when condition 1 holds, robots need to follow
the red arrows and perform a cyclic move. (c): If collisions happen during a
cyclic move, condition 2 is violated.

In addition to determining the validity of a cell, our mesh
optimization algorithm (Section VI) requires an operator that
can modify an invalid cell’s geometric shape to achieve
validity using numerical optimization. To this end, we derive
a condition equivalent to Equation 2 but does not contain
continuous time variable t, because the variable t can take
infinitely many values from [0,1] leading to a difficult semi-
infinite programming problem [21]. Taking one of the equa-
tions ∥x1(t)−x2(t)∥ ≥ 2r in Equation 2 for example (the other
2 cases are symmetric), its left-hand-side is a polynomial of
a single time variable t. To eliminate t, the Fekete, Markov-
Lukaćz theorem [22] can be applied to show that, if Equation 2
holds, then we have:

∥x1(t) − x2(t)∥2 − 4r2 = α1(2t − 1)2 + 2α2α + α3

+ α4(4t − 4t2) ∧ (α1 α2

α2 α3
) ⪰ 0 ∧ α4 ≥ 0,

where α1,2,3,4 are four unknown variables to be fitted.
The 2 × 2 PSD-cone constraint is equivalent to two quadratic
constraints: α1α3 ≥ 0 and α1α3 ≥ α

2
2. By equating coefficients

in the quadratic constraints, we can express α1,2,3,4 in terms
of x1,2,3 to get the following equivalent form:

(1

4
∥2x2 − x1 − x3∥2 + α4)(

1

4
∥x1 − x3∥2 − 4r2 − α4) ≥

[1

4
(x1 − x3)(2x2 − x1 − x3)]

2

∧ α4 ≥ 0,

(3)

where α4 is an additional decision variable that cannot be
eliminated. But unlike t, we only need to satisfy Equation 3
for a single α4. We summarize this result below:

Lemma 5.1: A cell in Ḡ is valid if its 3 corner points,
computed according to Equation 1, satisfy Equation 2 for all



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2022

t ∈ [0,1] or if the 3 corner points satisfy Equation 3 for any
positive α4.

C. Condition 3: Collision-Free Vacant Moves

We show that, as long as condition 2 is satisfied, condition
3 must also be satisfied, so Φ(Ḡ) always satisfy condition 3.
Condition 3 requires that a robot can move to a vacant position
along any e ∈ E . We analyze two cases: e being a loop edge
or e being an inter-cell edge.

Loop edge: If one of the 3 corner points xi in a cell is
vacant and another robot xj is moving along a loop edge to
xi, we show that this move is always collision-free. We prove
by contradiction. If this move is not collision-free, then the
third corner point xk must be in the way between xi and xj .
However, in this case, cyclic moves in the cell is not collision-
free, which contradicts condition 2.

Inter-cell edge: If two neighboring triangles satisfy con-
dition 2 and share an edge ē ∈ Ē , then cyclic moves inside
each triangle are collision-free. As illustrated in Figure 5, if
robot xi is to be moved to a vacant position xj along an
inter-cell edge, then we can rotate xi (along with the two
other robots) clockwise and xj counterclockwise until the line-
segment xi − xj is orthogonal to ē and the convex hull of
C(xi) and C(xj) does not contain other robots so the vacant
move is collision-free. Finally, we rotate xi,j reversely to undo
extra changes.

xi xj
ē

(a) (b) (c) (d) (e)

Fig. 5: As illustrated in (a), moving xi to vacant xj along the straight line
can interfere with other triangles (red area) in obtuse angles. If xi is to be
moved to a vacant position xj along a blue inter-cell edge (b), then we can
rotate xi clockwise and xj counterclockwise to align xi and xj (c), so that
the convex hull of C(xi) and C(xj) does not contain other robots (d). After
the vacant move inside the convex hull, we rotate xi,j reversely to undo extra
changes (e).

VI. MESH OPTIMIZATION

In this section, we present a variant of mesh optimization
algorithm [16, 23] to search for Ḡ that maximizes a user
given metricM(Ḡ,G). Afterwards, a corresponding G can be
extracted using Algorithm 1 to solve discrete MPP problems.

A. Metric Function

Our metric consists of 4 termsM#r,M#rc,Msd,Mg that
can either be a function of the mesh Ḡ or the graph G. These
four terms measure the robot packing density as well as the
area covered by the robots in W . Our first term, M#r is
defined as: M#r(G) ≜ ∣X ∣, which is the number of vertices
contained in G. This term reflects the number of robots that G
can hold, but discrete MPP problems might not be feasible for
all these robots because G might not be connected. M#r is
a heuristic that guides our algorithm to find more valid cells
at an early stage and then try to connect them. Our second

term, M#rc, is the number of robots in the largest connected
component of G:

M#rc(G) ≜ max
G′⊆G connected

(M#r(G
′
)),

which is the maximal number of robots for which discrete
MPP problems are feasible. Note that M#r,#rc are discrete,
non-differentiable terms that are related to both the topology
and geometry of Ḡ. To increase M#r,#rc, we need to update
the shape of triangles in Ḡ and also update their connectivity
so that they are valid. Our third term is the robot packing
density averaged over the valid cells:

Msd(G) ≜
πr2M#r(G)

∑valid cell in Ḡ ∣cell∣
.

Msd is a heuristic guidance term that biases our algorithm
towards denser robot packing, when only a subset of the
workspace is covered by the robot. Our last metric termMg is
the 2D AMIPS energy [24] using the smallest regular triangle
satisfying condition 2 as the target shape.Mg is differentiable,
purely geometric, and related to Ḡ only.

Algorithm 2: Optimize M with respect to Ḡ.

1: Input: Initial Ḡ
2: Compute M←M(Ḡ,Φ(Ḡ))
3: Set terminate←False
4: for pass← 1,2 do
5: while Not terminate do
6: Set terminate←True
7: Perform Collapsing, Splitting (if pass = 1), Flipping, Smoothing,

LocalOpt, and GlobalOpt sequentially
8: if any operations above improves M#r +wM#rc then
9: Set terminate←False

10: Return Φ(Ḡ)

B. Greedy Maximization of Metric

The greedy algorithm is summarized in Algorithm 2,
which exhaustively tries one of the re-meshing operators:
edge-flip, edge-split, edge-collapse, vertex-smoothing, local-
optimization, and global-optimization. Our re-meshing oper-
ators, except for global-optimization, are all local and only
affect a small neighborhood of cells. The first 4 re-meshing
operators are inherited from [16, 23], as illustrated in Figure 6.
Edge-flip is guided by Mg and is mostly applied to obtuse
triangles and turns them into acute triangles. Edge-split and
edge-collapse are used to remove tiny edges and split long
edges in Ḡ, respectively. Finally, vertex-smoothing locally
optimizes Mg with respect to the one-ring neighborhood of
a single vertex. The four operators combined can turn a low-
quality mesh into one with nice element shapes.

(a) (b) (c) (d) (e)

Fig. 6: The first 4 remeshing operators inherited from [16]. (a): original
mesh, (b): edge-flip, (c): edge-split, (d): edge-collapse, (e): vertex-smoothing
(part of mesh modified by the operator in red).



GAO et al.: GRAPH EMBEDDING FOR MULTI-ROBOT PATH PLANNING IN COMPLEX ENVIRONMENTS 5

Our algorithm uses two passes. In the first pass, we allow
the algorithm to explore a larger search space by allowing
both edge-collapse and edge-split. To ensure the convergence
of the first pass, we avoid the cases where consecutive
edge-flip and edge-split operators happen for a same edge
repeatedly. Allowing edge-split will create more triangles and
potentially lead to denser packing of robots. In practice, we
split a ē when its length is larger than 1.3× of the optimal
length ē∗. Here the optimal length is the edge length of
the smallest regular triangles satisfying condition 2, which
equals to: ∣ē∗∣ = (2

√
3 + 4)r. In the second pass, we are

more conservative and disallow edge-split. This pass can be
considered as post-processing, merging too small triangles and
simplifying the robot layout. Within each pass, we check every
possible operator and only accept operators when the weighted
metric M#r + wM#rc monotonically increases and we set
w = 10. We also reject operators that violate our assumption
on Ḡ being a cell decomposition, i.e. introducing non-manifold
connection and flipped cells. The non-manifoldness of Ḡ can
happen only in edge-collapse and can be avoided by the link
condition check [25]. A flipped cell has a negative area which
can be checked by the following constraint:

(x̄2 − x̄1) × (x̄3 − x̄1) ≥ 0. (4)

C. Local- and Global-Optimization Operators
Aside from the four remeshing operators inherited from

[16, 23], we introduce one local- and one global-optimization
operators. These operators use the primal-dual interior point
method to optimize the geometric shape of the cells, taking
condition 2 as hard constraints. At the same time, we maximize
Msd by minimizing the area of valid cells, leading to a denser
robot packing. Specifically, for a cell in Ḡ with vertices x̄1,2,3,
we solve the following problem in the local-optimization
operator:

argmin
x̄1,2,3

∑
valid cell in Ḡ

∣cell∣

s.t. Eq.3 ∀valid cell in Ḡ Eq.4 ∀cell in Ḡ,
(5)

where we require that the entire mesh to be a cell decomposi-
tion, so we add Equation 4 for all cells. We also require that
those originally valid cells stay valid, so we add Equation 3
for all valid cells. This optimization can be solved efficiently
because it is local. Since we only treat the 3 vertices of a
single cell in Ḡ as decision variables, most of the terms in
the objective function and constraints are outside the 1-ring
neighborhood of x̄1,2,3 and not influenced by the decision
variables, which can be omitted. Note that Equation 3 is
expressed in terms of the corner points x1,2,3, instead of mesh
vertices x̄1,2,3. When the optimizer requires partial derivatives
of Equation 3 against x̄1,2,3, we use the chain rule on the
relationship Equation 1.

The global-optimization operator is very similar to the local-
optimization operator, which also takes the form of Equation 5,
but we set all the variables x̄ as decision variables. The global-
optimization is more expensive than all other operators, but we
found that this last operator can significantly improve robot
packing density and it is more efficient than applying the local-
optimization operator to each of the cell.

VII. DISCRETE MPP ON LOOP GRAPHS

In this section, we present a method to find feasible so-
lutions to discrete MPP instances for a large-scale highly
congested robot swarm. Our method is capable of using vacant
graph vertices to schedule parallel robot motions.

A. Discrete MPP Feasibility

We show that discrete MPP instances restricted to the graph
with the topology as illustrated in Figure 9 are always feasible:

Lemma 7.1: If G has more than 1 loop, then any discrete
MPP problem with N < ∣X ∣ is feasible.
We only give a sketch of proof. Any permutation σ of robot
positions can be decomposed into a set of pairwise swaps.
To swap the location of two robots, xi and xj , we first find
a path in G connecting xi and xj , which is always possible
as G is connected, denoted as xi,x1,x2,⋯,xK ,xj . We can
further decompose the swap into a series of sub-swaps:

xi ↔ x1,⋯,xi ↔ xK ,xi ↔ xj ,xK ↔ xj ,⋯,x1 ↔ xj ,

where each pair of positions in a sub-swap are connected
directly by some e ∈ E , where e is either a loop edge or an
inter-cell edge. In either case, the sub-swap can be performed
with the help of a nearby vacant vertex as illustrated in
Figure 9. Finally, such vacant vertex must exist because our
number of robots is strictly less than the number of vertices
and the vacant position can be moved anywhere via vacant
moves.

B. Parallel Robot Moves

We measure the quality of a discrete MPP solution via
makespan, which is the number of timesteps used by the entire
scheduling process, where each timestep involves one or more
robots moving simultaneously.In the worst case, the makespan
of above mentioned discrete MPP solutions is O(∣X ∣2). This
is because we have only one vacant vertex, which is needed
to perform every sub-swap. When more vacant vertices are
available, we can parallelize the sub-swaps and improve the
makespan. We present a space-time search algorithm to find
parallel sub-swaps, which is similar to [13] in principle but
adapted to graphs of more general topology.

As illustrated in Figure 8 right, we first use the CLINK
algorithm [26] to cluster the loops into a binary tree. This
algorithm starts by treating each loop as a separate cluster, and
then iteratively merge two smallest clusters (with the smallest
number of vertices) until only one cluster is left. We then
iteratively merge small leaf nodes until all leaf nodes have
more than K > 1 loops (K = 4 in the inset), where K is a
user specified parameter determining the congestion-level. In
the worst case, this method requires ⌈∣X ∣/(3K)⌉ vertices to
be left vacant. Next, we introduce a vacant vertex for each
leaf node. As a result, cyclic moves and vacant moves can
be performed parallelly within a leaf node and two pairs of
connected leaf nodes can perform two robot position swaps in
parallel. Finally, we adopt the divide-and-conquer algorithm
proposed in [13]. For every internal binary tree node, we
consider their two children, which are two connected sub-
graph. We swap robots between the two sub-graphs until xi



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2022

1 2

3

4 5 6

7 8 9 10 11
Fig. 7: Gallery of graph embeddings of robot number ranging from 66 to 4467. For each example (1-6), left is our optimized triangulation where cells
colored in light gray are invalid, right is the converted graph. We also show two simple examples (7-11) with varying robot sizes.

G1

G2

G3

G4

Fig. 8: A binary tree is generated by clustering the 3-loops.

and xσ(i) belongs to the same sub-graph for all i = 1,⋯,N .
This procedure is performed recursively from the root node to
all the leaves, where the swaps within different sub-trees are
performed in parallel.

C. Scheduling Robot Swaps between Sub-Graphs

The major challenging in the above algorithm lies in the
scheduling of parallel robot position swaps between sub-
graphs, for which we use a space-time data structure. We
denote Gi as the ith leaf node and we assume there are
N1 leaf nodes in one of the sub-graph and N2 in the other
(N1 +N2 ≤ ⌈∣X ∣/(3K)⌉). The inter-sub-graph position swaps
are decomposed into several rounds, where each round consists
of several parallel position swaps between two connected leaf
nodes. We denote as Gi,t as the state of Gi at the beginning of
tth round. We further connect Gi,t and Gj,t+1 using a space-
time edge eij,t if two conditions hold: 1) Gi and Gj are
connected by some inter-loop edge e ∈ E ; 2) Gi and Gj belongs
to the same sub-graph, i.e., i, j ≤ N1 or N1 < i, j ≤ N1 +N2.
Our space-time data structure is defined as the space-time
graph ⟨{Gi,t∣t ≤ t0+1},{eij,t∣t ≤ t0}⟩, where t0 is the maximal
allowed number of rounds. Note that the space-time graph
is directed with each eij,t directing from ej,t+1 to ei,t. The
inter-sub-graph position swaps can be accomplished by multi-
rounds of swaps between leaf nodes, which in turn corresponds
to selecting a set of space-time edges eij,t. Our algorithm
greedily select a set of space-time edges leading to an inter-
sub-graph position swap in the earliest round. After each
selection, we remove the conflicting space-time edges before
selecting the next set of edges, until all the robots belong to

the correct sub-graph. When no position swaps can be found
for the given t0, we introduce a new round and increase t0 by
one. This procedure is guaranteed to terminate.

2

1

3
1

6
5

4

4

5

2

1
3

Case I

Case II

Fig. 9: A discrete MPP problem solved using a series of sub-swaps between
two connected vertices. (white: vacant vertex; gray: vertices whose positions
should remain the same; yellow/green: vertices whose position should be
swapped; the ith arrow means a move at the ith round; arrows with same
the number mean moves that can be performed at the ith round in parallel)
Case I: If yellow/green vertices belong to the same loop, then we can move
the vacant vertex to the loop (1,2) and swap the two vertices via 3 vacant
moves (4,5,6). Case II: If two vertices belong to two connected loops, then
we can use (1,2,3,4) to reduce to Case I. After the swaps, all other robots’
position are made unaltered using a reversed sequence of moves.

Our method is outlined in Algorithm 3, which is composed
of two main steps. First, we consider all pairs of connected
leave nodes ⟨Ga,t,Gb,t⟩ belonging to different sub-graphs. We
find the two shortest paths connecting from Ga,t, Gb,t to
some leaf node containing a robot that belongs to a different
sub-graph. Specifically, we run Dijkstra’s algorithm with all-
one edge weights from both Ga,t and Gb,t. We terminate
the Dijkstra’s algorithm at any Gi,t satisfying the following
condition:

min
t′=t,⋯,t0

(#Gi,t′) > 0, (6)

where we define #Gi,t as the number of robots within Gi,t that
belongs to a different sub-graph from Gi,t at the beginning of
the tth round. Intuitively, Equation 6 ensures that swapping
one more robot away from Gi during the tth round will
not cause conflict with the number of to-be-swapped robots



GAO et al.: GRAPH EMBEDDING FOR MULTI-ROBOT PATH PLANNING IN COMPLEX ENVIRONMENTS 7

required by other swapping operations in the future rounds.
Finally, note that we consider nodes pairs in a time-ascending
order. The first pair of leaf nodes, for which such paths can be
found, are selected, which corresponds to the position swap
in the earliest round.

Our second step would remove three types of conflicting
edges: 1) If an edge eij,t is selected, then all the edges
{ekj,t,eik,t∣k = 1,⋯,N1 + N2} are removed because they
conflict with the edges along the two paths; 2) all the edges
{eak,t,ebk,t∣k = 1,⋯,N1 + N2} are removed because they
conflict with the inter-sub-graph swap between Ga,t, Gb,t;
3) Let’s define #/Gj,t as the number of robots belonging
to the same sub-graph as Gj at the beginning of tth round
(#Gj,t + #/Gj,t + 1 equals to the number of vertices in Gj),
then all the edges:

{ekj,t∣ min
t′=t,⋯,t0

#/Gj,t′ = 0 ∧ k = 1,⋯,N1 +N2},

should be removed. This is because selecting edge ekj,t
implies that a robot xa ∈ Gk,t must be swapped with another
robot xb ∈ Gj,t at tth round. We must have xb belong to the
same sub-graph as Gj at the beginning of tth round, because
otherwise the shortest path would stop at xb instead of moving
on to xa. However, min

t′=t,⋯,t0
#/Gj,t′ = 0 implies that, if xb was

swapped out of Gj during tth round, there will not be enough
to-be-swapped robots (that belongs to the same sub-graph
as Gj) during some future rounds. For illustrative purpose,
the attached video includes an animation of step-wise robots
motion scheduled by our approach for the 10th example in
Figure 7.

VIII. RESULTS AND ANALYSIS

We implement our algorithm and conduct experiments on a
single desktop machine with Intel i7-9700 CPU. The input to
our algorithm is a vector image in the svg format representing
W . The vector image is manually traced in Adobe Illustrator
from online png images of real building floor plans and
maps used in games. Our main Algorithm 2 starts from an

Algorithm 3: Space-Time Scheduling of Robot Swaps

Input: Sub-graphs A: leaves G1,⋯,N1
and GN1+1,⋯,N1+N2

1: t0 ← 2
2: Build space-time graph < {Gi,t∣t ≤ t0 + 1},{eij,t∣t ≤ t0} >
3: while ∑i=1,⋯,N1+N2

#Gi,t0 > 0 do
4: Found←False
5: for t = 1,⋯, t0 do
6: for Connected leaf nodes Ga,Gb do
7: Run Dijkstra’s algorithm from Ga,t,Gb,t
8: until some Gi,t′ satisfying Equation 6 is found
9: if Found both shortest paths then

10: Select edges on the two shortest paths
11: for Selected edge eij,t do
12: Remove {ekj,t,eik,t}
13: for t′ = 1,⋯, t0 do
14: Remove

15:
⎧
⎪⎪
⎨
⎪⎪
⎩

eki,t′ ,ekj,t′
RRRRRRRRRRR

min
t′′=t′,⋯,t0

#/Gj,t′′ = 0

⎫
⎪⎪
⎬
⎪⎪
⎭

16: Remove {eak,t,ebk,t}
17: Found←True
18: if Found←False then
19: t0 ← t0 + 1
20: Build space-time nodes Gi,t0+2, edges eij,t0+1

Fig. 10: Initialization (left) and the final result (right) of our graph
embedding on the same workspace.

initial guess of Ḡ, which can be generated using constrained
Delaunay Trianglation. Our mesh optimization algorithm then
turns a triangle mesh (Figure 10 left), with only a few triangles
satisfying the feasibility conditions, into a regular triangle
mesh (Figure 10 right), with conditions satisfied for most
triangles. We evaluate our algorithm on a set of complex
workspaces and we summarize the statistics of M#r, robot
density D (the ratio between the area of robots and the area
of W), free space coverage (the ratio between the area of
all valid cells and the area of W), and computational time
(minutes) in Figure 7 and Table II. Note that, since M#r,
M#rc are the same for all the tested examples in Table II, we
list M#r only. While our graph embedding cannot support
real-time computation for large environments, for a given size
robot and environment, we just need to compute it once and
it can support repeated discrete MPP queries.

Measures

Models 1 2 3 4 5 6 7 8 9 10 11

M#r ↑ 1489 1061 782 1021 756 569 60 257 22 40 150
D ↑ 0.31 0.29 0.30 0.30 0.29 0.28 0.28 0.30 0.24 0.19 0.26
Coverage ↑ 1.00 0.98 0.98 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00
time (min) ↓ 236 43 74 98 47 54 0.55 4.35 0.10 0.20 0.77

TABLE II: Statistics of M#r , robot density D, free space coverage, and
computational time (minutes) for the graph generation of the workspaces listed
in Figure 7 (indexed from top to bottom, left to right). ↑ means the larger
value the better, while ↓ represents the opposite.

Fig. 11: Our method (right) allows robots to pass through narrow regions,
while the prior regular lattice graph embedding methods (left) fail to capture
such critical regions. The M#rc/D/Coverage for regular lattice and ours are
52/0.19/61.5% and 131/0.29/100%, respectively.

Comparison with Regular Embedding: We also compare
our method with the regular-pattern baseline, illustrated in
Figure 1 and Figure 11. Our approach exhibits three benefits:
1) boundary alignment, while the regular pattern method intro-
duces undesirable zig-zag boundary coverage; 2) full coverage
of the work space, while prior works leaves large spaces near
the boundary; and 3) captures narrow passages that can be
missed by regular tiling patterns, leading to infeasible discrete
MPP problems.

Varying Robot Radius: We also profile the influence of
different robot radius in Figure 12. Using our arrangement of
robots in Section V, we can use regular triangles with the
optimal area A∗ to cover W and then remove triangles that
are outsideW . We change the radius r, and compare the curve
with the ideal curve 3∣W ∣/A∗ by plotting the change ofM#r

against r. Our method closely matches the ideal reference
curve for different r.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2022

Fig. 12: By varying r, we plot M#r and produced by our boundary
aligned approach and the ideal reference 3∣W ∣/A∗.

#Robot 10 11 12 13 14 15 16 17 18 19 20 25 30
time (s) 0.001 0.047 - - 0.217 - 0.007 0.344 15.7 - - - -

TABLE III: Computational time of the CBS algorithm [27] executed for
discrete MPP instances with varying number of robots on the graph shown in
Figure 13 left with 1128 nodes. ”-“ denotes no solution found.

Discrete MPP Algorithm Comparison: Our generated
graph embedding G allows prior CBS algorithm [27] to solve
discrete MPP instances. Although there are more efficient
extensions to CBS [19, 20], we cannot find open-source
implementations for general graph topology to conduct exper-
iments. By testing on the graph of Figure 3, from Table III,
we found that the computing time of such algorithms vary
greatly w.r.t. the number of robots, e.g., CBS cannot find
optimal solutions for a discrete MPP instance with 20 robots
even after hours computing on the graph shown in Figure 3.
Our proposed parallel discrete MPP scheduler Algorithm 3
process all discrete MPP instances with thousands of robots
within 6mins (Figure 13), while the solution is sub-optimal.
Figure 13 left illustrates such a sub-optimal path. Each MAPF
problem is randomly generated and we run 5 times to obtain
a sound statistics. Although our approach does not ensure an
optimal path as visualized in Figure 13 left, it guarantees to
deliver a valid solution for large number of robots. When more
and more vacant vertices (corresponding to smaller K where
more parallelizable clusters can be computed to speed-up the
scheduling process), the rate of acceleration of our approach
is more obvious (Figure 13).

Fig. 13: Left: 1 (red) out of 66 paths scheduled by our approach, where
orange and blue nodes are start and goal positions, respectively; Middle and
right: the average makespan and the running time (s) for 10 environments
under three different K, where for most environments, the makespan reduces
linearly with K.

IX. CONCLUSION AND LIMITATIONS

We present a method to solve graph-restricted discrete
MPP problems in complex environments. Our method uses a
special graph topology to ensure discrete MPP feasibility. The
special graph topology can be further identified with triangular
meshes, which in turn is optimized via mesh optimization
and embedded into arbitrarily complex environments. Using
a divide-and-conquer algorithm with space-time scheduling,
we can parallelize the robot motions and greedily improve the

makespan. In the future, we plan to conduct experiments with
more efficient discrete MPP algorithms such as [19, 20].

REFERENCES
[1] J. M. Palacios-Gasós, Z. Talebpour, E. Montijano, C. Sagüés, and A. Martinoli,

“Optimal path planning and coverage control for multi-robot persistent coverage
in environments with obstacles,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1321–1327.

[2] K. M. Hasan, Abdullah-Al-Nahid, and K. J. Reza, “Path planning algorithm
development for autonomous vacuum cleaner robots,” in 2014 International
Conference on Informatics, Electronics Vision (ICIEV), 2014, pp. 1–6.

[3] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman, “Multi-robot
search and rescue: A potential field based approach,” in Autonomous Robots
and Agents, S. C. Mukhopadhyay and G. S. Gupta, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 9–16.

[4] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of motion
planning for multiple independent objects: Pspace-hardness of the“ warehouse-
man’s problem”,” The international journal of robotics research, vol. 3, no. 4,
pp. 76–88, 1984.

[5] P. Spirakis and C. K. Yap, “Strong np-hardness of moving many discs,”
Information Processing Letters, vol. 19, no. 1, pp. 55–59, 1984.

[6] G. Sánchez and J.-C. Latombe, “On delaying collision checking in prm
planning: Application to multi-robot coordination,” The International Journal
of Robotics Research, vol. 21, no. 1, pp. 5–26, 2002.

[7] D. Le and E. Plaku, “Cooperative multi-robot sampling-based motion planning
with dynamics,” in ICAPS, 2017.

[8] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search
for optimal multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66,
2015.

[9] V. Auletta, A. Monti, M. Parente, and P. Persiano, “A linear-time algorithm
for the feasibility of pebble motion on trees,” Algorithmica, vol. 23, no. 3,
pp. 223–245, 1999.

[10] R. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-finding
with completeness guarantees,” in International Joint Conferences in Artificial
Intelligence (IJCAI-11), Barcelona, Spain, 2011, pp. 294–300.

[11] J. Yu and D. Rus, “Pebble motion on graphs with rotations: Efficient feasibility
tests and planning algorithms,” in Algorithmic foundations of robotics XI,
Springer, 2015, pp. 729–746.

[12] D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble motion on
graphs, the diameter of permutation groups, and applications,” in 25th Annual
Symposium onFoundations of Computer Science, 1984., 1984, pp. 241–250.

[13] J. Yu, “Average case constant factor time and distance optimal multi-robot path
planning in well-connected environments,” Autonomous Robots, vol. 44, no. 3,
pp. 469–483, 2020.

[14] Shuai D. Han, Edgar J. Rodriguez, and Jingjin Yu, “Sear: A polynomial- time
multi-robot path planning algorithm with expected constant-factor optimality
guarantee.,” in 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2018, Madrid, Spain, October 1-5, 2018, IEEE, 2018.

[15] R. Chinta, S. D. Han, and J. Yu, “Coordinating the motion of labeled discs
with optimality guarantees under extreme density,” in The 13th International
Workshop on the Algorithmic Foundations of Robotics, 2018.

[16] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh
optimization,” in Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, 1993, pp. 19–26.

[17] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized path
planning for multiple robots: Optimal decoupling into sequential plans,” in
Robotics: Sciences and Systems, Jun. 2009, pp. 2–3.

[18] J. Yu and S. M. LaValle, “Optimal multi-robot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on Robotics,
vol. 32, no. 5, pp. 1163–1177, 2016.

[19] J. Li, W. R. Ruml, and S. Koenig, “Eecbs: A bounded-suboptimal search for
multi-agent path finding,” Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 12 353–12 362, 2021.

[20] G. Gange, D. D. Harabor, and P. J. Stuckey, “Lazy cbs: Implicit conflict-based
search using lazy clause generation,” in ICAPS, 2019, pp. 155–162.

[21] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From
classical to evolutionary approaches and applications,” IEEE Transactions on
Evolutionary Computation, vol. 22, no. 2, pp. 276–295, 2017.

[22] M. Laurent, “Sums of squares, moment matrices and optimization over poly-
nomials,” in Emerging applications of algebraic geometry, Springer, 2009,
pp. 157–270.

[23] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo, “Tetrahedral
meshing in the wild,” ACM Trans. Graph., vol. 37, no. 4, pp. 1–14, Jul. 2018.

[24] X.-M. Fu, Y. Liu, and B. Guo, “Computing locally injective mappings by
advanced mips,” ACM Trans. Graph., vol. 34, no. 4, Jul. 2015.

[25] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev, “Topology preserving
edge contraction,” Publ. Inst. Math. (Beograd) (N.S, vol. 66, pp. 23–45, 1998.

[26] D. Defays, “An efficient algorithm for a complete link method,” The Computer
Journal, vol. 20, no. 4, pp. 364–366, 1977.

[27] A. Andreychuk, K. Yakovlev, D. Atzmon, and R. Stern, “Multi-agent pathfind-
ing with continuous time,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19, International Joint Con-
ferences on Artificial Intelligence Organization, Jul. 2019, pp. 39–45.


	Introduction
	Related Work
	Problem Statement
	Overview
	Graph Embedding and Mesh Discretization
	Condition 1: Planner Embedding
	Condition 2: Collision-Free Cyclic Moves
	Condition 3: Collision-Free Vacant Moves

	Mesh Optimization
	Metric Function
	Greedy Maximization of Metric
	Local- and Global-Optimization Operators

	 Discrete MPP on Loop Graphs
	Discrete MPP Feasibility
	Parallel Robot Moves
	Scheduling Robot Swaps between Sub-Graphs

	Results and Analysis
	Conclusion and Limitations

