
Low-poly Mesh Generation for Building Models
Xifeng Gao

Lightspeed & Quantum Studios,
Tencent America
Seattle, WA, USA

xifgao@tencent.com

Kui Wu
Lightspeed & Quantum Studios,

Tencent America
Los Angeles, CA, USA
kwwu@tencent.com

Zherong Pan
Lightspeed & Quantum Studios,

Tencent America
Seattle, WA, USA

zrpan@tencent.com

Figure 1: A gallery of high-poly meshes and their corresponding low-poly counterparts generated using our method.

ABSTRACT
As a common practice, game modelers manually craft low-poly
meshes for given 3D building models in order to achieve the ideal
balance between the small element count and the visual similarity.
This can take hours and involve tedious trial and error. We propose
a novel and simple algorithm to automate this process by convert-
ing high-poly 3D building models into both simple and visually
preserving low-poly meshes. Our algorithm has three stages: First,
a watertight, self-collision-free visual hull is generated via Boolean
intersecting 3D extrusions of input’s silhouettes; We then carve out
notable but redundant structures from the visual hull via Boolean
subtracting 3D primitives derived from parts of the input; Finally,
we generate a progressively simplified low-poly mesh sequence
from the carved mesh and extract the Pareto front for users to
select the desired output. Each stage of our approach is guided by
visual metrics, aiming to preserve the visual similarity to the input.
We have tested our method on a dataset containing 100 building
models with different styles, most of which are used in popular
digital games. We highlight the superior robustness and quality by
comparing with state-of-the-art competing techniques. Executable
program for this paper is at lowpoly-modeling.github.io.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9337-9/22/08. . . $15.00
https://doi.org/10.1145/3528233.3530716

CCS CONCEPTS
• Computing methodologies→Mesh geometry models.

KEYWORDS
mesh simplification, low-poly mesh, building model
ACM Reference Format:
Xifeng Gao, Kui Wu, and Zherong Pan. 2022. Low-poly Mesh Generation
for Building Models. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Proceedings (SIGGRAPH ’22 Conference
Proceedings), August 7–11, 2022, Vancouver, BC, Canada. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3528233.3530716

1 INTRODUCTION
Building models are essential assets that make up the metaverse
for the virtual world. Unfortunately, building modelers only fo-
cus on polishing visual appearances without maintaining a clean
mesh representation. Typically, a highly detailed building model
can have complicated topology and geometry properties, i.e., dis-
connected components, open boundaries, non-manifold edges, and
self-intersections (see Fig. 1 and Table 1). On the other hand, it can
be expensive to render detailed building models for real-time appli-
cations, and the level-of-details (LOD) technique has been widely
used to maximize the run-time performance. Instead of sticking to
a highly detailed (high-poly) 3D model, the LOD renderer uses a
low-element-count (low-poly) mesh at the distant view. As a result,
the low-poly mesh must have a reasonably small element count
while preserving the appearance of the high-poly model as much
as possible.

Many prior works are proposed to create low-poly meshes from
input high-poly models, such as mesh simplification [Khan et al.

lowpoly-modeling.github.io
https://doi.org/10.1145/3528233.3530716
https://doi.org/10.1145/3528233.3530716

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xifeng Gao, Kui Wu, and Zherong Pan

2020], simple mesh reconstruction from point clouds [Nan and
Wonka 2017], high-poly mesh simplification to remove small-scale
details [Calderon and Boubekeur 2017; Mehra et al. 2009], and mesh
optimization and re-meshing techniques by commercial software
[AB 2021; Nerurkar 2021; Sweeney 2021]. However, these methods
are less suitable for the rising applications at the low-end platforms,
e.g., mobile devices. Indeed, even the finest building mesh on mobile
platforms has only thousands of triangles, which is already consid-
ered low-poly by traditional LOD generation approaches. In terms
of the coarsest level, these models typically have no more than
a few hundred elements. To generate such “extremely” low-poly
meshes, none of the above mentioned methods perform well for
our tested building dataset (Fig. 1). Sadly, the standard process for
creating this type of low-poly meshes is still labor-intensive and
involves tedious trial and error in the current game industry. Thus,
we conclude that generating extremely low-poly meshes for build-
ing models used by mobile applications is a challenging problem,
for which effective and robust solutions are still elusive.

In this work, we propose a robust method for effectively generat-
ing extremely low-polymeshes that can be used as the coarsest level.
We first define a visual metric to quantitatively measure the visual
difference between the low- and the high-poly meshes. We then
design our method, consisting of three stages: First, we construct
a coarse visual hull by intersecting a small set of 3D primitives
selected greedily to minimize our visual metric. These primitives
are generated by computing and analyzing silhouettes of the input
from a number of view directions. The result of the first stage is
denoted as visual hull, which captures the input’s silhouette but
can miss important concave features. Our second stage generates a
carved mesh from the visual hull by subtracting redundant volumes
to recover concave features. We again deploy a greedy strategy
to select the craving primitives by minimizing the visual metrics
between the carved mesh and the input. Since all the 3D shapes
involved in the Boolean operations are watertight and we employ
exact arithmetics for computation, the generated carved mesh is
guaranteed to be watertight and self-intersection-free. Our final
stage derives the low-poly mesh by progressively applying edge-
collapse and edge-flip to the carved mesh.

We observe that high-quality, low-poly meshes occur indefi-
nitely among the mesh sequence. Therefore, we keep a history
of the simplified meshes and order them into a Pareto set [Kung
et al. 1975] with two objectives: the number of triangles and the
visual closeness to the input. A game modeler can then explore and
pick an ideal mesh as the final result. Our method is empirically
compared with state-of-the-art rival techniques in terms of both
the effectiveness and efficacy, where we use a dataset containing
100 building models with varying styles that are manually crafted
by artists and used by real-world games. Our method exhibits a
significant improvement in terms of achieving a low element count
and a high visual similarity at the same time. Visual results of all
the models can be found in the attached video.

2 RELATEDWORK
We first review prominent methods related to low-poly mesh gen-
eration. We then briefly survey representative works on visual hull,
on which our method is built.

Input QEM Simplygon Ours

Figure 2: For a manifold model with 39620 triangles
and 1894 disconnected components, the overly aggressive
remeshing operators by QEM [Garland and Heckbert 1997]
or Simplygon [AB 2021] lead to salient artifacts with 1000
triangles, while our method faithfully represents the over-
all structure with 128 triangles.

Low-poly Meshing: The first and foremost large group of meth-
ods directly re-mesh the raw inputs through progressively error-
guided element-removal operations, such as edge collapse [Garland
and Heckbert 1997; Lescoat et al. 2020; Salinas et al. 2015; Sander
et al. 2000], or mesh segmentation into patches that can later be re-
triangulated into simplified ones [Cohen-Steiner et al. 2004; Li and
Nan 2021]. Khan et al. [2020] provides an inclusive survey on this
type of methods. These re-meshing approaches perform well when
handling medium- to high-poly meshes with benign topology and
geometry. However, they are not suitable for generating extremely
coarse low-poly meshes and overly aggressive direct re-meshing
can lead to salient, detrimental visual artifacts. Fig. 2 illustrates
meshes with these artifacts generated using edge-collapse guided
by the QEM [Cignoni et al. 2008; Garland and Heckbert 1997] and
the mesh reduction module in the commercial software - Simplygon
[AB 2021].

Another type of approaches [Calderon and Boubekeur 2017;
Mehra et al. 2009] voxelizes the raw inputs and then applies feature-
guided re-triangulation to generate low-poly outputs by assuming
the input meshes are watertight, i.e., come with a unique definition
of inside/outside. However, building models in most real-time appli-
cations are often not watertight due to holes and self-intersecting
elements. By incorporating various rules and assumptions, Verdie
et al. [2015] propose to generate LODs for multi-view stereo re-
constructed urban scenes, while our goal is to create extremely
low-poly meshes for buildings designed by artists.

Following the idea of fitting simple primitives to point clouds
and obtaining polyhedral meshes through combinatorial selection
of elements intersected from the primitives, a series of works on
3D reconstruction have been proposed [Bauchet and Lafarge 2020;
Chauve et al. 2010; Fang and Lafarge 2020; Fang et al. 2018; Kelly
et al. 2017; Nan and Wonka 2017]. Among them, [Bauchet and
Lafarge 2020; Nan and Wonka 2017] stand out as ways to gener-
ate low-poly meshes. However, these methods require properly
detected plane primitives to form enough polygon candidates for
the final output, which is a challenging task by itself for complex
models. The learning method described in [Chen et al. 2020] demon-
strates low-poly results with promising quality reconstructed from
images. However, to adapt it for building models, it requires not
only a large building dataset for the network training, but voxelized
meshes with well-defined in/out segmentation, while the data we
aim to handle often have large holes and nested structures that do
not permit a clear in/out definition. A similar idea is adopted for
shape abstraction [Huang et al. 2014; Mehra et al. 2009; Yang and

Low-poly Mesh Generation for Building Models SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Input Visual hull Carved mesh Output low-poly mesh

Figure 3: We illustrate the three major steps of our method. Given a topologically and geometrically dirty input mesh, we
first construct a visual hull using a small set of greedily selected primitives. With such a small set, some concave features are
erroneously flattened. We then correct them by carving concave features using another set of primitives, deriving the carved
mesh. We finally simplify the carved mesh to a set of final output low-poly mesh candidates.

Chen 2021], re-interpreting shapes using primitives such as boxes,
spheres, curves, etc. But these methods are not directly targeted at
low-poly mesh generation.

We are also aware of a recent trend in differentiable rendering
[Laine et al. 2020] leading to appearance-driven 3D reconstruction,
shape deformation, and re-meshingmethods [Hasselgren et al. 2021;
Luan et al. 2021; Nicolet et al. 2021]. These methods can nicely ap-
proximate the original shape implied in the given images. However,
due to the poor initial guess and the discontinuity of the inverse-
rendering-based optimization when mesh connectivity changes,
they cannot be directly employed for generating low-poly models.

Visual Hull: An object has a unique and well-defined visual hull,
which is the maximal shape with the same silhouette as the object
from any view directions [Laurentini 1994; Szeliski 1993]. Visual
hulls were originally used for 3D reconstruction from images or
videos [Matusik et al. 2001, 2000; Mikhnevich and Hebert 2011;
Svetlana Lazebnik 2007] by considering the image boundaries as
silhouettes. As the main advantage, visual hulls are inherently wa-
tertight, topologically simple meshes from arbitrarily dirty inputs.
For faithful reconstructions, users typically prefer more views to
capture as much detail as possible. Theoretically, an infinite number
of views are needed for obtaining the exact visual hull from a gen-
eral 3D model. For example, in order to construct the exact visual
hull using viewpoints inside the convex hull, Laurentini [1997] con-
structed an algorithm using O(𝑛5) silhouettes. Visual hull also has
its own disadvantage, e.g., concave features cannot be represented
well. To tackle this issue, Rivers et al. [2010] proposed to construct
the visual hull part-by-part via Boolean operations. Our method
borrows all these ideas but adapt them to the problem of mesh
simplification by carefully selecting and limiting the number of
views.

3 METHOD
In this section, we provide our problem statement, define the visual
metric to measure the quality of our low-poly meshes, give an
pipeline overview, and explain each step in detail.

Problem Statement: Given a non-orientable, non-watertight, high-
poly 3D building model𝑀i, our goal is to generate a low-poly mesh
𝑀o that satisfies three qualitative requirements. To be used as the
coarsest mesh in a LOD hierarchy, the visual appearance of 𝑀o
should resemble that of𝑀i from any faraway view points. To maxi-
mize the rendering efficacy, the number of geometric elements (e.g.,
faces) should be as few as possible. We further require this number
of elements to be user-controllable. Finally,𝑀o needs to be water-
tight to enable the automatic downstream mesh editing operations.

Input Exact visual hull Our visual hull

Figure 4: Given an input mesh, the exact visual hull is ap-
proximated by intersecting silhouettes from 13 view direc-
tions, leading to 277k faces. In comparison, our visual hull
only has 368 faces, obtained by 3 primitives.

Visual Metric: We use an image-space metric to measure the
visual difference between 𝑀i and 𝑀o. Given a view direction 𝑑 ,
we can render a mesh into the image space via perspective pro-
jection, which is denoted as the operator 𝑅𝑛 . 𝑅𝑛 (𝑀,𝑑) renders the
three Cartesian components of the surface normal vector into a
framebuffer, and we define the visual difference as the averaged
pixel-wise distance:

𝑑𝑛 (𝑀i, 𝑀o, 𝑑) = ∥𝑅𝑛 (𝑀i, 𝑑) − 𝑅𝑛 (𝑀o, 𝑑)∥/𝑁, (1)

where 𝑁 is the number of pixels. We further define our visual
appearance metric as the marginalized visual difference over all
directions:

𝜏𝑛 (𝑀i, 𝑀o) ≜
∫
𝑆2
𝑑𝑛 (𝑀i, 𝑀o, 𝑑 (𝑠))𝑑𝑠,

where 𝑆 is a sphere enclosing𝑀i and𝑀o. 𝜏𝑛 can be approximated
via Monte-Carlo sampling in practice.

Method Overview: As illustrated in Fig. 3, we tackle our problem
by first computing a visual hull𝑀v from𝑀i, which is both geomet-
rically enclosing𝑀i and silhouette preserving. Instead of directly
mesh-simplifying𝑀i itself,𝑀v is benign to existing remeshing op-
erators, geometrically a tighter bound of 𝑀i than its convex hull,
and preserves𝑀i’s silhouette which is important for visual appear-
ance (Section 3.1). Then, we subtract redundant blocks from𝑀v to
obtain the carved mesh 𝑀c, enriching its visual appearance with
notable concave features (Section 3.2). Finally, we mesh-simplify
𝑀c to generate the low-poly output𝑀o (Section 3.3).

3.1 Visual Hull Generation
This stage aims to generate a topologically simple and geometrically
clean visual hull while capturing the visual appearance of salient
structures. However, as shown in Fig. 4, generating an exact visual
hull would lead to too many small features and details. Instead, we
propose a novel procedure to generate a simplified visual hull as
described in Algorithm 1. Given𝑀i, we first generate one silhouette

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xifeng Gao, Kui Wu, and Zherong Pan

for each of the top 𝑘 view directions. As our first point of departure
from the standard visual hull construction method (e.g., [Matusik
et al. 2001]), we then perform a self-intersection-free simplification
in the 2D space for each silhouette. At this point, a standard visual
hull can be constructed through the intersection of extruded silhou-
ettes. Our second point of departure lies in a further decomposition
of silhouette into connected 2D loops, and we denote an extruded
loop as a primitive. Instead of considering a set of extruded silhou-
ettes, a larger set of primitives allows finer complexity control of
the visual hull. Specifically, we initialize𝑀v as the bounding box of
𝑀i and use a greedy algorithm to iteratively intersect𝑀v with the
next-best primitive 𝑃 through Boolean operations. Details of each
step are described as follows.

Algorithm 1 Visual Hull Construction
Input:𝑀i, 𝑁 , 𝜖𝜏
Output:𝑀v

1: P ← ∅
2: Extracting a set of view directions and pick top 𝑘 as D
3: for each 𝑑 ∈ D do
4: Generate silhouette 𝑆 along 𝑑
5: Simplify silhouette 𝑆
6: for each connected loop 𝐿 ∈ 𝑆 do
7: P ← P ∪ {Extrude(𝐿) }
8: 𝑛 ← 0, 𝑀v ← BBox(𝑀i), 𝜏 ← 𝜏𝑠 (𝑀v, 𝑀i)
9: while 𝑛 < 𝑁 do ⊲ Maximal primitive count
10: Δ𝜏best ← 0, 𝑃best ← ∅
11: for each 𝑃 ∈ P do
12: 𝜏𝑃 ← 𝜏𝑠 (Intersect(𝑀v, 𝑃), 𝑀i)
13: Δ𝜏𝑃 ← 𝜏 − 𝜏𝑃
14: if Δ𝜏𝑃 > Δ𝜏best then
15: Δ𝜏best ← Δ𝜏𝑃 , 𝑝best ← 𝑃

16: if Δ𝜏best ≥ 𝜖𝜏 then ⊲ Minimal primitive improvement
17: 𝑀v ← Intersect(𝑀v, 𝑃best) , P ← P/{𝑃best }
18: 𝑛 ← 𝑛 + 1, 𝜏 ← 𝜏 − Δ𝜏
19: else Break

Generating View Directions (Line 2): For mesh simplicity, a lim-
ited number of view directions can be used to generate silhouettes
and corresponding primitives, so the quality of the view directions
would significantly impact the quality of𝑀v. For instance, the ideal
view directions for a cube should be parallel to the cube faces, along
which a Boolean intersection with two extruded silhouettes would
carve out the exact cube. Based on this observation, we introduce
the following four-stage strategy to extract the potential view di-
rections given 𝑀i. First, we group triangles from each connected
component into regions, where two triangles are merged if their di-
hedral angle is close to 𝜋 up to a threshold 𝛼 . Next, we fit a plane for
each region using the L2 metric [Cohen-Steiner et al. 2004], result-
ing in a set of fitting planes K . Third, for each pair of planes in K ,
the cross product of their normal directions would result a direction
parallel to both planes, resulting in the view direction set D. We
consider two directions 𝑑𝑖 and 𝑑 𝑗 duplicate if | cos(𝑑𝑖 , 𝑑 𝑗) | ≥ cos 𝛽 ,
where 𝛽 is a hyper-parameter set to a small value. Finally, we asso-
ciate a weight with each view direction in D, which equals to the
sum of areas of the two planar regions. Empirically, we find that
a higher weight indicates more surface regions can be captured
by the silhouette. Therefore, we sort the view directions by their
weights and pick the top 𝑘 directions as the final direction set.

Computing Silhouettes (Line 4): To compute a silhouette from a
view direction 𝑑 , we project all𝑀i’s faces onto the plane perpendic-
ular to𝑑 . 2D Boolean union is then used to obtain the corresponding
silhouette shape, where the vertex coordinates are represented by
integers for fast and robust computation [Vatti 1992]. The generated
silhouette shape is guaranteed to have no self-intersections.

Simplifying Silhouettes (Line 5): Even with a small number of
view directions, their generated visual hull can still contain too
many small-scale details due to their complex silhouettes. To tackle
this problem, we bring each silhouette through a 2D simplification
and a shape-size filtering process for further complexity reduction.
Our 2D simplification uses a triangulation simplification approach
[Dyken et al. 2009] implemented under rational number arithmetics,
which first generates a triangulation conforming to the set of silhou-
ette loops, and then simultaneously simplifies the loops through
triangle mesh simplification in which topology consistency, flip-
free, and self-intersection free can be guaranteed. The simplification
stops on a squared distance criterion 𝜖2

𝑑
. After simplification, we

compute the area of each loop of the silhouette and directly discard
it from the silhouette if its area is smaller than 𝜖𝑎 .

∩∩=

Silhouette ccw-loop First cw-loop Second cw-loop

Figure 5: Example of silhouette decomposition: Given a sil-
houette (leftmost), which contains five ccw loops and two cw
loops, we merge all the ccw loops into one outer loop and
convert each cw loop into a separate loop by subtracting it
from the 2D bounding box. Note this conversion is lossless
and order-independent, aka., the input silhouette can be re-
covered by Boolean intersecting all the loops in any order.

Generating Primitives (Line 6): To derive the primitive set P
from the silhouette, we extract all boundary loops from the sil-
houette, in which the counterclockwise (ccw) loops are marked as
solid, and clockwise (cw) loops are marked as hollow. As shown
in Fig. 5, all solid loops are merged into one ccw-loop, while each
hollow loop 𝐿 is extracted as a standalone cw-loop by comput-
ing Subtract(BBox, 𝐿), where BBox is the 2D bounding box of the
silhouette and Subtract(•, •) is the Boolean subtraction operator.
Finally, each loop is extruded along the view direction to derive a set
of 3D primitives. Fig. 6 shows an example of primitives generated
from the input mesh.

Figure 6: Example of primitives (right) generated from the
input mesh and their loops (left).

Low-poly Mesh Generation for Building Models SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Selecting the Next-Best Primitive (Line 9): Our visual hull is con-
structed by Boolean intersecting greedily selected 𝑃best ∈ P. To
select the next 𝑃best, we traverse all the primitives 𝑃 ∈ P and create
a tentative Intersect(𝑀v, 𝑃), where Intersect(•, •) is the Boolean
intersection operator. By measuring the visual difference between
the tentative mesh and𝑀i, we pick 𝑃best as the primitive leading to
a most decreased the visual difference. Note that we use a slightly
different version of visual difference from 𝑑𝑛 for selecting primi-
tives. This is because Algorithm 1 is focused on generating similar
silhouettes, and we do not care about the geometry of the interior.
Indeed, the mesh is projected onto the 2D plane, removing all the
geometric features inside the silhouette. Therefore, we propose
another operator 𝑅𝑠 (𝑀,𝑑) which renders the mesh𝑀 into a sten-
cil buffer, binary masking the occluded pixels and discarding the
normal information. Correspondingly, we define:

𝑑𝑠 (𝑀i, 𝑀o, 𝑑) ≜ ∥𝑅𝑠 (𝑀i, 𝑑) − 𝑅𝑠 (𝑀o, 𝑑)∥/𝑁, (2)

𝜏𝑠 (𝑀i, 𝑀o) ≜
∫
𝑆2
𝑑𝑠 (𝑀i, 𝑀o, 𝑑 (𝑠))𝑑𝑠, (3)

as the visual silhouette difference and visual silhouette metric, re-
spectively, which are used in Algorithm 1. Note that the output
of 𝑅𝑠 (𝑀,𝑑) is binary, so computing 𝑑𝑠 amounts to performing a
pixel-wise XOR operator.

Stopping Criteria: There are two stopping criteria for the visual
hull construction. First, if the improvement of the visual difference
Δ𝜏 is smaller than the user-specified threshold 𝜖𝜏 , meaning there is
barely any room for further improvement, the construction stops.
Second, we terminate the construction when the number of selected
primitives, 𝑛, reaches the user-specified upper limit 𝑁 . Note that
there is the parameter 𝑘 determining the number of view directions
in D, which further controls the total number of primitives in P.
After large-scale experiments, however, we find the best strategy
is to use a sufficiently large 𝑘 , leaving a sufficiently large search
space for the greedy primitive selection algorithm to optimize𝑀v.

Algorithm 2 Carved Mesh Generation
Input:𝑀i, 𝑀v, 𝑁 , 𝜖𝜏
Output:𝑀c

1: P ← ∅
2: Pick top 𝑘 plane from K
3: for each 𝐾 ∈ K do
4: Cut𝑀i and keep the positive part𝑀𝐾+

i
5: Generate the silhouette of𝑀𝐾+

i on 𝐾 , denoted as 𝑆
6: Simplify silhouette 𝑆
7: Compute𝑀i’s extended 2D bounding square 𝐵 on 𝐾
8: P ← P ∪ {Extrude+

𝐾
(Subtract(𝐵, 𝑆)) }

9: 𝑛 ← 0, 𝑀c ← 𝑀v, 𝜏 ← 𝜏𝑛 (𝑀c, 𝑀i)
10: while 𝑛 < 𝑁 do ⊲ Maximal primitive count
11: Δ𝜏best ← 0, 𝑃best ← ∅
12: for each 𝑃 ∈ P do
13: 𝜏𝑃 ← 𝜏𝑛 (Subtract(𝑀c, 𝑃), 𝑀i)
14: Δ𝜏𝑃 ← 𝜏 − 𝜏𝑃
15: if Δ𝜏𝑃 > Δ𝜏best then
16: Δ𝜏best ← Δ𝜏𝑃 , 𝑃best ← 𝑃

17: if Δ𝜏best ≥ 𝜖𝜏 then ⊲ Minimal primitive improvement
18: 𝑀c ← Subtract(𝑀c, 𝑃best) , P ← P/{𝑃best }
19: 𝑛 ← 𝑛 + 1, 𝜏 ← 𝜏 − Δ𝜏
20: else Break

3.2 Carved Mesh Generation
Our visual hull (Fig. 7e) inherits the limitation of only capturing the
silhouette while ignoring other features. One such salient feature
is the concave mesh parts as illustrated in (Fig. 7a). To overcome
this limitation, we propose to refine 𝑀v into 𝑀c by carving out
redundant volume blocks and further reducing the visual differ-
ence between𝑀c and𝑀i. As described in Algorithm 2, we take the
following steps. First, we consider the top-𝑘 planes in the plane
set K generated in Section 3.1 that are sorted by their correspond-
ing region areas. Each plane 𝐾 ∈ K is used to slice 𝑀i into two
parts, and we only keep the one on the positive side, denoted as
𝑀𝐾+
i (Fig. 7b). Note that, the normal and location of a plane is pre-

determined during the plane fitting, and the positive part is chosen
to avoid unnecessary carving for the bottom of the buildings. Next,
we project𝑀𝐾+

i onto 𝐾 to obtain its silhouette 𝑆 . We also compute
the enlarged bounding square 𝐵 of 𝑆 on 𝐾 (Fig. 7c). Finally, we
derive the carving primitive 𝑃 as follows:

𝑃 ≜ Extrude+𝐾 (Subtract(𝐵, 𝑆)),
where Extrude+

𝐾
(•) is the extrusion operator along the positive side

of the plane 𝐾 (see Fig. 7b-d for an illustration). Note that we set
𝐵 large enough to enclose the entire𝑀v’s silhouette on 𝐾 so that
the extruded primitive 𝑃 is guaranteed to include the entire volume
of 𝑀v, which is outside 𝑀i. Similar to the visual hull generation,
we further simplify and regularize 𝑆 through 2D simplification and
shape size filtering. Fig. 8 shows an example of carving the visual
hull to enrich the concave details.

(a) (b) (c) (d) (e) (f)

Figure 7: Example of mesh carving: (a) the input mesh 𝑀i;
(b) the plane 𝐾 (in cyan) extracted from 𝑀i and cut the sub-
mesh 𝑀𝐾+

i from the positive side of 𝐾 ; (c) the enlarged 2D
bounding square on the plane 𝐾 minus 𝑀𝐾+

i ’s silhouette 𝑆
on 𝐾 ; (d) the primitive 𝑃 , which is the extrusion of (c); (e) the
visual hull 𝑀v that does not have the concave part of 𝑀𝐾+

i ;
(f) the carved mesh𝑀c after subtracting 𝑃 from𝑀v.

Selecting the Next-Best Carving Primitive (Line 10): The overall
structure of Algorithm 2 is very similar to that of Algorithm 1. Our
carved mesh𝑀c is constructed by greedily selecting 𝑃best ∈ P as
the candidate carving primitive. To identify 𝑃best, we traverse all
the primitives 𝑃 ∈ P and create a tentative Subtract(𝑀c, 𝑃). By
measuring the visual difference between the tentative mesh and
𝑀i, we pick 𝑃best as the primitive that can best decrease the visual
difference. The same stopping criteria to the visual hull construction
are used to terminate the carving process. It is worth noting that,
since all the 3D primitives for constructing the visual hull and the
redundant volumes are watertight, the generated carved mesh is
guaranteed to be watertight and self-intersection-free.

3.3 Low-Poly Mesh Generation
After the first two steps, the carved mesh𝑀c can largely preserve
the visual appearance of the input but may have more triangles

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xifeng Gao, Kui Wu, and Zherong Pan

𝑀0
c (𝑀v) 𝑀1

c 𝑀2
c 𝑀3

c
Subtract Subtract Subtract

𝑃0 𝑃1 𝑃2

Figure 8: Example of carving the mesh to enrich the details.

than users desire. Our last step is to simplify 𝑀c to obtain a low-
poly mesh while maintaining a low visual difference from the in-
put. Specifically, we first progressively re-mesh𝑀c through edge-
collapse and edge-flip operators (see details in Section 4) until no
more triangles can be removed, and store only the meshes with their
numbers of triangles less than 𝑇 , where 𝑇 is the largest element
count users can tolerate. We then employ the Pareto efficiency con-
cept to rank these meshes with two metrics: the number of faces
and visual differences 𝜏𝑛 , and keep those that are in the Pareto
set. Since picking𝑀o from this mesh set often involves subjective
factors in practice, as illustrated in Fig. 9, we finally visualize the
meshes in the Pareto set and have a game modeler manually pick
𝑀o as the output. If it is desired, we can also automatically export
a mesh from the Pareto set right before an obvious increase of 𝜏𝑛 .

246 196 146 96 46
number of faces

0.6

0.7

0.8

0.9

1.0

ex
p(

-τ
n)

(228, 0.98) (74, 0.95) (20, 0.92)

Figure 9: By measuring the number of faces and 𝑒−𝜏𝑛 , the
generated Pareto set contains 55 meshes out of 123 in the
original sequence.

4 IMPLEMENTATION DETAILS
We implemented our algorithm in C++, using GLSL for metric com-
putation, Eigen for linear algebra routines, CGAL [Brönnimann et al.
2017] for rational number computations, the Clipper library [Vatti
1992] for silhouette computations, mesh arrangement [Zhou et al.
2016] encapsulated in libigl [Jacobson et al. 2018] for 3D exact
Boolean operations.

Computing Visual Metrics: We compute the visual difference be-
tween any two meshes using GLSL. Given a view direction, we set
the camera to be 3𝑙-away from the meshes, where 𝑙 is the diagonal
length of BBox(𝑀i

⋃
𝑀o). We render each mesh to a 128×128 frame-

buffer and compute 𝑑𝑠 and 𝑑𝑛 using Equation 2 and Equation 1,
respectively. 𝜏𝑛,𝑠 are evaluated by repeating the process for 𝐶 uni-
formly sampled view directions on 𝑆2. Since we target at building
models that are assumed to be oriented upright, only the upper half
of 𝑆2 is used for sampling. We have experimented with the number
of view directions and its influence on corresponding visual metrics.
The metric values converge when 𝐶 ≥ 250. To be conservative, we
set 𝐶 = 103 for all experiments below.

Input 𝜖𝑑 = 0.1% 𝜖𝑑 = 1% 𝜖𝑑 = 3% 𝜖𝑑 = 5% 𝜖𝑑 = 10%

(1584, 0) (292, 0.064) (292, 0.069) (292, 0.076) (292, 0.144) (176, 0.344)

Figure 10: A larger 𝜖𝑑 leads to a more simplified silhouette
(second row) and therefore a final mesh (first row) with less
details preserved. (•, •) denotes (face number,𝜏𝑛).

Re-meshing Operators: In our third step, we execute an edge-
collapse and an edge-flip iteratively while maintaining𝑀c’s topol-
ogy. For edge-collapse, we employ QEM [Garland and Heckbert
1997] to rank all the edges and add a virtual perpendicular plane
with a small weight for each edge to fight against coplanar degener-
acy, which is a common numerical instability in QEM. We perform
an edge-flip if any pair of adjacent triangles has an obtuse dihedral
angle larger than 𝜃𝜋 or if the exterior dihedral angle is smaller than
𝜃2𝜋 , where 𝜃𝜋 (resp. 𝜃2𝜋) is a threshold close to 𝜋 (resp. 2𝜋).

Input (0.1, 0.064) (0.05, 0.043) (0.01, 0.031) (0.005, 0.024) (0.0005, 0.023)

Figure 11: A smaller stopping criteria of 𝜖𝜏 leads to 𝑀c with
richer details. (•, •) denotes (𝜖𝜏 ,𝜏𝑛).

Hyper Parameters: We use the following default parameter set-
tings: 𝛼 = 175◦, which controls the number of regions generated
from 𝑀i, 𝛽 = 1◦, which is the threshold for two directions to be
considered duplicate, 𝑘 = 50 for choosing the view direction set
(Section 3.1) and the slicing plane set (Section 3.2), 𝜃𝜋 = 175◦ and
𝜃2𝜋 = 5◦ for edge-flip (Section 3.3). 𝜖𝑑 specifies the maximum
distance for simplifying of silhouettes. It plays an important role
for generating the final mesh. Through extensive experiments, we
found that 𝜖𝑑 = 1% of the largest diagonal length of all silhouettes’
bounding boxes achieves a good balance in terms of simplicity and
visual appearance preservation. Fig. 10 shows an example of the
different final meshes with one simplified silhouette corresponding
to varying 𝜖𝑑 . The filtering process would discard all the loops
with the area size less than 1% of the maximal surface area of the
bounding squares of all the silhouettes. We choose 𝑁 = 20 to allow
a sufficiently large number of primitives. While 𝜖𝜏 can greatly affect
the complexity of the resulting meshes (as illustrated in Fig. 11), it
is not intuitive for end-users to fine-tune and we empirically set
𝜖𝜏 = 1 × 10−3 by default. In practice, we expose only a single pa-
rameter to users, the maximal number of triangles 𝑇 of the output
low-poly mesh. For all of our experiments, we set 𝑇 = 600.

Low-poly Mesh Generation for Building Models SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

5 EXPERIMENT
We run all our experiments on a workstation with a 32-cores Intel
processor clocked at 3.5 Ghz and 64 Gb of memory. We use OpenMP
to parallelize the silhouette related computations, the candidate
primitive selection in Section 3.1, as well as 3.2. We employ 𝜏𝑛 and
light field distance (LFD, [Chen et al. 2003]) to measure the visual
preservation of the low-poly models. Note that, conventionally used
metrics, e.g. Hausdorff distance, may not fit well for the render-
ing applications, since they are designed to measure the geometry
preservation, instead of visual preservation, of re-meshing opera-
tors. However, our input building models often involve geometries
inside the building that contribute little to the visual perception.

Table 1: Statistics for input models shown in Fig. 2, 3, 6, 12,
and 13, including number of vertices 𝑁𝑉 , faces 𝑁𝐹 , genus 𝑁𝐺 ,
intersected face pairs 𝑁𝑆 , components 𝑁𝐶 , and holes 𝑁𝐻 and
manifoldness𝑀𝑎𝑛 . Note that genus and number of holes are
not well-defined for non-manifold meshes.

Models 𝑁𝑉 𝑁𝐹 𝑀𝑎𝑛 𝑁𝐺 𝑁𝑆 𝑁𝐶 𝑁𝐻

32 (Fig. 2) 27k 40k Yes 1 42k 1894 2632
16 (Fig. 3) 4k 6k No - 5k 151 -
20 (Fig. 6) 4k 6k Yes 4 6k 234 285
50 (Fig. 10) 1k 3k Yes 0 2k 20 0
24 (Fig. 11) 2k 3k Yes 1 4k 112 147
17 (Fig. 12 top) 3k 4k No - 5k 150 -
95 (Fig. 12 bottom) 13k 30k Yes 891 5k 34 0
55 (Fig. 13top) 6k 10k Yes 1 18k 280 114
63 (Fig. 13 bottom) 6k 10k Yes 0 6k 99 135
43 (Fig. 14) 5k 10k Yes 3 14k 151 34

Dataset: We collect 100 building models with various styles com-
monly appear in today’s digital games (Fig. 1). The models in our
dataset have complex geometry and topology, where 39% (resp.
88%) are non-manifold (resp. non-watertight). Of these models, the
average number of triangles, intersecting face pairs, and discon-
nected components are 20k, 35.6k, and 685, respectively. For models
that are manifold, the average number of genus and holes are 136
and 640, respectively. Table 1 summarizes the statistics of the input
models that appear in Fig. 2, 3, 6, 12, and 13. The full statistics of the
dataset can be found in our supplementary file. Fig. 1 demonstrates
our results for the entire dataset. A short clip for each model can
be found in the the attached video, comparing our method with
state-of-the-art competing techniques.

Input Simplygon1 Simplygon2 oursS InstaLOD1 InstaLOD2 Ours

(4196, 0) (499, 0.099) (328, 0.110) (328, 0.097) (501, 0.246) (496, 0.237) (88, 0.114)

(29960, 0) (492, 0.140) (496, 0.127) (496, 0.066) (592, 0.04) (500, 0.209) (480, 0.067)

Figure 12: Comparison with commercial software. (•, •) de-
notes (𝑁𝐹 , 𝜏𝑛).

Comparisonwith Commercial Software: InstaLOD [Nerurkar 2021]
and Simplygon [AB 2021] are state-of-the-art commercial solutions

that can automatically generate simplified meshes and are popu-
larly used by game studios. We compare with results generated
by the various modules from InstaLOD and Simplygon, including
the InstaLOD optimization (InstaLOD1), the InstaLOD re-meshing
(InstaLOD2), the Simplygon reduction (Simplygon1), and the Sim-
plygon re-meshing (Simplygon2). Table 2 summarizes the statistics
in terms of the average and standard deviation of faces number,
𝜏𝑠 , 𝜏𝑛 , and the simplification rate. By default, we manually pick
a mesh from the Pareto front as our final result. For fairness, we
further extract from the Pareto front a mesh with the same number
of faces as one generated by Simplygon2 (OursS). We hightlight
our method against Simplygon2, because Simplygon2 performs the
best among the four modules provided by both InstaLOD and Sim-
plygon. Our approach generates results having smaller element
numbers and better visual appearance preservation. We highlight
this improvement in Fig. 12 for two sample models.

Input KSR PolyFit Blender SPRED Ours

(9668, 0) (7696, 0.167) (60, 0.584) (376, 0.551) (0, 1) (170, 0.147)

(9999, 0) (9506, 0.055) (196, 0.290) (1941,0.026) (204, 0.219) (158, 0.053)

Failed

Figure 13: Comparison with academia and open-source so-
lutions, where (•, •) denotes (face number,𝜏𝑛). Note that, in-
verted faces appears in the results of PolyFit even after re-
orientation use MeshLab [Cignoni et al. 2008].

Comparison with Academia Solutions: KSR [Bauchet and Lafarge
2020], PolyFit [Nan and Wonka 2017], SPRED [Salinas et al. 2015],
and the decimate modifier in Blender [Community 2022] are em-
ployed for comparison. To employ KSR and PolyFit for low-poly
meshing, we uniformly sample each 3D model into a point cloud
using the point cloud library (PCL, [Rusu and Cousins 2011]) by
setting 1M point samples as the upper bound and 1× 10−4 of the di-
agonal length of its bounding box as the sampling interval.We batch
process the dataset by KSR’s public binary program using parame-
ters 𝑛𝑚𝑖𝑛 = 50, 𝐾 = 2, and 𝜆 = 0.3, PolyFit’s CGAL implementation
with the default parameter settings, SPRED’s public program with
steps: load mesh→detect primitives→regularize primitive→filter
small proxies→recompute graph→edge collapse with the target
𝑁𝑉 = 300, and decimate modifier’s collapse option in Blender with
the target simplification ratio for each model corresponding to
𝑁𝐹 = 300. Because not enough primitives are found, KSR and Poly-
Fit fail to produce any results for 40 and 9 out of 100 input models,
respectively. SPRED crashes for 49 models. Blender processes all
inputs but cannot simplify the mesh further to achieve the target
𝑁𝐹 for many models. As shown in Table 2, our method produce
results having smaller 𝑁𝐴𝑣𝑔.

𝐹
but higher visual preservation than

those from KSR, SPRED, and Blender. Since PolyFit generates fewer
number of triangles on average, we summarize the results that are
successfully handled by PolyFit and extract our results (OursP) by
matching their face numbers. As illustrated in Table 2, with the
same number of faces, OursP (𝜏Avg.𝑛 = 0.0946) has a much better

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xifeng Gao, Kui Wu, and Zherong Pan

(10000, 0) (260934, 0.008) (380, 0.545) (2200, 0.118) #𝑉 = 313000 (366158, 0.223) (1289, 0.302) (199, 0.296) (96, 0.117)

Figure 14: Comparison with alternative pipelines (from left to right): the input, surface mesh repaired by [Diazzi and Attene
2021], mesh simplification [Cignoni et al. 2008] with and without topology preservation, point cloud by virtual-scanning the
input, mesh by poisson reconstruction, mesh simplification with and without topology preservation, and the result of our
method. (•, •) denotes (face number, 𝜏𝑛).

visual appearance preservation than PolyFit (𝜏Avg.𝑛 = 0.3576). Fig. 13
shows two sample models for visual comparison of these methods.

Comparison with Alternative Pipelines: While not being publicly
documented, two alternative pipelines could be employed for gen-
erating the desired low-poly meshes: 1) applying mesh repairing
first, e.g. [Diazzi and Attene 2021; Huang et al. 2018, 2020], and
then conducting re-meshing algorithms, e.g. QEM-guided mesh
simplification using meshlab [Cignoni et al. 2008], and 2) virtual
scanning the input using [Gschwandtner et al. 2011] to obtain a
point cloud, Poisson reconstruction [Kazhdan and Hoppe 2013] of
the point cloud, and then run QEM re-meshing. We compare our
method with these two pipelines. As demonstrated in Fig. 14, each
pipeline has its own issues. For the repair-and-QEM pipeline, al-
though mesh-repairing approaches can fix the mesh to some extent,
local re-meshing operators cannot generate satisfactory results
when the desired element count is extremely small. For the scan-
reconstruct-QEM pipeline, it often reconstructs surfaces with the
following issues: 1) very high genus; 2) redundant surfaces near
open regions of the input; and 3) smoothed out sharp features of
the buildings.

0 30000 60000 90000 120000
number of faces

0

2000

4000

6000

8000

ti
m

e
(s

)

Figure 15: Timing plots of our approach on the dataset.

Discussion and Limitations: In the above comparisons, while
other approaches, e.g. InstaLOD1, Simplygon1, Simplygon2, Blender,
take only 1-2 seconds on average to process each model in our
dataset, InstaLOD2 needs 1 minute, and ours requires 6 minutes.
Over the 100 models, it takes our method from a second to tens of
minutes to process a model. Our computational bottleneck lies in
the 2D Boolean operations during the silhouette computation for
building models with excessive details, such as the one illustrated
in Fig. 15. This step accounts 96.8% of the total computing time.
For the dataset, our algorithm terminates within 3 mins for 85%
of the models and the average computational cost is 45 secs. As
a future work, we plan to address this bottleneck by combining
rasterization-based silhoutte-extraction approaches.

Our method is specially designed to optimize the visual qual-
ity preservation of the to-be-generated low-poly models, which

Table 2: Statistics of the results generated for the en-
tire dataset, including percentage of results that are water-
tight 𝑊 , average number of faces 𝑁Avg.

𝐹
, average and stan-

dard deviation of LFD, silhouette difference, normal differ-
ence, and simplification ratio, respectively (𝐿Avg., 𝐿SD, 𝜏Avg.𝑠 ,
𝜏SD𝑠 , 𝜏

Avg.
𝑛 , 𝜏SD𝑛 , 𝑅Avg., 𝑅SD). For all listed numerical metrics,

smaller values are more desired.

𝑊 𝑁
Avg.
𝐹

𝐿Avg. 𝐿SD 𝜏
Avg.
𝑠 𝜏SD𝑠 𝜏

Avg.
𝑛 𝜏SD𝑛 𝑅Avg. 𝑅SD

InstaLOD1 17% 527 1415 1690 0.035 0.045 0.099 0.093 0.103 0.121
InstaLOD2 97% 499 1309 1007 0.0411 0.049 0.135 0.101 0.109 0.148
Simplygon1 16% 499 1222 1378 0.0368 0.057 0.102 0.107 0.109 0.148
Simplygon2 100% 206 949 835 0.0235 0.009 0.084 0.043 0.030 0.033
OursS 100% 196 907 902 0.015 0.011 0.066 0.042 0.029 0.032
KSR 61% 3121 8015 3040 0.167 0.215 0.200 0.205 0.80 1.04
SPRED 0% 962 2921 2899 0.11 0.14 0.235 0.144 0.10 0.12
Blender 21% 2848 4347 6268 0.105 0.10 0.186 0.139 0.135 0.119
PolyFit 100% 103 3700 2568 0.138 0.109 0.358 0.173 0.019 0.030
OursP 100% 103 1285 1196 0.033 0.044 0.095 0.074 0.020 0.031
Ours 100% 152 817 651 0.016 0.012 0.068 0.047 0.026 0.044

is different from most of the comparing approaches that designed
for optimizing shape differences that could be employed for gen-
eral purposes. Therefore, when artists choose the testing dataset,
more weights are put on diversifying the building styles instead
of geometry or topology complexities. However, for inputs with
relatively simple topology and benign geometry properties or when
the desired element count of the output is not extremely low, our
approach might not be the best choice. Even if the input has a sim-
ple topology, the first two stages (e.g. Section 3.1 and Section 3.2) of
our method cannot ensure that the produced mesh has a consistent
topology, which may be a limitation for certain applications.

6 CONCLUSION
We propose a new and effective approach to generate a low-poly
representation for commonly used 3D building models in digital
games. Our key idea is to rely on the visual hull to generate topo-
logically simple proxy meshes, and we design novel algorithms
to construct and carve visual hulls using selected primitives for
structural simplicity. We emphasize that, when the desired num-
ber of triangles of the low-poly mesh is larger than 1𝑘 , traditional
re-meshing methods and the commercial solutions are often good
enough. Our method is designed exclusively for generating the
coarsest mesh in the LOD hierarchy for building assets used by
mobile applications.

ACKNOWLEDGMENTS
We would like to thank our colleagues from Lightspeed & Quantum
Studios at Tencent — Guanli Hou, Guangyi Cai, Tianyu Gao, and

Low-poly Mesh Generation for Building Models SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Tiexiong Chen for running comparisons, preparing the executable
program and the dataset. We also thank our colleagues — Ka Chen,
Fengquan Wang, and Dong Li for their project support.

REFERENCES
Donya Labs AB. 2021. Simplygon 9. https://www.simplygon.com/Home/Index#

section-solutions
Jean-Philippe Bauchet and Florent Lafarge. 2020. Kinetic Shape Reconstruction. ACM

Trans. Graph. 39, 5, Article 156 (jun 2020), 14 pages.
Hervé Brönnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoff-

mann, Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2017. 2D and 3D Linear
Geometry Kernel.

Stéphane Calderon and Tamy Boubekeur. 2017. Bounding Proxies for Shape Approxi-
mation. ACM Trans. Graph. 36, 4, Article 57 (jul 2017), 13 pages.

Anne-Laure Chauve, Patrick Labatut, and Jean-Philippe Pons. 2010. Robust piecewise-
planar 3D reconstruction and completion from large-scale unstructured point
data. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society, USA, 1261–1268.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On Visual
Similarity Based 3D Model Retrieval. Computer Graphics Forum 22, 3 (2003), 223–
232.

Zhiqin Chen, Andrea Tagliasacchi, andHao Zhang. 2020. BSP-Net: Generating Compact
Meshes via Binary Space Partitioning. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Seattle, WA, United States.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-
elli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool.
In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara,
and Ugo Erra (Eds.). The Eurographics Association, Salerno, Italy, 1–1.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational Shape
Approximation. ACM Trans. Graph. 23, 3 (aug 2004), 905–914.

Blender Online Community. 2022. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.
blender.org

Lorenzo Diazzi and Marco Attene. 2021. Convex Polyhedral Meshing for Robust Solid
Modeling. ACM Trans. Graph. 40, 6, Article 259 (dec 2021), 16 pages.

Christopher Dyken, Morten Dæhlen, and Thomas Sevaldrud. 2009. Simultaneous
curve simplification. Journal of Geographical Systems 11, 3 (sep 2009), 273–289.

Hao Fang and Florent Lafarge. 2020. Connect-and-Slice: An Hybrid Approach for
Reconstructing 3D Objects. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE Computer Society, USA, 13487–13495.

Hao Fang, Florent Lafarge, and Mathieu Desbrun. 2018. Planar Shape Detection at
Structural Scales. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society, USA, 2965–2973.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric
Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing
Co., USA, 209–216.

Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree. 2011. BlenSor:
Blender sensor simulation toolbox. In International Symposium on Visual Computing.
Springer, Berlin, Germany, 199–208.

Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine.
2021. Appearance-Driven Automatic 3D Model Simplification. In Eurographics
Symposium on Rendering - DL-only Track, Adrien Bousseau and Morgan McGuire
(Eds.). The Eurographics Association, Prague, Czech Republic, 19 pages. https:
//doi.org/10.2312/sr.20211293

Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun.
2014. ℓ1-Based Construction of Polycube Maps from Complex Shapes. ACM Trans.
Graph. 33, 3, Article 25 (jun 2014), 11 pages. https://doi.org/10.1145/2602141

Jingwei Huang, Hao Su, and Leonidas J. Guibas. 2018. Robust Watertight Manifold
Surface Generation Method for ShapeNet Models. CoRR abs/1802.01698 (2018).
arXiv:1802.01698

Jingwei Huang, Yichao Zhou, and Leonidas J. Guibas. 2020. ManifoldPlus: A Robust
and Scalable Watertight Manifold Surface Generation Method for Triangle Soups.
CoRR abs/2005.11621 (2020). arXiv:2005.11621

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction.
ACM Trans. Graph. 32, 3, Article 29 (jul 2013), 13 pages.

Tom Kelly, John Femiani, Peter Wonka, and Niloy J. Mitra. 2017. BigSUR: Large-Scale
Structured Urban Reconstruction. ACM Trans. Graph. 36, 6, Article 204 (nov 2017),
16 pages. https://doi.org/10.1145/3130800.3130823

Dawar Khan, Alexander Plopski, Yuichiro Fujimoto, Masayuki Kanbara, Gul Jabeen,
Yongjie Zhang, Xiaopeng Zhang, and Hirokazu Kato. 2020. Surface Remeshing: A
Systematic Literature Review of Methods and Research Directions. IEEE Transac-
tions on Visualization and Computer Graphics 01, 01 (2020), 1–1.

H. T. Kung, F. Luccio, and F. P. Preparata. 1975. On Finding the Maxima of a Set of
Vectors. J. ACM 22, 4 (oct 1975), 469–476.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.
ACM Transactions on Graphics 39, 6 (2020), 1–14.

A. Laurentini. 1994. The Visual Hull Concept for Silhouette-Based Image Understand-
ing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 2 (feb 1994), 150–162.

Aldo Laurentini. 1997. How Many 2D Silhouettes Does It Take to Reconstruct a 3D
Object? Comput. Vis. Image Underst. 67 (1997), 81–87.

Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy
Boubekeur, and Maks Ovsjanikov. 2020. Spectral Mesh Simplification. Computer
Graphics Forum 39, 2 (2020), 315–324.

Minglei Li and Liangliang Nan. 2021. Feature-preserving 3D mesh simplification for
urban buildings. ISPRS Journal of Photogrammetry and Remote Sensing 173 (March
2021), 135–150.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified Shape and
SVBRDF Recovery using Differentiable Monte Carlo Rendering.

Wojciech Matusik, Chris Buehler, and Leonard McMillan. 2001. Polyhedral Visual
Hulls for Real-Time Rendering. In Proceedings of the 12th Eurographics Workshop
on Rendering Techniques. Springer-Verlag, Berlin, Heidelberg, 115–126.

Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and Leonard
McMillan. 2000. Image-Based Visual Hulls. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00). ACM
Press/Addison-Wesley Publishing Co., USA, 369–374.

Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J.
Mitra. 2009. Abstraction of Man-Made Shapes. ACM Trans. Graph. 28, 5 (dec 2009),
1–10.

Maxim Mikhnevich and Patrick Hebert. 2011. Shape from Silhouette Under Varying
Lighting and Multi-viewpoints. In 2011 Canadian Conference on Computer and Robot
Vision. IEEE, St. Johns, Newfoundland Canada, 285–292.

Liangliang Nan and Peter Wonka. 2017. PolyFit: Polygonal Surface Reconstruction
from Point Clouds. In 2017 IEEE International Conference on Computer Vision (ICCV).
IEEE, Venice, Italy, 2372–2380.

Manfred M. Nerurkar. 2021. InstaLOD. https://instalod.com
Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse

Rendering of Geometry. ACM Trans. Graph. 40, 6, Article 248 (dec 2021), 13 pages.
Alec Rivers, Frédo Durand, and Takeo Igarashi. 2010. 3D Modeling with Silhouettes.

ACM Trans. Graph. 29, 4, Article 109 (jul 2010), 8 pages.
Radu Bogdan Rusu and Steve Cousins. 2011. 3D is here: Point Cloud Library (PCL). In

IEEE International Conference on Robotics and Automation (ICRA). IEEE, Shanghai,
China, 1–4.

D. Salinas, F. Lafarge, and P. Alliez. 2015. Structure-Aware Mesh Decimation. Computer
Graphics Forum 34, 6 (2015), 211–227.

Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Snyder.
2000. Silhouette Clipping. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley
Publishing Co., USA, 327–334.

Jean Ponce Svetlana Lazebnik, Yasutaka Furukawa. 2007. Projective Visual Hulls. Int J
Comput Vision 74 (dec 2007), 137–165.

Tim Sweeney. 2021. Unreal Engine 5. https://www.unrealengine.com/en-US/unreal-
engine-5

Richard Szeliski. 1993. Rapid Octree Construction from Image Sequences. CVGIP:
Image Underst. 58, 1 (jul 1993), 23–32.

Bala R. Vatti. 1992. A Generic Solution to Polygon Clipping. Commun. ACM 35, 7 (jul
1992), 56–63.

Yannick Verdie, Florent Lafarge, and Pierre Alliez. 2015. LOD Generation for Urban
Scenes. ACM Trans. Graph. 34, 3, Article 30 (may 2015), 14 pages.

Kaizhi Yang and Xuejin Chen. 2021. Unsupervised Learning for Cuboid Shape Abstrac-
tion via Joint Segmentation from Point Clouds. ACM Trans. Graph. 40, 4, Article
152 (jul 2021), 11 pages.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Ar-
rangements for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (jul 2016),
15 pages.

https://www.simplygon.com/Home/Index#section-solutions
https://www.simplygon.com/Home/Index#section-solutions
http://www.blender.org
http://www.blender.org
https://doi.org/10.2312/sr.20211293
https://doi.org/10.2312/sr.20211293
https://doi.org/10.1145/2602141
https://arxiv.org/abs/1802.01698
https://arxiv.org/abs/2005.11621
https://doi.org/10.1145/3130800.3130823
https://instalod.com
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Visual Hull Generation
	3.2 Carved Mesh Generation
	3.3 Low-Poly Mesh Generation

	4 Implementation Details
	5 Experiment
	6 Conclusion
	Acknowledgments
	References

