
Hex-Mesh Generation and Processing: a Survey

NICO PIETRONI, University of Technology Sydney, Australia

MARCEL CAMPEN, Osnabrück University, Germany

ALLA SHEFFER, University of British Columbia, Canada

GIANMARCO CHERCHI, University of Cagliari, Italy

DAVID BOMMES, University of Bern, Switzerland

XIFENG GAO, Tencent America, USA

RICCARDO SCATENI, University of Cagliari, Italy

FRANCK LEDOUX, CEA, France
JEAN-FRANÇOIS REMACLE, Université catholique de Louvain, Belgium
MARCO LIVESU, CNR IMATI, Italy

Regular
8 irregular vertices
1 block

Semi-Regular
56 irregular vertices
33 blocks

Valence Semi-Regular
56 irregular vertices
61 blocks

Irregular
3.7K irregular vertices
9.7K blocks

Fig. 1. Hex-meshes can be categorized according to their structural regularity, which depends on the amount of irregular

edges and vertices present in the mesh (red dots) and on how they are connected to each other (bold lines). Irregularities and

their connectivity imply a decomposition of the mesh into regular blocks. The first three meshes were computed with a

polycube method [Livesu et al. 2013], the later with an octree method [Gao et al. 2019].

Authors’ addresses: Nico Pietroni, nico.pietroni@uts.edu.au, University of Technology Sydney, Australia; Marcel Campen, campen@uos.de,

Osnabrück University, Germany; Alla Shefer, shefa@cs.ubc.ca, University of British Columbia, Canada; Gianmarco Cherchi, g.cherchi@unica.

it, University of Cagliari, Italy; David Bommes, david.bommes@inf.unibe.ch, University of Bern, Switzerland; Xifeng Gao, gxf.xisha@gmail.com,

Tencent America, USA; Riccardo Scateni, riccardo@unica.it, University of Cagliari, Italy; Franck Ledoux, franck.ledoux@live.fr, CEA, France;

Jean-François Remacle, jean-francois.remacle@uclouvain.be, Université catholique de Louvain, Belgium; Marco Livesu, marco.livesu@gmail.

com, CNR IMATI, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

ACM Trans. Graph.

2 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

In this article, we provide a detailed survey of techniques for hexahedral mesh generation. We cover the whole spectrum
of alternative approaches to mesh generation, as well as post processing algorithms for connectivity editing and mesh
optimization. For each technique, we highlight capabilities and limitations, also pointing out the associated unsolved challenges.
Recent relaxed approaches, aiming to generate not pure-hex but hex-dominant meshes, are also discussed. The required
background, pertaining to geometrical as well as combinatorial aspects, is introduced along the way.

CCS Concepts: · Computing methodologies→ Shape analysis;Mesh models; Volumetric models.

Additional Key Words and Phrases: hexahedral mesh, integer-grid map, polycube, block decomposition, dual sheets, frame
ield

1 INTRODUCTION

Volume meshes explicitly encode both the surface and the interior of an object, thus ofering a richer rep-
resentation than surface meshes. They are primarily used in industrial and biomedical applications, where
volume elements are exploited to encode various information, such as structural and material properties, per-
mitting to simulate and precisely estimate the physical behavior of an object, subject to external or internal
forces, or the dynamics involving multiple objects interacting in the same environment. Alongside tetrahedra,
hexahedral elements are the most prominent solid elements used to represent discrete volumes in computa-
tional environments. Meshes entirely or partially made of hexahedra have been used for many years as the
computational domain to solve partial diferential equations (PDEs) that are relevant for the automobile, naval,
aerospace, medical and geological industries to name a few, and are at the core of prominent software tools used by
such industries, such as [Altair 2022; ANSYS 2022; CoreForm 2022a; CUBIT 2022; Distene SAS 2022; Tessaels 2022].

In academic research, the algorithmic generation and processing of hexahedral meshes have been studied
for more than 30 years now. Despite the huge efort that various scientiic and industrial communities have
spent so far, the computation of a high-quality hexahedral mesh conforming to (or suitably approximating) a
target geometry remains a challenge with various open aspects for which no fully satisfactory solutions have
been provided yet. Some of the known methods are extremely robust and scale well on complex geometries;
some others produce high-quality meshes; some others are fully automatic. But no known method successfully
combines all these properties into a single product. The hex-meshing problem had been so elusive that it was
even once termed the łholy grailž of mesh generation [Blacker 2000]. Ever since, many advancements in the ield
have been made, while major challenges still remain.

In the last decade, the Computer Graphics community has contributed signiicantly to this ield, proposing
seminal ideas, theoretical insights, and practical algorithms. In this survey, we wish to summarize this work,
also reporting on previous methods developed by other scientiic communities. The engineering community has
already produced a few surveys on this topic, but they are either no longer up to date [Blacker 2000; Owen 1998;
Schneiders 2000; Tautges 2001] or focus just on a particular subset of the available techniques [Armstrong et al.
2015; Sarrate Ramos et al. 2014; Shepherd and Johnson 2008]. We wish to create a comprehensive entry point for
researchers and practitioners dealing with hexahedral meshing. We therefore embrace the whole ield, revisiting
and structuring a vast amount of literature, and covering basic topological (Sec. 2) and geometrical (Sec. 3)
concepts, all kinds of approaches to hexahedral mesh generation (Sec. 4), operators to edit mesh connectivity
and to perform reinement or coarsening (Sec. 5), mesh optimization and untangling (Sec. 6), visual exploration
(Sec. 7), and also addressing the recent trend of methods for hex-dominant meshing (Sec. 4.9). Last but not least,

© 2022 Association for Computing Machinery.

0730-0301/2022/8-ART $15.00

https://doi.org/10.1145/3554920

ACM Trans. Graph.

https://doi.org/10.1145/3554920

Hex-Mesh Generation and Processing: a Survey • 3

in the inal part of the survey, we highlight the current challenges the ield is facing and indicate interesting
directions for future work (Sec. 8).

2 HEX-MESH STRUCTURE

A hexahedral mesh has structural aspects (concerning the connectivity of mesh elements) and geometric aspects
(concerning the elements’ shape and their embedding or immersion in space). In this section we focus on the
diverse set of structural aspects, and consider geometry in Sec. 3.

2.1 Primal Structure

In terms of connectivity, a hexahedral mesh is a 3-dimensional cell complex,H = (V ,E, F ,C), consisting of vertices
V (0-cells), edges E (1-cells), facets F (2-cells), and cells C (3-cells). The facets F are also often referred to as faces,
and the 3-cells C are, given the context, often referred to as hexahedra or hexes. In a pure hexahedral mesh, each
facet is a topological quadrilateral (i.e., incident to four edges) and each cell is a topological cube (i.e., incident to
six such facets). If a relatively small number of facets and cells are of diferent type (e.g., tetrahedra, prisms, or
pyramids) a mesh is called hexahedral dominant.

On top of this connectivity structure, a mesh is equipped with a geometric structure, typically an embedding
(or immersion) in R3 (Sec. 3).

Often, instead of assuming fully generic CW or ∆ cell complexes [Hatcher 2000], more restricted connectivity
deinitions are used for practical purposes [Erickson 2013]. A very common one is to assume that each cell has
eight distinct vertices, i.e., no hexahedron is self-adjacent at a vertex, edge, or facet. Similarly, pairs of edges, facets,
or hexes being adjacent via more than one vertex, edge, or facet, respectively, may be ruled out. This simpliies data
structures and algorithms; furthermore, many applications assume each hex to be embedded in a geometrically
simple way (e.g. straight edges, ruled facets, cf. Sec. 3) which rules out such self-adjacency and multi-adjacency
anyway. Sec. 4.2 discusses further application-dependent structural assumptions and requirements.

2.1.1 Singularities. The most regular hexahedral mesh is an (ininite) Cartesian grid, where each vertex, edge,
and facet is incident to 8, 4, and 2 hexahedra, respectively. General hexahedral meshes contain elements of
diferent local connectivity, which are accordingly called irregular or singular. Irregular facets simply correspond
to the boundary of the mesh, i.e., all facets that are incident to a single hexahedron.

Since interior facets cannot be irregular and vertex singularities are never isolated [Liu et al. 2018], structurally
most interesting is the set of irregular edges, which forms the so-called singularity graph.

Singularity Graph. The fundamental building block of the singularity graph is a singular edge of valence k , i.e.,
an interior edge incident to k , 4 hexahedra, or a boundary edge incident to k , 2 hexahedra (cf. Fig. 2). While a
single integer k is suicient to characterize the structural type of an edge, the speciication of vertex types is
more complex. As observed by Nieser et al. [2011] there is a 1:1-correspondence between vertex conigurations in
a hexahedral mesh, and triangulations of the 2-sphere. This can be understood by observing that the intersection
of a cube with a sphere centered at one of it’s corners results in a triangular patch (Fig. 2). Hence, diferent
vertex types can be speciied by enumerating all triangulations of the sphere. Restricting to (the practically most
relevant) edge valences {3, 4, 5}, it turns out that only 11 diferent conigurations of interior vertex types exist [Liu
et al. 2018; Sabin 1997]. Speciically, for an interior vertex it is impossible to be incident to a single singular edge,
and in case of two incident singular edges they can only be of identical type. Consequently, the singularity graph
is formed by singular arcs, which are chains of singular edges with identical type. These singular arcs either
terminate at the boundary, or connect to other singular arcs at singular vertices, cf. Fig. 3.

ACM Trans. Graph.

4 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

2.2 Dual Structure

In a hexahedral mesh, regardless of its level of structural regularity (Sec. 2.4), each cell has a constant number of
6 facets and each facet has a constant number of 4 edges. Conversely, however, each vertex may have a varying
number of incident edges, and each edge a varying number of incident facets.

One may consider the (polyhedral) cell complex that is dual to a hexahedral mesh: For each k-cell of the primal
mesh there is a (3 − k)-cell in 1:1-correspondence in the dual mesh and incidence relationships are adopted. The
above regularity of cells and facets in the primal mesh translates into regularity of vertices and edges in the dual.
Concretely, except at the mesh’s boundary, each dual vertex has a constant number of 6 incident dual edges,
and each dual edge has a constant number of 4 incident dual facets. Conversely, dual facets and dual cells are
polygons and polyhedra of varying structure. Further details and facts about the dual complex can be found
in [Tautges and Knoop 2003].
Depending on the algorithmic context, it may be advantageous to consider the primal or this dual view of a

hexahedral mesh. A key reason is the following: While vertices and edges of the primal mesh may be regular or
singular, the vertices and edges of the dual mesh are all regular; this is due to the fact that all primal facets are
quadrilaterals and all primal cells are hexahedra. The following useful deinition of opposite edges at a regular
vertex and opposite facets at a regular edge therefore applies everywhere in the dual mesh.

Opposite Elements. At each regular interior vertex v , there are 6 incident edges. For each edge e1 of these, there
is exactly one edge e2 among these 6 that does not share a facet with e1; the edges e1 and e2 are called opposite at v .
At each regular interior edge e , there are 4 incident facets. For each facet f1 of these, there is exactly one facet f2
among these 4 that does not share a cell with f1; the facets f1 and f2 are called opposite at e . In the primal setting,
this concept of opposite edge is relevant for algorithms that trace internal arcs in the mesh, e.g., connecting pairs

Fig. 2. Let: Singular edges of valence k = {3, 4, 5}. Right: There is a 1:1-correspondence between configurations of vertices in

a hexahedral mesh and triangulations of the sphere. Image from [Liu et al. 2018].

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 5

Fig. 3. The singularity graph is formed by interior singular edges of valence k = 3 (green) and k = 5 (blue) and boundary

edges of valence k = 1 (green). Chains of edges with homogeneous type connect or terminate at singular vertices (red). Image

from [Liu et al. 2018].

of singular vertices. Similarly, opposite facets are useful to lood internal facet sheets bounded by singular arcs,
e.g., to perform a coarse block decomposition of a given mesh (Sec. 2.3).

In the dual setting, this opposite relation can be used to deine the following:

Sheets. Consider the transitive closure of the dual facets’ opposite-relation. Its equivalence classes are called
sheets (also referred to as twist planes [Murdoch et al. 1997] or (pseudo-)hyperplanes [Tautges and Knoop 2003]).
These sheets are 2-manifold surfaces (with boundary, possibly self-intersecting) formed by dual facets.

Chords. Analogously, the equivalence classes of the dual edges’ opposite-relation’s transitive closure are
referred to as chords [Borden et al. 2002a; Murdoch et al. 1997] (or polychords [Daniels et al. 2008]).
The combinatorial łcontinuityž of opposite dual facets across dual edges has inspired the early name spatial

twist continuum for this dual sheet based perspective.
It follows that the entire dual complex can be viewed as an arrangement of intersecting manifold surfaces

(sheets): dual vertices are formed by three intersecting sheets, chords are formed by two intersecting sheets and
split into dual edges by transversely crossing sheets, sheets are split into dual facets by crossing sheets, and
dual cells are the spatial compartments enclosed by sheets. Conceptually, a sheet corresponds to one layer of
hexahedra in the primal mesh; how this layer is composed of individual hexahedra, however, is not deined by
this sheet itself but by sheets that cross this sheet transversely. Fig. 4 illustrates this primal-dual relationship.
All this is in close analogy to dual complexes in the case of quadrilateral meshes. These can be viewed as

arrangements of intersecting 1-manifolds [Campen et al. 2012; Campen and Kobbelt 2014]. Quite diferently,

ACM Trans. Graph.

6 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 4. Two examples of the relation between primal and dual representations. Top: two alternative hexmesh connectivities.

Botom: their corresponding dual cell complexes, formed by arrangements of 2-manifold sheets.

though, sheets can be topologically quite complex, they may have arbitrary genus and an arbitrary number of
boundary loops, whereas in the quadrilateral mesh case each 1-manifold may only be either a closed loop curve,
or an open-ended curve starting and ending at the mesh boundary.

2.3 Block Structure

Each hexahedral mesh can be decomposed into disjoint blocks, where each block is a regular grid of hexahedra.
Conversely, the mesh can be viewed as disjoint union of such blocks. As an extreme example, each hexahedron
could be considered an individual block (of size 1 × 1 × 1). We can distinguish conforming and non-conforming
block decompositions: a block decomposition is conforming if each side of each block coincides with one other
block side (except at the mesh boundary).
Of particular practical relevance are decompositions that are conforming, and among these those that are

coarse, i.e., that consist of a small number of blocks. Meshes rarely have a unique conforming block decomposition.
The coarsest conforming block decomposition is sometimes referred to as the mesh’s base complex [Bommes et al.
2011; Brückler et al. 2022b; Gao et al. 2015; Razaindrazaka and Polthier 2017].

It is worth pointing out that the term base complex is sometimes used with alternative meanings [Dong et al.
2006; Eck and Hoppe 1996; Hormann et al. 2008; Livesu et al. 2013], for instance to refer to a coarse cell complex

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 7

that is used as a domain for (cross)-parametrization. Note that this is not entirely unrelated though: a common use
case of these parametrizations is structured remeshing; the resulting meshes typically exhibit a block structure
induced by the underlying domain complex.

The base complex has the following deining property: a facet is part of a block side if and only if it is transitively
incident to a singular edge via opposite facets (as deined in Sec. 2.2). This suggests a simple way to extract
the base complex of a given hexahedral mesh: starting from all facets incident to any singular edge, iteratively
expanding through opposite facets across regular edges until termination [Brückler et al. 2022b; Gao et al. 2015].
Due to the practical relevance of semi-regular hexahedral meshes (Sec. 2.4) mesh generation algorithms that take
the coarseness of the implied base complex into account are of particular interest.

2.4 Structural Regularity

Similarly to quad-meshes [Bommes et al. 2013b], hex-meshes can be roughly organized into four classes depending
on the degree of regularity of their topological structure. The concept of mesh regularity is closely related with
the relative amount of irregular vertices present in the mesh and with how these vertices are connected to each
other.

• regular (or structured) meshes have the topology of a gridded cube (Fig. 1 left). These meshes are extremely
convenient for storing and processing because of their simple connectivity: each internal vertex has exactly
the same number of neighbors, with a consistent ordering. This allows for eicient storage and optimal
query time, and also makes the computation of local quantities (e.g., inite diferences) straightforward.
There are, however, severe limits in the class of shapes they can represent adequately: mapping the grid
into an object containing long protrusions or deep cavities likely results in a mesh with little practical
utility due to the poor shape of its distorted elements. Moreover, the rigid global structure does not allow
for localized reinement: if more vertices are necessary around a speciic area, the entire grid must be
reined in order to maintain the regular structure;

• semi-regular (or semi-structured, also block-structured) hex-meshes are obtained by gluing in a con-
forming way several regular grids (also called blocks). All vertices that are internal to a block are regular;
only vertices that lie at the edges or corners of a block may be irregular. Semi-regular meshes represent
a particularly important class in terms of applications, and today are often the result of a manual or
semi-manual meshing process. Diferently from regular meshes they allow for higher lexibility and can
be used to represent shapes of arbitrary complexity. At the same time, they contain a limited amount of
irregular vertices, connected to each other so as to deine a coarse block layout (Fig. 1, middle left) which
can be exploited by dedicated data structures for cheaper storage and fast querying [Tautges 2004], and
is also useful in a variety of applications that exploit the tensor product structure of its elements (e.g.,
IGA [Hughes et al. 2005]);

• valence semi-regular meshes also contain a limited amount of irregular vertices, but they are not con-
nected in a way that induces a coarse block decomposition into few regular blocks (Fig. 1, middle right).
Meshes of this kind are often produced by modern hex-meshing algorithms such as frame ield based
methods, which introduce few singularities, thereby creating meshes with many regular regions, but do
not speciically address their connectivity pattern;

• irregular (or unstructured) hex-meshes contain a large fraction of irregular vertices (Fig. 1, right). Meshes
of this kind are, for instance, produced via voxelization or other grid-based methods: portions of the object
that do not align with the ambient Cartesian grid exhibit a typical staircase efect, triggering a proliferation

ACM Trans. Graph.

8 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

singularities via grid-preserving cutssingularities via grid-preserving cuts

Fig. 5. An integer-grid map f deforms the shape (let) such that its boundary aligns with a Cartesian grid of integer isolines

(right). Consequently, its inverse f −1 deforms the covered grid cells into a structure-aligned mesh. Grid-preserving cuts

(dashed green) enable irregular vertices (red) in the mesh.

of irregular vertices on the surface. Meshes of this type are most limited in terms of their practical utility
and beneits relative to, e.g., tetrahedral meshes.

As for the quad-mesh case [Bommes et al. 2013b] the boundaries between semi-regular, valence semi-regular,
and irregular meshes are blurred. Nevertheless, from an applicative perspective there is a substantial diference
between these three classes and there exists a variety of structure enhancement algorithms that are speciically
designed to improve mesh regularity (Sec. 5.5). The whole taxonomy can be understood in terms of the ratio
between the number of irregular vertices and the total amount mesh vertices (rV), and the ratio between the
number of blocks and the total number of mesh elements (rB). If both rV and rB are high, the mesh is irregular; if
rV is low but rB is high, the mesh is valence semi regular; if both rV and rB are low the mesh is semi-regular.
Finally, if the number of blocks is exactly 1, the mesh is regular. Providing actual thresholds to precisely deine
what high and low mean, is an application dependent matter.

2.5 Integer-Grid Maps

Integer-grid maps (IGM) are a class of maps which by construction induce (at least) valence semi-regular meshes.
The central idea, as illustrated in Fig. 5, is to embed an n-dimensional shape into an n-dimensional voxel grid such
that the inverse map deforms the set of covered voxels into a shape-aligned hexahedral mesh. So far, integer-grid
maps have been studied for 2-manifolds to generate quadrilateral meshes [Bommes et al. 2013a; Kälberer et al.
2007] and for 3-manifolds to generate hexahedral meshes [Liu et al. 2018; Nieser et al. 2011]. Similar to the
parametrization of a general manifold, an integer-grid map can be decomposed into multiple charts. However,
in order to guarantee that the inversely mapped voxels stitch conformingly, it is necessary to require speciic
transition functions that preserve the voxel grid. Assuming that the vertices of the voxel grid are given by integer
coordinates Zn , the grid-preserving transition functions are exactly (i) integer translations and (ii) symmetry
transformations of an n-cube. Such transition functions are essential to generate meshes with interior singularities,
as for instance, the singular vertex (red) in Fig. 5.

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 9

Variational

!(#) → &'(

Mixed-Integer

Problem

less discrete since

elements implicit

in the map

Optimize Map

1. alignment of map

2. grid volume
3. map distortion

4. map distortion

5. metric of map

Optimize Mesh

highly discrete

1. geometric fidelity

2. element count
3. regularity

4. element quality

5. anisotropy & sizing

translates into

Fig. 6. Integer-grid map optimization algorithms turn the highly discrete mesh optimization task into a more tractable

mixed-integer map optimization. All mesh quality criteria are directly related to properties of the map, as indicated by blue

dashed arrows.

Mathematically, a map requires three properties to be an integer-grid map: (i) grid-preserving transition
functions, (ii) local injectivity, and (iii) singularities and boundaries mapping to integer-grid entities. A thorough
deinition can be found in [Liu et al. 2018].
Integer-grid maps are suiciently expressive to describe all potential hexahedral meshes. We can trivially

generate a chart for each hexahedron that maps it to the voxel [0, 1]3. In this sense, integer-grid maps can be seen
as an alternative representation of hexahedral meshes that has proven highly valuable for designing powerful
generation algorithms.
Reformulating the hexahedral mesh generation task as a map optimization problem ofers many advantages.

First of all, the optimization of low-distortion maps is a well-studied topic with a rich body of theory and
algorithms that serve as a strong foundation. Moreover, the map optimization perspective enables multiple
geometrically motivated continuous relaxations that are crucial for eiciently inding good approximate solutions
of the hard underlying mixed-integer problem, e.g. frame-ields to ind suitable singularities (cf. Sec. 4.8), or
seamless maps to estimate the required integer translations (cf. [Brückler et al. 2022a; Nieser et al. 2011]).

While a naive direct optimization formulation for a hexahedral mesh needs to explicitly encode and deal with
the full set of (inherently discrete) elements and their connectivity, most of that becomes implicit in the map
formulation, enabling not only straightforward continuous relaxations but moreover a reduced set of discrete
variables. A simple but instructive example consists of a regular block covering n×m×o voxels in the IGM image.
Stretching the image along the irst coordinate axes corresponds to a continuous relaxation of the discrete action
of changing the integer dimension n. Note that from the map perspective, the block is indeed fully characterized by
only three integers n,m, and o, while a direct mesh optimization would need to deal with (n+ 1) × (m+ 1) × (o+ 1)

(discrete) vertices and their nontrivially-constrained connectivity. The number of integer degrees of freedom of a
general integer-grid map is proportional to the number of singularities and topological handles. Consequently, in
case of pre-determined singularities the resulting discrete search space is comparatively small since typically
highly regular meshes with only few singularities are desired.

Optimizing for a low-distortion map has two positive efects, (i) it directly promotes well-shaped elements of
high quality in the output hex-mesh, and (ii) it demotes the occurrence of spurious singularities.

A conceptual overview of interpretingmesh optimization asmap optimization is shown in Fig. 6. The advantages
related to superior continuous relaxations and compact discrete search spaces explain the popularity and success
of integer-grid map based approaches in the automatic generation of structured meshes.

ACM Trans. Graph.

10 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

A special case of integer-grid maps with no interior singularities are polycube maps, which are discussed in
more detail in Sec. 4.7. The generation of a polycube map, therefore, can be viewed as deforming the input shape
such that its surface aligns with a blocky surface from the voxel grid ś a polycube. While this deformation can
be pictured as a continuous process, the underlying optimization problem is nonetheless of mixed-integer type
[Mandad et al. 2022]. The discrete degrees of freedom include the choice, per piece of the shape’s surface, which
of the six oriented coordinate axes {±x ,±y,±z} it shall align to.

Frame-ield based methods, which are discussed in more detail in Sec. 4.8, target the generation of an integer-
grid map (whether general or restricted to polycubes) in two stages. From a high-level perspective, the irst stage
estimates the rotational part of the Jacobian of an integer-grid map, i.e., a frame-ield, while the second stage
constructs the map by inheriting the frame-ield singularities. The decomposition is beneicial because the irst
stage can be formulated in a representation that more easily deals with the discrete symmetry of the hexahedron.

3 HEX-MESH GEOMETRY

Besides its combinatorial and topological structure (Sec. 2), a hexahedral mesh’s geometry, i.e., its embedding or
immersion, typically in R3, plays an essential role in most applications.
This concerns the question of geometric idelity (to what extent the mesh conforms to the target shape) and

the question of element quality. This latter question is concerned with the shape of a mesh’s individual hexahedra
or the distortion of maps deining these hexahedra as deformations of an ideal (reference or master) element.
Depending on the application context, various geometric requirements may be in place: the mesh may be

required to conform to a given boundary mesh or to interpolate it within some prescribed tolerance; facets may
be required to be planar or to be convex; the above maps may be required to be locally injective or even to have
bounded distortion in some particular sense. In the context of mesh generation (Sec. 4) the concrete requirements
can have a signiicant inluence on the hardness of the meshing problem. Many methods so far are unable to
provide strict guarantees regarding such requirements, especially when they are asked for in combination.
Also the relevant notion of element quality, and the efect of low or high-quality elements, are application

dependent. In the context of simulations by means of inite element methods (FEM), element quality can have a
crucial impact on error estimates and convergence rates, thus simulation speed and accuracy [Ciarlet 2002; Zlámal
1968], and relevant quality measures depend on the type of simulation. In Sec. 4.2 these varying requirements are
discussed further.

The Trilinear Element. The geometry or embedding of hexahedral meshes is often represented by means of
coordinates assigned to their vertices. This alone is suicient only for simple applications. More commonly, the
geometry of edges, faces, and cells has to be deined as well. A particularly simple (and common) scenario is
the assumption of trilinear elements (linear edges, bilinear faces, trilinear cells), as this does not require the
speciication of any further informationÐall other mesh elements’ geometric embedding in R3 are derived from
the vertex positions via multilinear interpolation. Precisely, a hexahedron’s embedding (with vertex positions
pi jk) is deined via a geometric map τ : [0, 1]3 → R3 (also called isoparametric map) as follows:

τ (u,v,w) =

1
∑

i=0

1
∑

j=0

1
∑

k=0

pi jkBk (w)Bj (v)Bi (u),

where

B0(t) = 1 − t and B1(t) = t .

The hexahedral element efectively is the image of an ideal cube [0, 1]3 under this map. Note that the edges
are straight line segments under this map; the faces are ruled surfaces (planar if the four corner vertices are
coplanar). More generally, this deinition can be extended to higher-order elements using higher-order basis

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 11

functions Bni (e.g., Bernstein polynomials of degree n, giving rise to tensor-product Bézier elements [Prautzsch
et al. 2002]). In these higher-order cases, additional control points (besides the vertex points) come into play as
coeicients for a higher number of basis functions.

The assessment of these elements’ quality (or even just validity) is an application-dependent matter. In some
cases it may be just the shape of the region τ ([0, 1]3) ⊂ R3 that is of relevance, in others its concrete parametrization,
given by the map τ , is crucial.

3.1 Geometric Map

A particularly common measure of quality is the determinant of the geometric map’s Jacobian Jτ . It quantiies to
what extent the hexahedron, deined through τ , deviates (in terms of volume distortion) from the cube [0, 1]3.
Note that det Jτ depends on parameters (u,v,w). Due to this dependence, the quality of an element (in contrast
to the quality at a particular point) rather needs to be assessed by the extremal value min[0,1]3 det Jτ .

Note that det J , while measuring volume distortion, is blind to angle distortion; it cannot distinguish sheared
cubes from cubes. Additional angle-aware measures are thus often taken into account (Sec. 3.2).

3.1.1 Element Validity. If min[0,1]3 det Jτ ≤ 0, the geometric map τ is non-injective and the implied element is
said to be irregular. Sometimes a distinction is made between degeneration (det Jτ = 0) and inversion or fold-over
(det Jτ < 0).

In the context of the inite element method, irregular elements must be considered invalid [Knupp 2000;
Mitchell et al. 1971]; with such elements, depending on the concrete setting, one may yield łinaccurate solutions
or no solutions at allž [Barrett 1996], solutions are łinvalidatedž [Roca et al. 2012], or łcalculations cannot be
continuedž [Salagame and Belegundu 1994]. Due to this crucial importance, specialized untangling methods for
the purpose of irregular element removal in hexahedral meshes have been proposed (Sec. 6), that attempt to
achieve min[0,1]3 det Jτ > 0.

3.1.2 Computation. The evaluation of det Jτ at a concrete parameter point (u,v,w) is quite easy. For the compu-
tation of the extrema min/max[0,1]3 det Jτ , however, there is no closed-form expression. As this is particularly
relevant to certify regularity, simply probing at a number of well-distributed parameter points is a risky approach.

Determinant Bounds. Like τ , the Jacobian determinant is a polynomial in (u,v,w). It can thus be expressed in
the Bernstein basis as well:

det Jτ (u,v,w) =
∑

i jk

di jkBk (w)Bj (v)Bi (u).

Due to this basis’ implied convex hull property (due to 0 ≤ Bi (t) ≤ 1 for t ∈ [0, 1]) the function value is bounded
from below by the smallest coeicient mini jk di jk and from above by the largest coeicient maxi jk di jk . The
coeicients di jk are easily computed from the vertex points pi jk . For the particular case of trilinear hexahedral
elements, this is discussed in [Johnen et al. 2017]. The same principle applies to higher-order elements as well as
to simplicial (rather than tensor-product) elements [Dey 1999; Gravesen et al. 2014; Johnen et al. 2013; Luo et al.
2002; Mandad and Campen 2020].

These bounds can be quite loose. They can, however, be tightened arbitrarily by re-expressing det Jτ piecewise
over subdomains of [0, 1]3 [Hernandez-Mederos et al. 2006]. This is accomplished (via aine reparametrization)
using Bézier subdivision [Prautzsch et al. 2002]. Under repeated subdivision, the coeicients (and thus the derived
bounds) converge to the actual function value [Leroy 2008; Prautzsch and Kobbelt 1994].
For use cases where precise knowledge of the Jacobian determinant’s value range is not relevant but only

injectivity is to be certiied, simpler (possibly loose) conservative tests can be employed [Zhang 2005]. Various
even simpler hypothetical tests (trying to derive bounds from determinant values at vertices or along edges) were
shown to be false [Knupp 1990; Zhang 2005].

ACM Trans. Graph.

12 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Table 1. List of alternative metrics for hexahedral elements, from the Verdict library [Stimpson et al. 2007]. Normal ranges

are intended for elements not having degeneracies.

Metric
Overall Acceptable Value for

range range unit cube

Diagonal [0, 1] [0.65, 1] 1
Dimension [0,∞) app. dep. 1
Distortion [0, 1] [0.5, 1] 1
Edge Ratio [1,∞) Ð 1
Jacobian (−∞,∞) [0,∞) 1
Max. Edge Ratio [1,∞) [1, 1.3] 1
Max. Asp. Frobenius [1,∞) [1, 3] 1
Mean Asp. Frobenius [1,∞) [1, 3] 1
Oddy [0,∞) [0, 0.5] 0
Relative Size Squared [0, 1] [0.5, 1] Ð
Scaled Jacobian [−1, 1] [0.5, 1] 1
Shape [0, 1] [0.3, 1] 1
Shape and Size [0, 1] [0.2, 1] Ð
Shear [0, 1] [0.3, 1] 1
Shear and Size [0, 1] [0.2, 1] Ð
Skew [0, 1] [0, 0.5] 0
Stretch [0, 1] [0.25, 1] 1
Taper [0,∞) [0, 0.5] 0
Volume (signed) (−∞,∞) [0,∞) 1

Relaxation. Through sum-of-squares (SOS) relaxation, the non-convex problem of inding the Jacobian deter-
minant polynomial’s global minimum (i.e., min[0,1]3 det Jτ) can be replaced by a convex problem [Marschner et al.
2020]. If a suiciently high degree is chosen for the formulation of this replacement problem, the global minima
coincide. A suicient degree was determined empirically; a formal guarantee is outstanding.

3.2 Shape uality

Besides metrics based on the pointwise assessment of the geometric map, there exist a variety of metrics based
simply on the vertex positions that have been proposed in the literature to assess the quality of hexahedral
elements or have been exploited in speciic applications. The documentation of the Verdict library [Stimpson et al.
2007] ś a de facto standard for inite element mesh quality assessment ś exhaustively reports per-hex metrics, as
well as associated bounds and commonly acceptable ranges. We succinctly report these metrics in Tab. 1. For
more details on how each metric is formulated, we point the reader directly to the original source. It must be
noted, though, that the question whether an element is good or at least acceptable can be highly application
dependent; in FEM, for instance, elements far from being cube-shaped (in particular anisotropically stretched
elements) can be ideal ś if they are aligned suitably, in a PDE-guided or even solution-adaptive manner [Knupp
2007].

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 13

0

1

 val 3

0.866

 val 4

1

 val 5

0.951

 val 6

0.866

 val 7

0.782

 val 8

0.707

 val 9

0.643

 val 10

0.588

Fig. 7. Topology and geometry are tightly coupled: the number of hexahedra incident to a singular edge directly bounds the

inner angles, thus afecting the geometric quality of the elements (numbers below each configuration refer to the Scaled

Jacobian of the geometric map). Image from [Livesu et al. 2021].

4 HEX-MESH GENERATION

In this section, we survey the variety of mesh generation techniques present in the literature to date. We
irstly provide a general introduction about input and output requirements. Then, algorithms will be organized
according to the meshing paradigm they implement. The generation of hybrid, in particular hex-dominant,
meshes containing spurious non-hexahedral elements is also discussed (Sec. 4.9). Finally, Tab. 2 summarizes the
main properties of each class of hex-meshing algorithms reported in this survey.

4.1 Input

Input data can be either a surface or a volume mesh describing the target geometry. Methods that take a surface
mesh or other surface description and produce a conforming hexahedralization are often called direct [Shepherd
and Johnson 2008], as opposed to indirect methods, which typically operate on a supporting tetrahedral mesh and
produce hexahedra by modifying this mesh (through splitting, clustering, etc.) or by computing some volumetric
mapping encoded on the vertices of this supporting mesh.
The most trivial form of indirect hex-meshing consists of splitting each tetrahedron into four hexahedra via

midpoint reinement [Li et al. 1995]. This technique is trivial to implement and always guarantees a correct
result. However, it produces an unstructured mesh with an overly dense singular structure, also containing
four times more elements than the input mesh. Therefore, this approach is unsuitable for real applications. As
will come clear in the remainder of this section, indirect hex-meshing has evolved signiicantly since these
early days and now comprises highly advanced tools to convert a tet-mesh into a much coarser hex-mesh with
cleaner singularity structure. Notably, indirect approaches that cluster tetrahedra to form hexahedra are quite
predominant in hex-dominant meshing (Sec. 4.9).

Most of the techniques discussed in this section make assumptions on the topology and geometry of the input
mesh and are not able to operate on meshes containing topological (e.g., open boundaries, holes, or non-manifold
elements) or geometric (e.g., intersecting or degenerate elements) defects. Methods that operate on a supporting
tetrahedral meshmay leverage robust tetrahedralization techniques such as [Diazzi and Attene 2021; Hu et al. 2020,
2018]. Methods that operate on surface meshes can sanitize their inputs with known robust surface processing
algorithms, such as [Attene 2010; Attene et al. 2013; Cherchi et al. 2020; Zhou et al. 2016].

In addition to the target geometry, algorithms may optionally take as input a variety of other desiderata, such
as target edge lengths or density ields to control local element size and anisotropy, or a list of features that the
output mesh should conform to. Typical features are geometric curves on the outer surface (i.e., sharp creases),
but there may also be additional ones ś both internal and external ś such as separation membranes between
diferent materials, or other forms of semantic attributes. Finally, methods based on guiding ields (see Sec. 4.8)
may also take as input some additional parameters that control the ield generation, or may even assume the
whole guiding ield as an input by itself.

ACM Trans. Graph.

14 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

4.2 Output

Output meshes must satisfy a variety of requirements, some of them strictly, some others loosely. In the following
we list themost important topological and geometric requirements, also connecting themwith speciic applications
that demand their fulillment. The main topological desiderata are:

• element type: methods that strive for pure hexahedral meshing must ensure that all their cells are
topological cuboids made of 8 vertices, 12 edges, and 6 quadrilateral faces. This requirement is loosened
for hex-dominant methods, where spurious non-hex elements may be present in the output mesh. This
topological freedom is not unlimited, and may be bounded by the speciic application. In fact, methods for
the numerical solution of PDEs often require non-hex elements to belong to a restricted class of polyhedra.
For example, the Poly-Spline Finite Element Method [Schneider et al. 2019] demands that all mesh elements
(non-hexahedra included) have quadrilateral faces, and enforces this property through mesh subdivision if
the input mesh does not fulill this requirement. Similar restrictions are also imposed by alternative methods;

• local structure: topological limitations may apply not only at a local (per element) level, but also involve
clusters of adjacent cells. For instance, the Poly-Spline Finite Element Method [Schneider et al. 2019]
requires that two non-hex cells are not face-, edge-, or vertex-adjacent, and also that non-hex cells are
not exposed on the boundary. More generally, many methods that employ higher order basis functions
can handle just a few local conigurations, and put constraints on the local mesh patterns. This holds for
both hex and hex-dominant meshes. For example, the blended spline method for unstructured hexahedral
meshes proposed in [Wei et al. 2018] embraces only a small fraction of the possible singularities that are
created by the meshing methods surveyed in this section. To this end, the intricate mesh connectivity
generated by grid-based methods can be extremely challenging [Livesu et al. 2021];

• global structure: depending on how the singular elements align, the mesh may or may not have a coarse
block structure (Sec. 2.4). While basic numerical schemes like the Finite Element Method operate at a local
(per element) level and may not exploit this property, block-structured meshes may be highly important for
methods that employ tensor product constructions per block, for multi-grid solvers that rely on a hierarchy
of nested meshes, and also for mesh compression [Tautges 2004];

• conformity: some hex-dominant methods restrict their output to a narrow class of alternative polyhedra
(e.g., permitting only tetrahedra and hexahedra). On the positive side, this restricts the alternative types of
cells that applications must handle. On the negative side, the resulting meshes may be non-conforming,
meaning that structural discontinuities arise between elements that are geometrically but not topologically
adjacent (due to T-junctions). Topological continuity can be restored using special connector elements of
zero volume. Nevertheless, the resulting meshes (with or without connectors) are not supported by all
numerical solvers, and dedicated numerical schemes (e.g., Discontinuous Galerkin [Chan et al. 2016]) must
be used.

From the geometric point of view, the output meshes should faithfully represent the target shape, preserve its
prescribed features (if any), and be composed of well-shaped elements. More precisely, the main geometric

desiderata are:

• idelity: geometric idelity is achieved by construction by methods that generate hex meshes conforming
to an input quadrilateral surface mesh. Conversely, many other methods typically deviate from the target
geometry and may only produce a geometric approximation of it. Just a handful of methods provide strict
guarantees on the maximum (Hausdorf) distance from the reference geometry, whereas in many cases an
approximation of the input geometry without strict error control is produced. Depending on the complexity

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 15

of the input shape, signiicant deviation from the target geometry may be present;

• features: special care must be taken for input features such as sharp creases. While the general require-
ment is the same as for geometric idelity, imprecision in the geometric approximation of features is both
aesthetically much more evident and may also have a signiicant impact in the solution of the PDE (e.g.,
when studying the aerodynamic low around creased objects). Feature alignment requires that sequences
of edges of the hex-mesh conform to feature curves, otherwise some deviation is inevitable, regardless of
resolution (Fig. 8);

• quality: the assessment of the quality of a mesh is a major topic by itself [Knupp 2007] that is only touched
upon in this survey (Sec. 3). It is important to note that the relation between mesh quality and, e.g., the
quality of a numerical solution of a PDE may heavily depend on the concrete problem as well as on the
solver at hand. While a common requirement is that all mesh elements are valid (everywhere positive
Jacobian determinant of the geometric map), diferent numerical schemes may demand the fulillment
of additional requirements. Shape regularity criteria for the Finite Element Method (FEM) are mostly
concerned with star-shapedeness and avoidance of large angles [Ciarlet 2002; Shewchuk 2002; Zlámal
1968]. As recently shown, these methods can be modiied in order to even cope with badly shaped elements,
locally selecting higher order basis that compensate for the lack of geometric quality [Schneider et al.
2018]. In Computational Fluid Dynamics (CFD) it can be beneicial to use meshes that are orthogonal,
meaning that the interface between two shared elements and the line connecting their centroids form a
right angle [Aqilah et al. 2018; Moraes et al. 2013]. The Virtual Element Method [Beirão da Veiga et al.
2014] assumes that all mesh faces are planar. Considering this jungle of metrics that are relevant for one
numerical method or the other, general purpose algorithms are often not suited to address these speciic
criteria at the mesh generation stage, but mainly strive to create meshes with valid elements, possibly
attempting to address further quality concerns in post processing (Sec. 6).

The methods surveyed in the following typically aim to create łgoodž meshes according to a subset of the criteria
above. Fully and equally embracing both topological and geometric requirements at once can be a huge challenge,
and many methods put a stronger focus on one aspect over the other. Some methods focus more on the topological
aspects and may produce well structured meshes containing (near) degenerate or even invalid elements. Some
others may guarantee valid elements or even lower bounds on certain geometric quality measures but produce
meshes with a highly irregular topological structure. Both laws can potentially be alleviated to some extent in
post-processing, using dedicated algorithms for structure simpliication (Sec. 5.5) or geometric enhancement
(Sec. 6). Certainly, topology and geometry are coupled to some extent. For instance, a mesh with poor topological
structure often inevitably contains poorly shaped elements as well (Fig. 7).

4.3 Advancing/Receding Front

First attempts to algorithmically generate hexahedral meshes were made by extending 2D advancing-front algo-
rithms that generated full quadrilateral meshes. Starting from a quad-meshed boundary, algorithms like [Blacker
1996; Blacker and Meyers 1993] incrementally insert hexahedra starting from the boundary. The volume is
progressively illed until inal small voids are solved with simple patterns made of a few hexahedral cells. Such
an approach is challenging on two main points. First, fronts can collide during their generation, and geometrical
intersection must be performed. Owen and Sunil [2000] solve this issue by preserving a hybrid mesh during the
whole process. Every created hex is inserted into this mesh, and front collisions are easily detected. The second
point is much more problematic: there is no guarantee that the process will eventually generate a usable full
hexahedral mesh. Starting from an even number of quads on the boundary of a remaining void, a structural

ACM Trans. Graph.

16 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 8. Incorporating an input feature network (let, bold lines) into the output hex-mesh is not possible if the connectivity

does not align to it (middle let), even refining the mesh (middle right). Key to feature preservation is the ability to align

surface edges to the input network, carefully positioning mesh singularities (right). Image from [Livesu et al. 2020].

decomposition into a set of hexahedral elements is guaranteed to exist [Mitchell 1996], but the geometrical quality
of hexes can be very low. And if one ends up with an odd number of quads surrounding a remaining void, one
cannot ill it up with hexahedral elements at all, necessitating a backtracking of the front propagation (with no
general guarantee to perform better the next time). The main reason for this inlexibility lies rooted in the fact
that one cannot easily perform structural modiications on a 3D hexahedral mesh in a local manner (cf. Sec. 5).
Considering the problem as being over-constrained, the next generation of advancing-front algorithms do

not start from a quadrilateral boundary mesh, but rather from the geometric surfaces [Staten et al. 2006, 2010a,
2005]. Complete layers of hexahedral cells are inserted in the domain until they collide. Final cavities are easier to
ill, but this process can fail, too. In [Ruiz-Gironés et al. 2012], the authors adopt the advancing-front technique.
Considering that the inal cavities that remain may be diicult to mesh, they use an inside-outside mesh generation
approach that requires as an extra input an inner seed, which is a hexahedral mesh of a possible inal cavity. Two
solutions of the Eikonal equation are then computed: one going inward from the boundary of the geometric
domain; another one going outward starting from the surface mesh of the inner seed. Both solutions are then
combined to deine a smooth distance function, and an advancing-front algorithm is performed to expand the
quadrilateral surface mesh of the inner seed towards the unmeshed external boundary using the distance function
to locate points of each layer of cells. This process is used in practice to mesh the outside of objects like aircraft
(for aerodynamics problems, for instance). But it remains limited to geometric domains that are homeomorphic
with the sphere, and the domain must not have sharp features.

In general, advancing-front approaches are not reliable enough to generate a good quality hexahedral mesh for
general domains. They strongly depend on the boundary mesh structure and the compatibility of this structure
with the restrictive structure of hexahedral meshes. Often, this compatibility is not given, since the boundary
mesh generation process is unaware of the structural and geometric constraints imposed by the to-be-created
hexahedral mesh. As a consequence, they, e.g., fail to connect fronts when they collide (see Figure 9). Moreover,
most of the proposed works deal with the extra constraint of starting from a pre-meshed boundary. This constraint
is strongly related to the meshing process, which consists of meshing a complex assembly of parts where meshes
must be conforming along part interfaces.

4.4 Dual Approaches

Taking a dual perspective in the context of mesh generation, i.e., focusing on the dual representation of a
hexahedral mesh (Sec. 2.2), has proven to ofer certain beneits.

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 17

Fig. 9. Example of advancing-front progression to fill in a geometric 3D shape starting from diferent pre-meshed boundary.

On the let, it succeeds in geting a valid hex-mesh, while it fails on the right. Image from [Ledoux and Weill 2008].

Dual Advancing Front. For one, the interpretation of the advancing front approach (discussed in Sec. 4.3) in
the dual domain can reveal interesting structures, simplify the formulation of constraints and rules, and provide
additional intuition. This dual view is taken in the so-called Whisker Weaving [Tautges et al. 1996] method and its
variants [Folwell and Mitchell 1999; Kawamura et al. 2008; Ledoux and Weill 2008]. These start from a prescribed
surface quad-mesh that is to be matched by the hexahedral mesh to be constructed. Accordingly, the quad-mesh’s
dual loops form the prescribed boundaries of the hex-mesh’s dual sheets. The algorithms’ objective thus is
to determine the dual sheets ś in particular their mutual intersection combinatorics ś inside these prescribed
boundary curves.

The addition of a next hexahedron in the course of an advancing front approach can be interpreted in the dual
as (combinatorially) ixing the intersection of three dual sheets [Tautges et al. 1996] or as locally (combinatorially)
contracting one of the sheet boundary loops, conceptually ixing part of the dual sheet and leaving the loop as
the boundary of that part of the sheet that is yet to be determined [Folwell and Mitchell 1999]. The dual view
enables the formulation of local and semi-local rules and heuristics to more favorably steer the incremental mesh
construction process [Folwell and Mitchell 1999; Ledoux and Weill 2008]. Nevertheless, issues such as poorly
shaped elements, inverted elements, or high valence vertices in the result are not easy to avoid in general, even
with this dual perspective.

A particular challenge for this approach is posed by the (very common) existence of self-intersecting dual loops
in the prescribed boundary quad-mesh. While there is no general theoretical obstacle to the successful meshing
of these, such loops need to be brought into pairwise or manifold correspondence and be illed by common sheets
of non-trivial topology. It is unclear how the process can be steered to naturally establish this required structure
in general; therefore, degenerate elements (so-called knives, Fig. 32) and inverted elements are common in the
result in these cases. Various strategies (with more or less severe negative side efects on quality) have been
proposed to modify the quad-mesh to get rid of such self-intersections in advance [Folwell and Mitchell 1999;
Kawamura et al. 2008; Müller-Hannemann 2001; Müller-Hannemann 2002].

ACM Trans. Graph.

18 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Dual Sheet-by-Sheet. Besides these alternative interpretations of advancing front methods, the dual perspective
gives rise to a further class of methods, less local and incremental. A general challenge faced by algorithms that
attempt to construct hex-meshes in an incremental fashion (like those discussed in Sec. 4.3) is to ensure that łthings
work out in the endž. Without careful look-ahead, one may easily end up in intermediate conigurations that
cannot be completed in either a valid or a qualitatively reasonable manner. Algorithms that, by contrast, approach
the problem of mesh generation in a global manner, e.g., via global optimization formulations (cf. Sec. 4.8), on the
other hand, can be computationally much more intensive.

The dual perspective permits an interesting incremental approach on a semi-local level. Instead of individual
cells, entire dual sheets can be considered as the atomic entities for incremental mesh generation in the dual
domain. For the case of quadrilateral mesh generation, which is in close analogy to the hexahedral mesh generation
scenario, the advantages of this semi-local dual view for the purpose of incremental construction have been
discussed in depth [Campen et al. 2012; Campen and Kobbelt 2014]. Similar properties hold in the hexahedral
case, as is exploited by a number of algorithmic approaches. However, while in the quad case the dual is formed
by chords, which are 1-manifolds (i.e., either a loop or a curve with two endpoints, possibly self-intersecting in
points), in the hex case the dual consists of sheets, which are 2-manifolds of arbitrary genus and with an arbitrary
number of holes, possibly self-intersecting in curves. Therefore, the problem is of signiicantly higher complexity
and algorithms often restrict to sub-classes of problem instances for simplicity, such as objects of genus 0, sheets
with a single boundary loop, or dual loops without self-intersections. An idea of inserting dual sheets in a
divide-and-conquer manner was outlined by [Calvo and Idelsohn 2000]. A concrete algorithm for incremental
hex-mesh construction based on sequential dual sheet generation is described by [Müller-Hannemann 2001].
The boundary geometry along an entire candidate sheet is assessed in the decision-making process. In contrast
to related methods that can be interpreted as operating in a sheet-by-sheet manner [Folwell and Mitchell 1999;
Ledoux and Weill 2008], this algorithm preserves an invariant through all intermediate stages that strictly avoids
combinatorially invalid conigurations. This obviates the need for intermediate repair operations and guarantees
the absence of degenerate elements such as knives or wedges (Fig. 32). On the downside, the more restrictive
sheet selection rules that are in place to ensure the invariant can bring the algorithm to an early halt. Rather
expensive back-tracking strategies can be used as a remedy to some extent. By the introduction of additional
rules for the selection of sheet operations [Kremer et al. 2014] in particular non-convex shapes can be handled in
a more geometry-aware manner, commonly leading to less distorted (or less inverted) mesh elements.

Free Boundary. The abovemethods assume that a quadrilateral mesh of the domain boundary is given, efectively
as a starting point for the incremental construction. The ability to prescribe a boundary mesh can be seen as an
advantageous feature in some scenarios (e.g., when adjacent domains are to be meshed separately but compatibly).
In others, it rather is a limitation: it restricts the meshing algorithm from the set of all hex-meshes suitable for the
domain to a (small) subset. Recently there have been irst attempts to construct hex-meshes on a sheet-by-sheet
basis without predetermined boundary structure. Instead, they exploit interactive user guidance along the domain
boundary [Takayama 2019] (Fig. 10), or loosely follow principal curvature directions [Livesu et al. 2020] to
construct loops which then serve as sheet boundaries. It is worth remarking that the latter method essentially
outputs a subdivided version of the primal mesh that is implied by the sheets; this has the efect that the sheets
appear as primal facet sheets in the output mesh. Nevertheless, conceptually both methods are to be viewed as
dual approaches.

Due to the larger search space compared to methods with prescribed boundary mesh, they conceptually have
the potential to achieve results of better quality ś but at the same time are computationally more expensive and
require a user in the loop [Takayama 2019] or make simpliications sometimes leading to meshes that contain
some non-hex elements [Livesu et al. 2020].

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 19

Fig. 10. Interactive sheet-based hex-mesh modeling. Image from [Takayama 2019].

In this context, the interesting question is that of eicient geometric sheet representation ś while in the above
methods assuming a prescribed boundary-mesh, a non-geometric combinatorial representation was employed
for simplicity. An implicit representation by means of a level set formulation has proven eicient [Takayama
2019]. It, however, does not support self-intersecting sheets, which would grant higher lexibility and enable
better mesh quality in various cases. Another, discrete sheet representation space is described by [Roca and
Sarrate 2008], embedding sheets in the facets of a particular tessellation of the domain; a concrete algorithm that
operates in this space has not been addressed yet.

Dual Validity. Generally, when constructing hex-meshes out of dual sheets, it needs to be considered that not
any arrangement of intersecting sheets implies a primal hex-mesh. A number of conditions need to be satisied
so as to avoid non-manifold conigurations and self-adjacent elements, as detailed by [Mitchell 1996]. Violating
sheet arrangements can be modiied, often through the insertion of additional sheets, to ensure these conditions
are met [Folwell and Mitchell 1999]. As these modiications not rarely have a negative impact on (geometrical
and structural) mesh quality, a relevant challenge is to avoid the need for them right from the start.

4.5 Domain Decomposition

Early proposals for automatic domain decomposition relied on simple topological operations like submapping
and sweeping [White et al. 1995], that were mainly trying to incorporate the knowledge of the users upon the
two-dimensional domain to expand the decomposition to the third dimension with a sweeping step.

Sweeping. Given a volume represented by a closed surface, by identifying two patches where one serves as the
source and the other one as target, a hexahedral mesh can be generated through łsweepingž the quad-meshed
source over the volume to the target [Shih and Sakurai 1996]. This simple idea is very suitable for CAD models
since many shapes are formed by extrusion. The irst batch methods using such an idea focus on shapes that
can be easily meshed by identifying one source and one target, which are called one-to-one methods [Blacker
1996; Liu and Gadh 1997; Liu et al. 1999]. However, for slightly complex CAD models, more source or target
patches have to be involved in decomposing the extrusion geometry into simpler one-to-one sub-volumes for
easy processing.
A step ahead towards automatic decomposition is presented by Lu and colleagues [2001] that suggest recog-

nizing in a CAD model the characteristics of portions that can be treated as submappable. The pipeline uses
irst a feature recognition, then a cutting plane identiication, and, inally, a decomposition to mesh each portion

ACM Trans. Graph.

20 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

with predetermined schemes. Along this direction, a set of many-to-one and many-to-many approaches are
developed [Lai et al. 2000; Scott et al. 2006; White et al. 2004; Wu and Gao 2014; Wu et al. 2018]. These methods
often rely on speciic rules to detect line and planar features, such as various angle thresholds, so that the
3D model can be decomposed into sub-volumes having the same sweeping direction. If the decomposition is
successful, various node insertion tricks for the sweeping can be employed to ensure the high quality of the
generated hex-mesh [Knupp 1998; Ruiz-Gironés et al. 2011; Staten et al. 1999]. There are also approaches that
allow multiple sweeping directions by computing a hierarchical sub-geometry structure [Miyoshi and Blacker
2000].
Kowalski and colleagues [2012] introduce the notion of fundamental sheets (fun-sheets), noticing that a

hexahedral mesh is layered, in opposition to the lack of reference surfaces typical of tetrahedral meshes. Starting
from a tet-mesh, converted in a hex mesh and identifying these fun-sheets, using topology and geometry of the
shape, they obtain a better decomposition that catches the intrinsic characteristics of the shape. This approach is
further enhanced in [Wang et al. 2017].
An interesting approach to the problem is the one presented by Lu and colleagues [2017]. They design

and implement a sketch-based decomposition tool and evaluate its performance on a group of beginners and
experienced users. They conclude that visual assistance and a geometric reasoning engine can help to obtain
excellent results from a semi-automatic decomposition.

Medial Descriptors. Medial descriptors are a valid proxy in helping to realize a domain decomposition. Both
mechanical objects and free-forms are possible to identify characteristics, mainly the skeleton catching the
crucial elements of the shape’s mutual relations. A three-dimensional shape’s skeleton is, in fact, a topological
representation of the shape capable of providing information regarding the various boundary entities’ relative
positions. The skeleton has been used in multiple methods to help in generating a hexahedral mesh inside the
shape (see e.g., Fig. 11). When dealing with mechanical objects, usually containing boxes, it is vital to use the
general skeleton (or medial object), including surfaces. Shapes more related to biology which can be approximated
with a collection of generalized cones can be easily represented by their curve-skeleton (or medial axis). Both
these proxies have been used to guide the hex-meshing.
Price and colleagues introduced the possibility to use the topological skeleton of the shape to produce a hex-

mesh. They apply it irst on convex shapes [Price et al. 1995], and then on solids with lat and concave edges [Price
and Armstrong 1997]. The idea is to decompose the domain so that each sub-domain can be hex-meshed using a
midpoint subdivision scheme [Li et al. 1995]. Each sub-domain is meshed using basic primitives that can be placed
using the skeleton and used as elementary blocks to mesh the original domain. The topological information
guides the choice of the correct primitive. There are limitations in the approach since high-valence boundary
vertices do not have elementary schemes placing them.

Instead of using the skeleton, Shefer and colleagues [1999] start from the embedded Voronoi graph of the
domain, which is simpler to create. Using a set of conigurations that include the Voronoi graph’s local topology,
it can decompose the domain in sweepable subdomains that can be combined and smoothed to yield the inal
decomposition of the whole domain. Through the computation of a harmonic ield, a general 3D model can be
decomposed into 2D curved slices where quad-mesh templates can be used to form a large structure decomposition
of the 3D model [Gao et al. 2016].
Zhang and colleagues [2007] exploit the particular shape of the vascular structure to devise a method that

uses the curve skeleton as a basis for the meshing. It is the irst proposal in which there is decomposition in
tubular subdomains that are quite simple to mesh via sweeping. The uniform diameter of the typical vases
treated in the application does not pose the problem of resolution in the elements. Usai and colleagues [2015]
use the curve-skeleton to derive a quadrilateral base complex given the triangular mesh of shape. The surface
decomposition can be expanded to the domain’s interior and lead to a method for hex-meshing [2016]. In this work,

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 21

Fig. 11. Skeleton driven hex-meshing starts from an input surface mesh and line skeleton (let), around which a tubular

structure composed of hexahedral boxes is initialized (middle let). Refining this structure and projecting it on the target

surface yields a hexahedral mesh (middle right) where the distribution of the mesh elements aligns with the skeleton guiding

curves (right closeup). Image from [Livesu et al. 2016].

a scheme for keeping the mesh elements uniform while the diameter of the subdomains changes is introduced
and applied. Another similar approach [Livesu et al. 2017] employs solid cylindrical parameterizations to map
from the curve-skeleton to the cylindrical subdomains. This choice allows a simple but efective way to use the
topological information to generate the hex-mesh.
All the methods described in the previous paragraph work ine only for models resembling collections of

generalized cones.
Quadros [2014] also uses the skeleton as a starting point for meshing and, combining it with an advancing

front approach, can create hex-dominant meshes. The surface and the skeleton jointly contribute to form what
the author calls corridors that are the basis for meshing the domain with an advancing front method.

Cai and Tautges [2015] propose an approach that heavily relies on integer programming due to the classiication
of the edges for their parameterization. It is in line with the topological methods since it introduces a new set of
templates that, once applied to the class of objects they use in their experiments: mechanical parts.

Another interesting approach [Liu et al. 2015] mixes skeletal representation of the shape and polycubes to guide
the creation of the hex-mesh. The resulting meshes are non-conforming, including T-junctions. Another type of
non-conforming decomposition, the so-called motorcycle complex [Brückler et al. 2022b], can be constructed
guided by a seamless parametrization (cf. Sec. 2.5). This decomposition has hexahedral subdomains only, and can
be reined into a conforming hexahedral mesh.

Once a suitable decomposition is computed, submapping or sweeping approaches can likely generate hex-
meshes with satisfactory quality. For example, [Wu et al. 2017] can be employed to irst generate a quadrilateral
mesh for interfacing surfaces while ensuring conformity among adjacent sub-volumes, and then apply the
straightforward sweeping to generate the inal hex-mesh. However, up to now, the critical issue still lies in how
to robustly decompose a 3D model into sweepable sub-volumes while ensuring the necessary conformity and
feature preservation at the interfaces of diferent parts. Industry resolved this issue by putting the user in the
loop, relying on manual block decomposition and automatic sweeping as a workhorse for hex mesh generation

ACM Trans. Graph.

22 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

hanging

nodes

Primal

polyhedral

grid

Dual

hexahedral

mesh

F
R
O
N
T

B
A
C
K

Fig. 12. Dual methods regularize the valence of hanging nodes (black dots) by connecting them pairwise along triangular

bridges, so that the dual is a hex-mesh. Top: the flat transition firstly introduced in [Maréchal 2009]. Botom: the set of

atomic schemes introduced in [Livesu et al. 2021] to handle all possible transitions in strongly and weakly balanced grids.

Images partly from [Livesu et al. 2021].

in commercial software [Altair 2022; ANSYS 2022]. Automatizing the process and freeing the user from tedious
critical work is an open challenge for future methods in this family.

4.6 Grid based

A hex-mesh can be trivially created by voxelizing the interior of a closed surface and then projecting its boundary
onto the target geometry [Schneiders 1996a]. Geometric idelity can be controlled by tuning the resolution of the
voxelization. Since the size of regular grids grows cubically, to reduce element count a set of adaptive spatial
partitioning approaches that rely on hierarchical structures have been proposed. However, adaptive grids do
not deine a conforming hex-mesh because adjacent grid elements may have diferent size, generating spurious
(hanging) nodes. Grid-based methods difer to each other for the reinement policy they use, for the technique
used to suppress hanging nodes, or for the method used to project the mesh on the target geometry.
Methods in this class are among the irsts that were introduced in the ield. From a mesh quality standpoint,
they are typically considered inferior to other methods because: (i) the grid is ixed in space and the result
depends on the orientation of the model; (ii) the connectivity they generate is intricate and rich of singular
edges with high valence [Livesu et al. 2021]; (iii) the meshes they generate are highly unstructured and do
not endow a coarse block decomposition (see Fig. 1 and Fig. 21 in [Livesu et al. 2020]). Nevertheless, when
compared with alternative options grid-based methods really stand out in terms of robustness. To date, they
are the only fully automatic methods capable of successfully hex-meshing any input shape, regardless of its
geometric or topological complexity. For this reason, they are the only automatic methods currently implemented
in professional software [CoreForm 2022a; CUBIT 2022; Distene SAS 2022]. Despite the most prominent methods
were developed more than 10 years ago and the ield remained quiet for some years, major improvements have
been proposed in recent years, also opening avenues for further research.

Reinement. Grids should satisfy both local and global criteria. At a local level, cell size must be compatible
with the local size of the input object, ensuring geometric idelity. At a global level, it must be possible to select
a subset of grid elements (e.g., the ones completely internal to the input shape) such that the topology of this
arrangement matches the one of the original object. In case the grid and the input mesh are not homotopic, a

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 23

Fig. 13. A subset of the 3-refinement schemes introduced in [Schneiders 1996b]. The letmost and rightmost elements

correspond to the unrefined and fully refined cubes, respectively. The other templates are used to manage the transition

between them.

bijective mapping between them is not possible. Local criteria are easier to enforce. The most typical split rules
used in the literature are normal similarity [Ito et al. 2009], local thickness [Livesu et al. 2021; Maréchal 2009;
Pitzalis et al. 2021], surface approximation [Gao et al. 2019] or a combination of these and other indicators [Bawin
et al. 2021]. The fulillment of global criteria is more complex and demands to preprocess the input shape [Mitchell
and Vavasis 1992]. For this reason, the vast majority of methods do not guarantee that the output hex-mesh will
have the same genus and number of connected components of the input model [Livesu et al. 2021; Maréchal
2009; Pitzalis et al. 2021], or ensure this property at the cost of severe over reinement (e.g., iteratively splitting
all grid elements until topological equivalence is obtained [Gao et al. 2019]). Reined cells can be split in two
alternative ways: 2-reinement splits each edge in two, thus obtaining 8 sub-cells for each adjacent hexahedron;
3-reinement splits each edge in three, thus obtaining 27 sub-cells. In both cases, the sequence of splits is encoded
in a hierarchical tree structure, which corresponds to an octree for the 2-reinement, and to a 27-tree for the
3-reinement. Approaching this body of literature for the irst time may be confusing, because all methods
generally refer to these data structures as łoctreesž, even though this is not always correct. The use of 27-trees
for 3-reinement is explicitly mentioned in [Schneiders et al. 1996] and a few other articles, and is only implicitly
assumed in other articles that refer to these ones.

Hanging Nodes. The removal of hanging nodes is obtained by substituting elements of the grid with templated
topological transitions that locally restore mesh conformity (Fig. 12). If adjacent grid elements difer by at most
one level of reinement there exist 28 alternative conigurations which, discarding symmetries, reduce to 20
unique cases [Weiler et al. 1996]. Existing methods can be broadly categorized into two families: primal methods
aim to directly incorporate the hanging nodes in the output hex-mesh; dual methods aim to modify the input
grid such that its dual mesh contains only hexahedral cells.
Primal methods often operate on 3-reined grids and 27-trees, because it is easier to suppress their hanging
nodes [Schneiders et al. 1996]. However, handling all the possible 20 conigurations is provably impossible,
because many concave transitions are bounded by an odd number of quadrilateral elements, a condition for
which it is known that a hexahedralization of the interior does not exist [Mitchell 1996]. Transition schemes for
4 lat and convex transitions (see Fig. 13) appeared in multiple articles [Schneiders 1997, 1999, 2000; Tack et al.
1994] and were successfully used to compute hexahedral meshes, prescribing additional reinement to convert
unsupported transitions into the supported ones. Over the years additional schemes were introduced to handle

ACM Trans. Graph.

24 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 14. 2D pipeline of the feature preservation octree-based hex-meshing. Top row: adaptive quadtree constructed from the

input, dual of the quadtree, and quadrilateral (quad-) mesh including a scafold mesh. Botom row: topological matching of

feature graphs, variational padding of both the target mesh and the scafold, mesh deformation to fit the input, and the final

pure quad-mesh. Image from [Gao et al. 2019].

concave edges [Elsheikh and Elsheikh 2014; Ito et al. 2009; Zhang and Bajaj 2006], but a correct handling of
concave corners remains elusive. Several works, like [Ebeida et al. 2011; Owen et al. 2017; Zhang et al. 2013],
exploit the 2-reinement schemes introduced in [Schneiders et al. 1996] to remove hanging nodes. Unlike from
the 3-reinement approaches, the grid needs to satisfy more strict constraint as those described below for dual
methods. Note that, as for the 3-reinement case, the schemes in [Schneiders et al. 1996] do not allow to address
all the possible conigurations, often leading to an excessive over-reinement of the grid.
Dual methods operate on 2-reined grids and octrees, and are superior to primal methods because they can handle
all possible transitions. All known schemes operate on balanced grids, that is, grids where the reinement mismatch
between adjacent elements is at most one. However, not all methods agree on the deinition of ładjacentž. For the
majority of methods two cells are adjacent if they share one face, edge or vertex (strong balancing). In [Livesu
et al. 2021] the authors relaxed this formulation, enlarging the class of balanced grids and limiting restrictions
to size mismatch only for cells sharing a face (weak balancing). Weakly balanced grids permit to greatly reduce
reinement (up to 64% less elements in their experiments), but require a slightly more complex scheme set.
Maréchal was the irst to observe that if all grid vertices have valence 6 and all grid edges have valence 4, the dual
of the grid is a pure hexahedral mesh [Maréchal 2009]. Based on this observation he proposed a set of cutting
schemes that, regularizing the valence of grid elements, allow to obtain a pure hexahedral mesh via dualization
(Fig. 12).

Since the valence of hanging nodes is ixed pairwise, dual methods also require that the grid is pair, that
is, for each cluster of grid elements with same amount of reinement the number of hanging nodes must be
even across all grid directions. Diferently from balancing, the pairing condition is non local, hence diicult to
enforce. Pairing is typically enforced directly in the octree, fully splitting parent nodes if their siblings have been
split [Gao et al. 2019; Hu et al. 2013; Livesu et al. 2021; Maréchal 2009]. As shown in [Pitzalis et al. 2021] all
these methods operate in a restricted space of solutions and tend to severely over reine the input grid, even if
it is already pair. The authors showed that pairing can be enforced directly in the grid by solving a sequence
of linear problems, obtaining coarser grids that approximately halve the number of elements. Despite superior
to tree-based methods, also this method does not cover the whole space of solutions, and may occasionally
reine an already pair input grid (see Sec. 7 in [Pitzalis et al. 2021]). Even though dual approaches exist since
2009, the transition schemes they use were only vaguely described in the literature, making these methods
hardly reproducible. Maréchal [2009] pioneered this technique, but his paper describes in detail only one speciic
transition (Fig. 12, top). Gao and colleagues proposed three alternative schemes based on similar ideas [Gao et al.

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 25

Fig. 15. If a quad maps two of its four edges onto a linear feature line it becomes locally degenerate (let). Spliting it into 5

sub-quads ensures enough degrees of freedom to produce all valid mesh elements. Similar configurations may also occur on

3D meshes, and can be resolved with a special padding scheme that splits a hexahedron into 6 sub elements (right). Image

from [Gao et al. 2019].

2019], also releasing their code, but these schemes were recently shown to be not fully exhaustive and may fail to
produce a conforming hex-mesh starting from a balanced and paired grid [Livesu et al. 2021]. In [Livesu et al.
2021] the authors propose a comprehensive study of dual schemes, clarifying ambiguities and implementative
choices, and ultimately deriving an exhaustive optimal set of transitions for both strongly and weakly balanced
grids (Fig. 12, bottom). CinoLib [Livesu 2019] hosts an open source implementation of all such schemes, as well
as the code necessary to install them in a given adaptive grid.

Projection. Considering the axis-aligned nature of grid-based methods, to approximate the input object well
the boundary vertices have to be projected onto the target geometry. To this end, maintaining the inversion-free
property of a hex-mesh poses a great challenge. While [Lin et al. 2015; Maréchal 2009] rely on iterative vertex
smoothing to slowly move the vertices onto the boundary so that a local smoothing can be backtracked if it
causes lipped hexahedra, [Gao et al. 2019] presents a global deformation method that can robustly align the
generated hex-mesh with the input surface (including sharp features) within a distance bound. Fig. 14 shows the
2D pipeline of the method presented in [Gao et al. 2019]. After grid reinement and removal of hanging nodes,
the grid is partitioned into two sub-meshes: an inside łtargetž mesh that will be optimized to be the inal output,
and an outside łscafoldž mesh that ensures the bijectivity of the map throughout the optimization process.
Geometric idelity is achieved by irst building a topological bijectivity mapping between the input mesh and the
boundary of the target mesh, and then geometrically deforming the target mesh towards the input surface shape
using a locally injective mapping technique [Rabinovich et al. 2017]. Note that a variational padding technique
(see Sec. 5.4) is also introduced for both the target mesh and the scafold, so as to increase the number of degrees
of freedom for optimization. The approach can robustly produce an all-hexahedral mesh with several guarantees:
1) the output is manifold and its boundary surface has the same genus with the input, (2) all hexahedral elements
have positive scaled Jacobian (3) the boundary of the hex-mesh is error-bounded, i.e., within ϵ distance from the
input mesh, and (4) the boundary of the mesh has no self-intersections thanks to the scafold mesh. All of this is
obtained by trading robustness for eiciency, thus computational cost and memory resources can be prohibitive
for commodity hardware. On the other hand, iterative methods such as [Lin et al. 2015; Maréchal 2009] are quite
eicient, although may occasionally fail to preserve the shape well. Further research is needed to devise an
algorithm that optimally combines robustness, eiciency and geometric idelity.

ACM Trans. Graph.

26 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 16. The pipeline for polycube based hexmeshing generates a locally injective simplicial map through volumetric

deformation, and then uses it as a medium to transfer a regular grid sampling of the polycube to the target shape.

Features. The preservation of sharp surface features is both geometrically and topologically challenging for
grid-based approaches. First of all, since the mesh connectivity is derived by the underlying grid, surface vertices
may not have enough incident edges to reproduce high valence feature points in the target mesh. Therefore only
a subset of all possible feature networks can be faithfully reproduced. Moreover, hexahedra that have more than
one facet exposed on the surface may easily be traversed by feature lines across more than one edge, becoming
ill-shaped or even degenerate once projected onto the target geometry. To make sure that each element has at
most one feature edge, speciic padding schemes are used (Fig. 15 and Sec. 5.4). Finally, despite the fact that it
works well in most cases, current algorithms for feature mapping are heuristic and do not ofer guarantees. The
most recent methods are based on ideas expressed in [Gao et al. 2019], and operate by iteratively processing
each feature separately, projecting its endpoints to the closest vertices in the hex-mesh, and then inding the
discrete path that connects them with a Dijkstra search that operates on a scalar ield that encodes the euclidean
distance from the input feature. Depending on the ordering of the features and the combinatorial structure of the
hex-mesh, there can be conlicting conigurations where a path that connects the two endpoints of a feature and
does not conlict with any previously inserted feature does not exist. Furthermore, even if such a path exists,
there may be cases in which the previously inserted features force a path to deviate from its geometric target
signiicantly.

Assemblies and Multiple Materials. While all methods described so far assume as input a single model composed
of a single material, grid-based techniques have been successfully extended to the multi material case [Su et al.
2004; Zhang et al. 2010], and can also handle complex non manifold CAD assemblies [Qian and Zhang 2012].
From a grid processing perspective, these methods rely on the processing techniques described in the previous
paragraphs.

4.7 Polycube Maps

A successful line of algorithms works by volumetrically mapping a shape into an orthogonal polyhedron (or
polycube [Tarini et al. 2004]) embedded in R3 whose corners align with the integer grid Z3. The integer grid
inside the polycube then deines an (interior-regular) hexahedral mesh connectivity. Its nodes can be pulled back
into the input object following the inverse map (Fig. 16), deining a hex mesh for the object. In this sense, this
approach considers a special case of integer-grid maps (Sec. 2.5), further discussed in Sec. 4.8: the interior of

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 27

Fig. 17. Top: a set of pathological shapes with exemplary surface labelings that will push polycube deformation energies

towards the generation of locally or globally inconsistent states, not defining a proper polycube. Botom: ater strategically

modifying the labeling, a deformation into polycube shape is successful. Image from [Sokolov 2016].

the shape is restricted to be free of map singularities, thus free of irregular edges and vertices in the implied
hexahedral mesh.
Polycube methods are therefore based on two fundamental building blocks: the deinition of the polycube

domain shape, and the generation of the volumetric map onto it. These two objectives can be pursued separately
(i.e., deining a valid polycube domain structure irst, and then computing the map) or together, letting the domain
shape evolve while optimizing the map for low distortion and boundary alignment with the coordinate planes.
The latter can be viewed as (incrementally) deforming the shape in a volumetric manner, aiming to ind the
polycube domain shape best itting the input object.

Structure. The structure of the polycube can be deined by assigning to each surface element of the input
(tetrahedral) mesh a label that represents one of the six global axes (±X ,±Y ,±Z). Clusters of adjacent elements
with the same label identify the facets of the polycube. Various approaches have been pursued to assign labels,
from purely local approaches, assigning to each surface element the axis closest to its normal [Gregson et al.
2011], over approaches taking context into account, e.g. using a modiied centroidal Voronoi tessellation in the
space of normals [Hu and Zhang 2016], to incremental approaches [Mandad et al. 2022]. The idea is to, afterwards,
volumetrically deform the input mesh such that each surface element attains an orientation that corresponds to
its assigned label.

However, not every labeling permits a corresponding polycube. Some correction procedures have been proposed,
to be used as a postprocess or interleaved with the labeling [Gregson et al. 2011; Livesu et al. 2013]. A set of
local conditions is known that allow checking whether the graph formed by a labeling corresponds to the graph
of some orthogonal polyhedron [Eppstein and Mumford 2010]; they can be used to design label modiication
strategies [Livesu et al. 2013]. However, these conditions are neither necessary (they focus on a restricted set of
polycubes) nor fully suicient: suitability of the graph formed by the labeling does not imply suitability of the
labeling itself, because the graph’s embedding is ignored, as pointed out, e.g., by Mandad et al. [2022]. Suicient
conditions are of inevitably global nature, such as those considered by Sokolov [2016], who describes a complex
post-process procedure to modify a labeling into a state structurally suitable for a polycube. Interactive tools for
user assisted polycube construction or modiication also exist [Li et al. 2021; Yu et al. 2022; Yu and Wei 2020].

ACM Trans. Graph.

28 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Mapping. The volumetric map can be obtained using dedicated deformation energies that iteratively deform
the object such that surface normals rotate until they snap to the global coordinate axes. These methods may take
a pre-computed polycube labeling as input [Gregson et al. 2011; Livesu et al. 2013], freely deform the shape until
the polycube structure reveals itself [Fang et al. 2016; Huang et al. 2014; Mandad et al. 2022], or interleave the
two operations, updating the reference labeling after each iteration [Fu et al. 2016]. These pipelines often include
heuristic post-processing steps that aim to remove structural artifacts (e.g., removing label regions with less than
4 neighboring regions). In [2015] Sokolov and Ray point out that there are local as well as global conditions
regarding structural validity, hence complete sanitization can be diicult. In particular, since axis-aligned features
are quite naturally preserved during deformation, the presence of long, slightly diagonal creases may easily
result in globally inconsistent conigurations which are hard to recover from (Fig. 17). Tiny features such as
protuberances, tunnels, and handles are also critical, and may even require input mesh reinement to enable any
valid labeling.

Polycube deformation operates on a supporting tetrahedralization of the object. Early deformation energies
deined in [Gregson et al. 2011; Huang et al. 2014] did not suiciently penalize distorted, degenerate and
lipped elements, producing maps that are not locally injective, especially in the vicinity of concavities. Fu and
colleagues [Fu et al. 2016] introduced a deformation energy that incorporates the AMIPS term [Fu et al. 2015],
which grows to ininity in the presence of degenerate or inverted elements. Various similarly lip-preventing
energies have been introduced in recent years [Fu and Liu 2016; Rabinovich et al. 2017], and could be adopted in
this setting. It is important to note, however, that the strict prevention of lips may reduce the deformation space
to an extent that no map that respects the boundary-alignment constraints can be found, unless further mesh
reinement capabilities are introduced.

Alternatively to volumetric deformation, one can in principle use a surface-based method to deine a polycube-
surface map (e.g., with [Yang et al. 2019]) and then solve for a compatible volumetric mapping between the
two shapes. Again, however, despite the high level of practical robustness showcased by recent approaches [Du
et al. 2020; Garanzha et al. 2021], the fully reliable automatic generation of constrained volumetric maps without
lips remains an open problem [Fu et al. 2021]. Motivated by this diiculty, an interactive polycube construction
pipeline that puts the user in the loop has been recently proposed [Li et al. 2021]. Users are allowed extensive
control over each stage, such as editing the polycube structure, positioning vertices, and exploring the trade-of
among competing quality metrics, while also providing automatic alternatives. The lip-averse mapping energy
proposed in [Garanzha et al. 2021] is internally used to discourage the generation of lipped elements.
The use of alternative mesh representations has also proved useful to robustly construct volumetric mappings.
In [Paillé et al. 2015] the authors represent a tetrahedral mesh as a collection of dihedral angles, and propose
a robust spectral reconstruction method to generate an explicit mesh up to a global similarity transformation.
The use of reduced coordinates to represent and manipulate meshes (e.g. via curvature or edge lengths) is a
broad topic and has been widely studied, especially for the surface case [Campen et al. 2021; Crane et al. 2011].
Speciically, the aforementioned paper shows that any input polycube segmentation can be translated into a set
of prescribed dihedral angles that encode the change of normal orientation along the surface. Using the proposed
reconstruction method allows to convert such angles into an explicit mesh, obtaining a locally injective polycube
map.

Quantization. Beyond piecewise aligning the object’s surface with the coordinate axes, these pieces furthermore
need to be aligned speciically with integer coordinates. Only then does each cubical cell of Z3 lie either entirely
within or without the polycube domain, thereby implying a proper hexahedral mesh. The selection of the integer
coordinates is sometimes referred to as quantization. A common strategy is to, in a irst phase, generate a map
ignoring the integer requirement, and then determining integer choices based on this relaxed solution, followed
by a further deformation to match these choices. A classical approach for the determination of reasonable integers

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 29

Fig. 18. Adaptively sampling a coarse polycube allows to restore major features that are not explicitly encoded in parametric

space (right), and that could not be obtained with a regular sampling (let), not even with a dense one (middle). Image

from [Pitzalis et al. 2021].

is rounding: for each planar surface region of the relaxed solution, select the integer closest to its constant
coordinate. As this simple approach is fragile (especially for coarse target resolutions, incompatible integers
obtained by rounding may force the map into degeneration), dedicated quantization strategies have been devised
[Chen et al. 2019; Cherchi et al. 2016; Protais et al. 2022]. A recent quantization method [Brückler et al. 2022a],
based on the so-called motorcycle complex [Brückler et al. 2022b], prevents degeneration altogether and is
formulated for general integer-grid maps, of which polycube maps are a special case. It can therefore also be
used in the context of frame-ield based map generation methods, discussed in Sec. 4.8.
After quantization, the integer grid cubes contained in the polycube domain can be mapped into the input

object via the inverse map, obtaining a hexahedral mesh. Depending on the curvature of the map, the individual
hexahedra may undergo severe deformation. For instance in the common setting of trilinear hexahedra (cf. Sec. 3),
this can lead to elements with lipped orientation, even if the polycube map is injective. Untangling techniques
may be applied in such cases (Sec. 6), albeit without guarantees of correctness. The resolution of the integer grid
inside the polycube (the łsampling frequencyž), which can be controlled by appropriately scaling the map before
quantization, of course has a signiicant efect on the likelihood of such issues.

Adaptive Resolution. While a regular grid of constant resolution (i.e. Z3) is typically used, adaptive sampling
schemes can be used to control hexahedral element size and anisotropy. Adaptively sampled polycubes can

ACM Trans. Graph.

30 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

be used to improve geometric idelity while keeping the mesh resolution low, and to better capture regions
of high distortion or curvature in the polycube map, restoring major surface features that are missed when
using a regular sampling, unless extremely dense (Fig. 18). In recent literature there are attempts to address size
control, obtained either by thickening a region of interest in polycube space prior to sampling [Xu et al. 2017] or
adapting octree-based meshing to polycube space [Hu and Zhang 2016]. Pitzalis and colleagues [2021] showed
how adaptive sampling can be unlinked from rigid octree hierarchies and extended to generalized grids of any
shape or topology. These preliminary results suggest that a tighter integration of adaptive sampling in polycube
space could beneit the whole pipeline. Current methods heavily rely on the ability of the polycube generation
module to capture all the features of the object (at all scales) so as to secure a high quality mesh structure.
Finding a better balance between features that are explicitly encoded in the polycube and features that will be
reproduced with adaptive sampling, algorithms may be able to better distribute the complexity throughout the
whole pipeline, possibly increasing their robustness. On the negative side, any non-regular sampling introduces
additional irregularities in the mesh, so as to enable the transition between regions of diferent resolution. This
reduces the level of structural regularity (Sec. 2.4) and can make the resulting hexahedral mesh unusable for
applications that exploit a regular interior, or a coarse block decomposition endowed in the mesh connectivity,
such as IGA methods [Hughes et al. 2005].

Features. Desirable properties such as curvature and feature alignment depend on how the polycube map
orients these entities in Z3. In particular, since sharp creases are preserved only if they map to integer isolines in
polycube space, there are intrinsic topological limitations to the class of feature networks that can be correctly
reproduced (e.g., a convex vertex with more than three incoming feature lines cannot be correctly meshed). Since
geometric features are often characterized by surface normal discontinuities, labeling methods such as [Hu and
Zhang 2016; Livesu et al. 2013] intrinsically promote their positioning along polycube edges. Nevertheless, these
methods do not explicitly handle surface features, and may often fail to preserve them [Guo et al. 2020]. To our
knowledge, the only method that explicitly promotes feature alignment is CE-PolyCubeMaps [Guo et al. 2020].
Given an input network, the authors attempt to transform each feature into a piece-wise linear curve that aligns
with the global axes. Features that do not align (or conlict with other features) are discarded; the others are
included in the polycube structure generation, with a feature-aware variant of PolyCut [Livesu et al. 2013]. While
practically superior to previous approaches, also this method does not provide strict guarantees. Furthermore,
features are only mapped to polycube edges, and the possibility to align to integer isolines that are internal to
polycube faces is not exploited.

Maturity. Polycube methods have received increasing attention from the meshing community and have now
reached a decent maturity level. The most recent algorithms allow to blindly process datasets composed of more
than a hundred shapes, producing hex-meshes of good quality [Fu et al. 2016]. In terms of mesh structure, these
methods typically produce valence semi-regular meshes, and may occasionally produce semi-regular meshes
if singularities (i.e., polycube corners) align [Cherchi et al. 2016]. The singular structure of a polycube-based
hex-mesh is fully exposed on the surface, and consists of all polycube edges and corners. This inability to
position singularities in the interior inherently limits the map, and may occasionally be the source of unnecessary
distortion. A recent work of Guo and colleagues [2020] proposes to enhance the singular structure with diagonal
cut surfaces that penetrate the interior of the polycube, permitting further distortion reduction. Intuitively, these
cuts can be thought of as analogous to cone singularities in surface mesh parameterization [Soliman et al. 2018],
although they are more constrained because the two copies of each cut surface must still obey to the constrained
polycube structure. Another typical improvement consists in pushing the external singular structure one layer
inside the volume, adding a global padding layer that avoids over-constrained hexahedra with more than one
facet exposed on the surface (see Sec. 5.4). More sophisticated padding schemes that directly exploit the polycube
map to optimally balance distortion with mesh growth are also available [Cherchi et al. 2019a].

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 31

Fig. 19. Frame field based hexahedral mesh generation: Given an input tetrahedral mesh (let), first a boundary aligned and

smooth frame field is generated (middle, yellow). The frame field serves as a proxy for the local orientation of hexahedra and

thus enables the eficient generation of an integer-grid map (middle, red), which induces a hexahedral mesh (right). Image

from [Liu et al. 2018].

Abstract Polycubes. Various techniques use segmentation (e.g. based on a shape skeleton) to partition a shape,
generating an atlas of maps to a set of face-adjacent cuboidal domains [Li et al. 2010, 2013; Liu et al. 2015; Livesu
et al. 2016; Usai et al. 2015] (closely related to domain decomposition approaches Sec. 4.5), or a map to a single but
self-adjacent polycuboidal domain [Fang et al. 2016; Mandad et al. 2022], related by rigid transition functions. The
latter can be viewed as an integer-grid map (Sec. 2.5) that may have transitions across parameter chart cuts, but
these are restricted such that no interior singularities are implied. This provides additional degrees of structural
freedom on shapes of higher genus. Sometimes these structures are referred to as abstract or generalized polycubes,
emphasizing that these structures may not have a (continuous global) embedding in R3, due to the transitions. In
contrast to standard polycubes, these ś at least conceptually ś enable the generation of any hexahedral mesh
with regular interior. For the generation of such non-embeddable polycubes, extrinsic deformation techniques, as
described above, are typically ill-suited. Instead, intrinsic frame-ield based integer-grid map generation (Sec. 4.8)
may be used, restricted to the interior-regular setting [Fang et al. 2016; Mandad et al. 2022].

4.8 Frame Fields

Frame ields ofer a promising research direction for general hexahedral mesh generation. A prototypical algorithm
(see Fig. 19) consists of three major steps: (i) synthesis of a boundary-aligned frame ield (Secs. 4.8.1 and 4.8.2), (ii)
generation of an integer-grid map that resembles the frame ield (Sec. 4.8.5), and (iii) extraction of the integer
level-sets which form an explicit hexahedral mesh [Lyon et al. 2016].

The ultimate goal of such an algorithm is to ind a valid integer-grid map (cf. Sec. 2.5) that minimizes a distortion
objective while satisfying alignment constraints induced by boundaries or other features of the input geometry.
Conceptually, it would be preferable to synthesize or optimize an optimal integer-grip map directly, without
any intermediate frame ield. Unfortunately, the underlying non-convex mixed-integer problem is too hard for
available optimization techniques such that direct optimization without a good starting point inevitably results
in a poor local minimum. Note that the irst derivative of an integer-grid map f : R3 7→ R3 is a frame ield of
Jacobian matrices J : R3 7→ R3×3. The idea of frame ield based methods is to search for approximations of J ,
which are suiciently accurate for identifying appropriate singularities (one discrete aspect of IGMs), while being
signiicantly easier to optimize by ignoring various other diiculties of IGMs, e.g. integer quantization (another
discrete aspect of IGMs), local injectivity, integrability, and element sizing. Consequently, a frame ield can be
understood as a relaxation of an integer-grid map.

One important goal when designing frame ield schemes consists in inding a good tradeof between faithfulness
of the relaxation and ease of optimization. In fact, most frame ield schemes further decompose the optimization
task into diferent stages, e.g. irst initializing the ield with a rough but convex relaxation, and only subsequently
continuing the optimization with a more accurate but non-convex formulation. State-of-the-art frame ield
methods difer in (i) the required input data (e.g. domain as triangle or tetrahedral mesh, or manual speciication
of singularities), (ii) the space of frames (e.g. octahedral, odeco, or general), (iii) the parametrization of frames

ACM Trans. Graph.

32 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

(e.g. Euler angles, quaternions, 3 × 3 matrices, spherical harmonics coeicients, possibly in diferential form),
(iv) handling frame symmetries explicitly by matchings, or implicitly by lifting frames to a space with built-in
symmetry, (v) the objective function (e.g. Dirichlet energy, or Ginzburg-Landau type energy), (vi) the optimization
scheme (e.g. Gauss-Seidel relaxation, manifold optimization, or MBO with alternating difusion/projection). All
these variants are equipped with diferent advantages and drawbacks, which we will survey in more detail in the
following while introducing the required background on-the-ly.

4.8.1 Frame Field Representations. A frame ield can be seen as a generalization of a vector ield to a quantity that
locally describes the shape of a (linearly deformed) cube. Locally, a frame consists of three linearly independent
vectors, which represent a parallelepiped, i.e., the orientation and shape of a linearly deformed cube. It is important
to understand that globally a frame ield is signiicantly more complex than three superimposed vector ields since
it can contain singularities where topologically the vector ields are nontrivially interconnected on a branched
covering [Nieser et al. 2011]. As a consequence, the connection induced by a frame ield might exhibit nonzero
monodromy, i.e., a vector does not return to itself when transported along a cycle around a singularity.

Space of Frames. There are various diferent representations to locally encode a frame. A straightforward
choice that is capable of fully describing the shape of a linearly deformed hexahedron are three explicit vectors
u,v,w ∈ R3 bundled into a matrix F = (u,v,w) ∈ R3×3, called a general frame. The local shape of the hexahedron
then simply corresponds to the parallelepiped formed by u, v andw . Usually, the space of frames is restricted to
non-degenerate and orientation-preserving conigurations, imposing the non-convex constraint det F > 0. In
practice, often subspaces of general frames are chosen, where additionally F is orthonormal (octahedral frame)
or orthogonal (odeco frame), meaning that only rotations or rotations and scaling along the principal axes are
possible.

Parametrization of Frames. For each space of frames ś octahedral, odeco, or general ś there are diferent
parametrizations available, besides the matrix F . So far, octahedral frames have been investigated most extensively.
They correspond to rotations, which can be parametrized by unit quaternions [Gao et al. 2017b; Liu et al. 2018],
Euler angles, or an axis-angle representation. Euler angles have been used either w.r.t. a global coordinate system
[Huang et al. 2011], or alternatively a local coordinate system [Palmer et al. 2020; Ray et al. 2016] to avoid gimbal
locks. Adding three positive scaling factors to any of the octahedral frame parametrizations turns them into
odeco frame representations.

Handling Cube Symmetries. The explicit representation of frames via linear transformations has one major
disadvantage; it is not unique. For example, the matrix (u,v,w) transforms the unit-cube into an identical
parallelepiped as thematrix (v,w,−u). Since there are 6 potential permutations of the three vectors and 23 potential
choices of sign, in total, there are 48 diferent matrices, which encode a single frame. Formally, equivalence is
established by the binary octahedral group BO with 48 symmetry transformations. Since the octahedron is dual
to the cube, their symmetry transformations are identical. By ixing the orientation (the sign of the determinant
of F), it is possible to reduce the elements in one equivalence class to 24 elements with octahedral symmetry.
This explains the term octahedral ield [Solomon et al. 2017], which is often used for frame ields restricted to
rotations, while 3D cross ield is yet another common name. The non-uniqueness of the (u,v,w)-representation
signiicantly complicates the optimization of frame ields by inducing discrete variables κ, called matchings,
between neighboring frames, with values from the octahedral group O. With explicit matchings a frame ield
algorithm needs to simultaneously optimize discretematchings in addition to continuous frame degrees of freedom,
e.g. [Gao et al. 2017b].

An alternative to matchings are representations with a built-in symmetry, which ofer a unique representation
of equivalent frames. The work of Huang and colleagues [2011] expresses octahedral frames as rotations of
the polynomial x4 + y4 + z4, which are by construction invariant under transformations by elements of O. By

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 33

restricting the polynomial to a sphere, it can be expressed in the spherical harmonics basis, lifting a single
octahedral frame to a 9-dimensional representation vector. Since rotations only possess three degrees of freedom,
it is clear that the spherical harmonics representation is a relaxation, i.e. not all 9-dimensional vectors correspond
to a rotation of the polynomial x4 + y4 + z4. An identical representation can be derived from the perspective of
4th-order symmetric tensors [Chemin et al. 2018; Golovaty et al. 2021], which have been further generalized to a
15-dimensional representation of odeco frames ofering independent scaling of axes [Palmer et al. 2020], or even
general, non-orthogonal frames [Desobry et al. 2021]. All these representations lift the frame representation to a
(nonlinear) sub-manifold embedded in a higher-dimensional coeicient space, which imposes challenges from
the optimization perspective.

Diferential Frame Representation. Instead of representing a frame ield by pointwise speciication of frames,
one valuable alternative consists in encoding its derivative, i.e. the change of frames. After specifying one frame in
the domain, the entire frame-ield can then be re-constructed by integration. Such integration is path-independent
given that the speciied derivative is integrable, i.e. all fundamental monodromies are elements of the octahedral
group when expressed in the coordinate system of the frame itself. Corman and Crane [2019] employ such a
diferential representation in a frame-ield optimization setting with prescribed singularities. They extend the
theory of moving frames to frame-ields with cube symmetry. Conceptually, the setting is analogous to the 2D
setting addressed by Crane et al. [2010]. In both cases, all singularities and thus all fundamental monodromies
need to be speciied as input. However, while in the 2D setting a simple linear solve is suicient to solve the
optimization problem, the non-commutativity of 3D rotations requires a (continuous) non-linear least-squares
optimization. Interestingly, despite the non-convex objective function, experiments suggest that the resulting
ield is independent from the chosen initial coniguration. Leveraging a diferential frame-ield representation for
optimizing ields with unconstrained singularities has not been done so far but is an interesting direction for
future work. It would require replacing the ixed monodromies by the feasible set of discrete choices from the
octahedral group.

4.8.2 Frame Field Optimization. The optimization problem usually consists in inding the łbestž frame ield,
which aligns to the boundary of the domain. Best in this context is often interpreted as as-smooth-as-possible
and is speciied by an objective function. This objective on the frame ield level essentially serves as surrogate
for the actual objective of low distortion on the integer-grid map level, as well as, indirectly, for the objective
of integrability of the frame ield. Note that a good choice of objective function, constraints, discretization, and
optimization scheme strongly depends on the frame representation at hand. Diferent combinations can lead
to very diferent trade-ofs between the faithfulness of the relaxation and the ease of optimization, as will be
discussed in the following.

Objective Function. Smoothness of the frame ield is the most widely employed objective function to ap-
proximately minimize the distortion of the integer-grid map. Consequently, most algorithms are based on a
discretization of the Dirichlet energy ED =

∫

Ω
| |∇ϕ | |2dx , where ϕ is a frame representation. The space of frames

and the chosen parametrization matter in this context. For instance, similarly to the 2D setting (cf. [Vaxman et al.
2016]) one observes diferent behavior when solely optimizing rotations (angle-based representations in 2D) in
comparison to a mix of rotations and magnitudes (Cartesian representations in 2D). Typically, rotation-based
objective functions are observed to lead to superior singularities in the sense of enabling lower distortion of
the resulting integer-grid map. However, on the downside, rotation-based objectives are usually more diicult
to optimize (due to a higher level of non-convexity), and they sufer from an energy blow-up at singularities,
making them tessellation dependent (cf. [Knöppel et al. 2013]). A beneicial middle ground is ofered by Ginzburg-
Landau type energies. The idea is to work with a (convex) Cartesian representation ϕ ∈ Rn , which relaxes the
(non-convex) manifold of intended frames F , and to add a penalty term EP =

∫

Ω
dist(ϕ,F)dx , which limits

ACM Trans. Graph.

34 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

unintended behaviour in the relaxed space. The total objective EGL = ED +
1
2ϵ 2

EP behaves like an angle-based
scheme for ϵ approaching zero, while at the same time ofering a convex relaxation when ϵ approaches ∞.
Hence, ϵ continuously trades faithfulness of the relaxation versus ease of the optimization. Another advantage
of Ginzburg-Landau type energies is that they can be optimized by the eicient and easy-to-implement MBO
scheme, which will be discussed below.

Another important objective is the control on sizing of the hexahedral elements. The optimization of a smooth
frame ield typically results in singularities that are appropriate for uniform sizing. Non-uniform and anisotropic
sizing can be added to frame-ield-based methods by either pre-deforming the domain[Xu et al. 2017] or by
synthesizing a Riemannian metric ield, and then optimizing the frame ield w.r.t. this metric ield [Fang et al.
2021]. Again, the decoupling of the metric ield synthesis from the actual frame ield optimization is suboptimal
from an accuracy perspective, however, highly beneicial to ease the optimization in absence of a good starting
point.

Constraints. Some earlier methods constrain the complete boundary ield to a pre-computed solution [Kowalski
et al. 2016; Li et al. 2012]. However, in general, it is preferable to only require boundary alignment and let the rest
of the ield emerge freely, including the frame directions tangential to boundaries [Huang et al. 2011; Palmer et al.
2020; Ray et al. 2016].

Discretization. Typically, the domain is discretized into a tetrahedral mesh, where frames are located at ver-
tices [Gao et al. 2017b; Palmer et al. 2020; Ray et al. 2016], faces [Huang et al. 2011], or cells [Liu et al. 2018].
Alternatively, boundary element discretizations have been explored [Solomon et al. 2017], where a triangulation
of the boundary, as opposed to a tessellation of the volume, is suicient.

Optimization Scheme. Algorithms that are based on a lifted frame representation (9- or 15-dimensional) need
to ensure that they do not leave the sub-manifold of desired frames. This is done either with a projection operator,
or with some kind of manifold optimization. More speciically, Huang et al. [2011] compute an initial ield by
optimizing a convex relaxation of the actual problem, i.e., minimization of the Dirichlet energy in R9, followed by
a local projection onto closest frames. The boundary alignment of the ield is approximated by a single linear
constraint per boundary face. The initial ield is further improved by a nonlinear optimization restricted to the
frame-manifold via Euler angles. Ray et al. [2016] follow a very similar strategy but discretize the ield on vertices,
tighten the boundary constraints and improve the performance of the projection. Palmer et al. [2020] observed
that a modiied Merriman−Bence−Osher (MBO) algorithm is beneicial because it is often able to avoid local
minima that induce global inconsistencies in the singularity graph. The MBO algorithm alternatingly difuses the
9- or 15-dimensional coeicient space and locally projects the coeicients onto frames. In 2D it is known that the
MBO algorithm optimizes the Ginzburg-Landau energy [Beaufort et al. 2017; Viertel and Osting 2019], where the
difusion parameter is directly related to ϵ of EGL . The 3D version behaves similarly, however, the mathematical
theory has not been fully developed yet. Instead of the constant difusion kernel of the standard MBO algorithm,
the modiied MBO algorithm starts with a large difusion kernel and then iteratively shrinks it in subsequent steps.
The rationale behind this strategy is that large difusion steps suiciently leave the (non-convex) manifold of
frames and thus avoid local minima, while small difusion steps are required for the accuracy of the solution. The
difusion parameter is directly related to ϵ of the Ginzburg-Landau energy discussed above. Hence, the modiied
MBO algorithm can be understood as slowly traversing from an easy-to-solve but less accurate relaxation to
one that requires a good initialization but is more accurate. This explains the empirical observation that among
all available option the modiied MBO scheme of [Palmer et al. 2020] behaves best. The projection of frames in
such an MBO framework can be done approximately with gradient descent [Ray et al. 2016], or exactly with
a semideinite relaxation [Palmer et al. 2020]. More rapid convergence than the MBO algorithm is ofered by
Riemannian trust-region manifold optimization [Palmer et al. 2020], which on the downside has a higher risk of

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 35

getting trapped in local minima. Similarly to other highly non-convex schemes, it requires a careful initialization,
e.g. by a convex relaxation.

4.8.3 Generality. Besides providing directional guidance for hexahedral mesh elements, a key property of a frame
ield is its network of singularities ś which one commonly aims to adopt for a hexahedral mesh generated based
on the frame ield. In this context, frame ields are general enough that the singularity network of any hexahedral
mesh can be expressed. This means that, in contrast to many other approaches, e.g. polycube mapping, sweeping,
or grid-based approaches, the output is not a priori restricted to a subclass of hexahedral meshes. Therefore
superior mesh quality can be achieved, speciically if complex feature alignment is required. In particular, frame
ield-based methods are able to express alignment not only to the boundary of a domain but also to arbitrary
internal structures, which is, for example, important in multi-material applications or in the simulation of
luid-structure interaction.

4.8.4 Non-Meshability. The main drawback, on the other hand, is the fact that frame ields are actually over-
general for the purpose of mesh generation: Frame ields may exhibit additional types of singularities that cannot
occur in hexahedral meshes, cf. [Liu et al. 2018; Viertel et al. 2016]. Such singularity conigurations are said to be
łnon-meshablež. A key example are 3-5 singularities [Reberol et al. 2019], which frequently appear in smooth
frame ields but are not meshable. Existing approaches are able to automatically repair some locally non-meshable
conigurations [Jiang et al. 2014; Li et al. 2012] or involve the user to manually repair the singularity graph [Liu
et al. 2018] and then generate a frame ield with a prescribed singularity network [Corman and Crane 2019; Liu
et al. 2018]. Another option is to optimize a general frame-ield in such a way that all singularities are pushed
towards the boundary in order to generate a generalized polycube as done in [Fang et al. 2016]. Additional
research is required to enable complete repair or to restrict the frame ield generation and optimization to the
space of meshable conigurations in the irst place. Little can be learned in this regard from the analogous 2D
problem, as the gap, in terms of singularity structure, between 2D frame ields and quad-meshes is signiicantly
smaller.

4.8.5 Field-Guided Integer-Grid Map. Given a (meshable) frame ield, one then aims to conceptually integrate it
to obtain a parametrization, a map (in particular an integer-grid map) onto part of R3. As the frame ield typically
is not integrable, a map whose isocurves are precisely aligned with the frame ield’s directions does not exist.
Approximate alignment, e.g. least-squares alignment, is thus aimed for, as in the Poisson approach described by
[Nieser et al. 2011], generalizing the cross-ield guided mapping used in the 2D case for quadrilateral meshing
[Bommes et al. 2013a, 2009; Kälberer et al. 2007]. The frame ield’s singularities are adopted in this process and
deine the implied hexahedral mesh’s singularity structure.

Unfortunately, this ield-guidedmapping approach does not guarantee a valid resulting mapwithout lips.While
there are heuristics [Lyon et al. 2016] to recover a valid hexahedral mesh even from some invalid integer-grid
maps with lips, no general guarantees are available. In the 2D setting, aiming at quadrilateral mesh generation,
a stream of recent work has shown ways to reliably generate lip-free maps with prescribed singularities (for
instance implied by frame ields) and boundary alignment [Campen et al. 2021, 2019; Campen and Zorin 2017;
Gillespie et al. 2021; Shen et al. 2022b]. It is based on phrasing the problem as a constrained metric computation
problem; in a speciic discrete conformal setting and formulated in per-vertex scale variables, the problem becomes
convex and can be solved reliably. Most importantly, these methods employ on-demand mesh reinement (or
modiication) to ensure feasibility, in the sense that the mesh ofers suicient degrees of freedom to support
a valid map, represented in a piecewise-linear manner. Note, however, that ield guidance is considered in
these works only in the form of adopting the singularities, not in the form of dedicatedly following the ield’s
directions. Generalization of this general approach to the 3D setting is not straightforward; the space of 3D
conformal maps too restricted to be useful. The work by [Paillé et al. 2015] may be viewed as a irst step: It

ACM Trans. Graph.

36 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

describes the representation and optimization of discrete metrics on 3D tetrahedral meshes in intrinsic variables
(dihedral angles). Using linear constraints in these variables, boundary alignment and singularities can directly
be prescribed, for instance those adopted from an optimized 3D frame ield. However, the resulting problem in
this 3D case is non-convex, and the issue of potentially required mesh reinement is unsolved. While there are
known ways to reliably generate lip-free maps in 3D [Campen et al. 2016], they do not support the prescription
of arbitrary singularities.

An alternative reliable approach proposed for the 2D setting is based on decomposing the domain into regular
pieces based on stream lines of a 2D frame ield [Myles et al. 2014]. Also this does not generalize to a 3D stream
surface based approach [Kowalski et al. 2016] with similar guarantees.

Finally, the aspect of quantization, as discussed for polycube maps in Sec. 4.7, is relevant for general integer-grid
maps as well, in order to ensure the required integer alignment of boundaries, singularities, and other features.

4.9 Hex-Dominant Meshing

Automatic methods for all-hex meshing are only applicable to a subset of all the possible inputs. In contrast, the
grid-based approaches (Sec. 4.6) can operate on intricate shapes and guarantee all-hex meshes; unfortunately,
they produce inferior quality results. High-quality, feature-aligned all-hex meshes are still elusive, so industry
still relies on semi-manual block decomposition, a time-consuming process [Lu et al. 2017].

For this reason, other methods focus on the hexahedral-dominant meshing instead of full-hex, aiming to reach
the highest possible proportion of hexahedra. Hexahedral-dominant meshing is a relaxation of the problem to
signiicantly improve robustness at the cost of introducing a small number of generic polyhedra. The generation
of hex-dominant meshes boosted the use of those datasets in practical contexts such as FEM [Wicke et al. 2007].
Moreover, the recent advancement in the construction of higher-order bases [Schneider et al. 2019] may foster
the adoption of hex-dominant meshes in the mechanical analysis.
The irst approach to produce hex-dominant meshes agglomerates neighboring tetrahedrons to assemble

hexahedral cells. The problem of inding a globally optimal solution is NP-complete; hence the clustering process
is usually driven by local heuristics. Meshkat and colleagues [2000] have proposed the irst method following
this idea. The clustering process relies on an undirected graph representing tetrahedra and their connectivity.
The graph is enriched with particular arcs and labels on nodes to calculate the agglomeration heuristic. Given
the initial tetrahedral mesh, the algorithm detects and replaces subgraphs with hexahedral nodes.
The method proposed by Yamakawa et al. [2002] takes as input a general 3D mesh and distributes a set of

nodes into the volume by the physical simulation of crystal pattern formation. Then nodes are used to produce a
mesh composed of hexes, prisms, and tets, with around 50% hexahedral cells. This method allows controlling
element size and primary orientation. Since it does not require a tetrahedral mesh as input, this method is less
sensitive to the input discretization than the approach of Meshkat and Talmor [2000].

Vyas and Shimada [2009] proposed a more sophisticated method that starts by generating a volumetric tensor
ield to specify the anisotropy and directionality of the elements. Then, such a ield induces an advancing front
process where several hexahedral fronts contribute to cover the entire volume.

Lévy and Liu [2010] generalized Centroidal Voronoi Tessellation [Faber and Gunzburger 1999] for hex-dominant
meshing, introducing Lp-Centroidal Voronoi Tessellation. Unlike the standard Voronoi diagram, Lp-CVT favors
the formation of cubical cells by using a distance metric that takes into account a predeined background tensor
ield. The resulting method excels in robustness and controllability.

Despite the considerable advancements in performances, the methods mentioned above cannot obtain a high
hex ratio for the general case. The approach proposed by Sokolov et al. [Sokolov et al. 2016] produces higher hex
ratios by using a guiding frame ield. A sampling process generates a point set organized as a regular grid and
locally aligned with the frame ield. A constrained Delaunay triangulation of the volumetric samples makes a

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 37

Fig. 20. Some challenging examples of hex-dominant re-meshing using [Gao et al. 2017b].

tetrahedral mesh and is inally clustered into hex elements. They obtain hex-dominant meshes with up to 95%
hexahedral cells (although in the worst case they earned less than 30%). Despite the result’s quality, this method
might produce non-conforming meshes containing conigurations where a quadrilateral face is adjacent to two
separate triangular faces. This issue has been solved by [Ray et al. 2018].

The approach by Pellerin et al. [2017] explores the space of all possible agglomerations of tets. Then a greedy
process selects the conigurations to agglomerate tets into hexes. Their approach produces hex-dominant meshes
with a 60% ratio of cuboidal elements across all shown examples.

Gao et al. [2017b] directly generate conforming hybrid meshes using polyhedral agglomeration. This method
starts from tetrahedral mesh obtained by sampling a guiding frame-ield. An iterative process modiies the
connectivity utilizing a set of local operators to compose hexahedral cells. The local operators grant the conformity
of the inal mesh. While this method excels in robustness (as demonstrated by the complex example shown in
Fig. 20), it cannot control the class of created polyhedrons (they might have up to 40 facets in some cases, see
Table 1 in [Gao et al. 2017b]).

The recent method proposed by Livesu et al. [2020] produces strongly hex-dominant meshes, conforming
meshes with less than 2% non-hexahedral cells. In most cases (76% of the models tested), this method derives
pure hex-meshes. It mimics manual block decomposition. It extracts irst a set of well-distributed loops on the
surface following a feature-aligned cross-ield. Each loop deines a cutting surface that decomposes the volume
into simpler polyhedral blocks. The cutting surfaces are added one by one until the quality requirements of
the polyhedral blocks are satisied. These blocks are inally converted into hex-dominant mesh via midpoint
subdivision. As shown in Fig. 21, this method excels in the preservation of sharp features, which are directly
incorporated in the output connectivity.
Similarly to LoopyCuts [Livesu et al. 2020], HexDom [Yu et al. 2022] produce a block decomposition where

each block is either hex, prism, or tetrahedral cell. This method extends the approach for polycube generation
proposed in [Hu and Zhang 2016] based Voronoi tessellation (CVT) to include non-hex elements. The cells are
embedded in 3D using a variation of [Yu and Wei 2020]. The segmentation and polycube deinition process
requires manual work. The methods proposed in [Zhan et al. 2018] and the one used by the commercial package
Cubit [Meyers and Tautges 1998] uses advancing front approaches to produce meshes composed of hexahedral
and tetrahedral elements. To improve the quality of the inal mesh Cubit use some sophisticated cleanup operation
based on connectivity editing and geometric measures.

ACM Trans. Graph.

38 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 21. Some CAD models remeshed by [Livesu et al. 2020]. In this case the meshes are hex-only.

The recent approach proposed by Bukenberger and colleagues [Bukenberger et al. 2021] generates At-Most-
Hexa Meshes. At-Most-Hexa Meshes are meshes composed mainly of hexahedral elements, where no cell has more
than six faces, and no boundary face has more than four sides. Similarly to tetrahedral and hexahedral meshes, the
volume of each cell can be deined by trilinear interpolation from its corners. At-Most-Hexa Meshes meshes are
generated by extending to the volume the 2D approaches that use Lloyd relaxation with non-euclidean distance
measures [Hausner 2001]. Using the L∞ norm (instead of the simple euclidean distance), the cells emerging from
the volumetric Lloyd relaxation process become more cubical, converging to a hex-dominant mesh. Similarly to
most of the meshing methods based on Lloyd relaxation, this method is very permissive on the required input. It
works on point clouds, triangular meshes and can be guided by an input orientation ield if available.

The hex-dominant mesh allows suicient degrees of freedom to adapt the grid-based methods to conform
to sharp features. Trimmed hexahedral meshes are created by intersecting a grid with a closed surface. Non-
hexahedral elements emerge along the surface where the surface is not aligned with the edges of the grid. The
technique recently proposed by Kim and colleagues [Kim and Kim 2021] extends the trimmed hexahedral methods
by creating particular vertices where sharp features intersect with the grid. A feature simpliication schema is

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 39

used when multiple features are concentrated in the same cell.

Another class of methods transforms hex-dominant meshes to increase the number of hexahedral elements
in the mesh. The approach proposed in [Yamakawa and Shimada 2003] increases the number of hexahedral
and prism elements by applying sequences of local operations that modify the connectivity. Unfortunately, this
method can generate non-conformal meshes. Instead, HexHoop [Yamakawa and Shimada 2002] converts a mesh
composed of hexahedrons, prism and tetrahedrons into a conformal pure-hex mesh. The conversion process is
based on the local application of two particular reinement schemas, called core and caps. Unfortunately, this
method tends to insert a high number of irregular vertices deteriorating the regularity of the tessellation.

5 TOPOLOGICAL OPERATORS

Scientiic computing often demands to edit a given hexahedral mesh, e.g. to improve the accuracy of a solution
with a posterior reinement [Shen et al. 2022a], to generate boundary hex layers for CFD applications [Reberol
et al. 2021], to ensure mesh conformity across surface membranes [Staten et al. 2010b] or to constrain the mesh
size [Maréchal 2009]. Unlike tetrahedral meshes, where changes of the mesh connectivity always have a local
footprint, editing the topology of a hexahedral mesh is often a global operation. This makes hexmesh editing
signiicantly more diicult than tetmesh editing. In this section, we revise the most prominent operators for
editing the topology of a hexahedral mesh.

5.1 Sheet Operators

As shown in Sec. 2.2, the dual of a hexahedral mesh is a simple arrangement of surfaces. Each surface, i.e., a
sheet, corresponds to a layer of hexes in the primal mesh and two surfaces intersect along a chord, which is
a column of hexes in the primal mesh. Sheet operators consist in inserting or removing a complete sheet or
chord from the mesh. They are used to reine [Ko-Foa Tchon and Camarero 2002; Parrish et al. 2007] or coarsen
meshes [Benzley et al. 2005a; Shepherd et al. 2010], to capture analytic features [Merkley et al. 2007], or to make
conforming meshes involved in the assembly of parts. Those parts can result from a volume decomposition
during a user-assisted meshing process [Borden et al. 2002b; Jankovich et al. 1999] or can correspond to two
adjacent models sharing contact surfaces [Staten et al. 2010b].
Using sheet operations to reine a mesh mainly involves inserting sheets, which is quite easy to control if

you avoid self-intersecting and self-touching sheets (see Fig. 22). The remaining diiculty is to control the mesh
quality, which is connected to the edge valence [Staten and Shimada 2010]. The simplest way of inserting a sheet
consists in padding a region of hexahedra by inserting a layer of hexes around it. It is a common post-process to
improve meshes obtained with overlay-grid [Maréchal 2009; Qian and Zhang 2010], where a global padding is
performed, or Polycube-based [Cherchi et al. 2019a] techniques, where the region to pad is selected in such a
way that the mesh quality is optimized (see Sec. 5.4).

Coarsening is much more tricky since some sheets cannot be collapsed without loosing a part of the geometry
- resulting in a non-manifold coniguration for instance - and one might have to deal with self-intersecting and
self-touching sheets, which are much more complex to remove. In [Gao et al. 2017c], such coarsening is performed
to simplify the base complex structure. Generating a hexahedral block structure can also be seen as coarsening
an existing hexahedral mesh. In [Wang et al. 2017], authors extend the preliminary work of [Kowalski et al. 2012]
where a hexahedral mesh, obtained from converting a tetrahedral mesh by splitting each tetrahedron into four
hexahedra, is coarsened by removing all non-funda-mental sheets. They extend the greedy approach proposed
in [Kowalski et al. 2012] by providing much more quality control and sheet selection procedures.

ACM Trans. Graph.

40 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Table 2. Summary of the main properties for each class of hex-meshing algorithms reported in Sec. 4. Some of the columns in

this table correspond to items also listed in [Blacker 2000]. As a rough indicator for the extent of (ongoing) research activity,

we list the number of overall works and recent (published within the last 5 years) works (referenced in this survey) dealing

with each class.

Method Type
User

interaction

Shape

class

Feature

preserv.

Size

contr.

Mesh

structure

Element

quality
Robustness

Orient.

sensitive

Total

works

Recent

works
Open problems

Advancing

front
Direct Automatic

CAD

oriented

Surface

features

only

No Unstructured

Good at

border,

poorer

inside

Poor No 7 0

Improve handling

colliding

fronts, complex

topologies

Dual

methods
Both

Automatic,

semi-

automatic

CAD

oriented

Surface

features

only

No

Unstructured,

semi-

structured

Good at

border,

poorer

inside

Poor No 13 2

Robust

handling of

self- intersecting

sheets

Sweeping,

decomp.
Both

Semi-

automatic

CAD

oriented

Surface

features

only

No
Semi-

structured
Good

Good

(manual)
No 35 11

Automatic

deinition of

sweepable sub-

volumes

Grid

based
Indirect Automatic

Any

shape

Yes,

(limited

valence)

Yes
Severely

unstructured

Poor at

border,

optimal

inside

Great

(commercial

product,

demonstrated

on many

datasets)

Yes 18 3

Feature

preservation,

mesh size,

mapping

Polycube

maps
Indirect

Automatic,

semi-

automatic

Any

shape

Yes,

(limited

valence)

Yes

Valence

semi-

structured

Good

(depends

on map)

Good

(demonstrated

on medium

datasets)

Yes 18 8

Polycube

topology,

mapping, feature

preservation

Frame

ields
Indirect

Automatic,

manual

ixing

Any

shape
Yes Yes

Valence

semi-

structured

Good

(depends

on map)

Poor No 17 12

Generation of

hexable ields,

ield aligned

mapping

Hex-

dominant
Both Automatic

Any

shape
Yes Yes

Valence

semi-

structured,

hybrid

Often

good

Good

(demonstrated

on medium

datasets)

No 20 11

Hybrid elements

(topological

control, amount,

quality)

In order to make two hexahedral meshes of two geometrical parts sharing a surface conforming, the authors
of [Staten et al. 2010b] interleave sheet insertions and collapses in both parts. The locality is controlled by
performing chord collapses to avoid the propagation of mesh modiications too far from the interface (see
Fig. 23). Chord collapsing is done by taking care of mesh quality, considering edge valences as an appropriate
indicator [Staten and Shimada 2010]. In [Chen et al. 2016], the sheet insertion is enhanced to provide more

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 41

Fig. 22. Examples of self-intersecting sheet (green) and self-touching sheet (red).

lexibility, in particular, to handle self-intersecting sheets within a local region while assuring the mesh quality. It
was successfully applied to mesh matching and mesh boundary optimization.

Eventually, in most recent works, like [Shen et al. 2021], the chord collapse operation is enhanced to avoid
generating poor quality elements, and the chord insertion process is described and used for editing the singularities
of a hex-mesh while maintaining its connectivity. In [Wang et al. 2018], sheet operations are used in combination
with frame ields to improve mesh quality with the ability to handle self-intersecting and self-touching sheets.

5.2 Flipping Operators

Among the many diiculties of hexahedral meshing, there is one that is unexpected, to say the least. The
generation of conforming hexahedral meshes of complex 3D domains is deinitively a hard problem. Yet, inding
hexahedrizations for small quadrangulations of the sphere is also hard.

Existence. Thurston [1993] and Mitchell [1996] have shown independently that a ball bounded by a quadrangu-
lated sphere could be meshed with hexahedra if and only if the number of quadrangles on the boundary, n, is
even.

Linear Complexity Meshing. Mitchell’s construction can necessitate up to O(n2) hexahedra. In [1999], Eppstein
proposed a łsemi-constructivež alternative which guarantees the use ofO(n) hexahedra. The algorithm of Eppstein
extends the quad-mesh in input into a bufer layer of hexahedra. Then it triangulates the inner of the layer with
O(n) tetrahedra, applies the midpoint subdivision to split each tetrahedron into four hexahedra, and eventually
reines the cubes in the bufer into smaller cubes that consistently meet the previously subdivided tetrahedra. The
inserted bufer layer is mandatory to provide much degrees of freedom to topologically and geometrically modify
the inner mesh. It must be remeshed at the end to ensure mesh conformity. The last stage łonlyž requires inding
a solution of 20 or 22 quadrilaterals bufer cubes. At that point, an explicit solution is required for the bufer
cubes. In [2010], Carbonera and Shepherd give the irst completely explicit construction of the hexahedrization
of the ball. This method, however, requires up to 5396n hexahedra. Using [Shepherd et al. 2010], a solution for
the bufer cubes has been found by Weill and Ledoux [2019] that involves 76881 hexes! In [2019a], Verheltsel
introduced an eicient quad lip-based algorithm that allows inding hexahedral meshes for both the types of
bufer cells previously described. Furthermore, as depicted in Fig. 24, it provides geometric realizations with

ACM Trans. Graph.

42 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 23. Two meshes generated using sweeping are not conform along a contact surface (top); Performing sheet operations

on the green mesh allows to get a conforming interface (botom). Image from [Staten et al. 2010b].

a maximum number of 72 hexahedra, thus proving that it is possible to mesh any ball-shaped domain that is
bounded by n quadrangles with a maximum number of 78n hexahedra.

Schneiders’ Pyramid and Octahedral Spindle. The pyramid of Schneiders is square-based, with 8 additional
vertices at the edge midpoints, 5 additional vertices at the face midpoints, and its triangular and quadrangular
faces divided respectively into 3 and 4 quadrangular faces. To build the Schneiders’ pyramid, we can use the
octagonal spindle, or tetragonal trapezoid, and add 4 hexahedra to form the pyramid base. Meshing this pyramid
with all-hexahedral elements is a problem introduced by [Schneiders and Bünten 1995] to show a boundary mesh
for which no one hexahedral subdivision was identiied. A good solution to Schneiders’pyramid is considered as

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 43

Fig. 24. The set of the hexahedrizations of the bufer cubes that the [Erickson 2014]’s algorithm uses to mesh arbitrary

domains. (top) Cells with 20 quadrilaterals are meshed with 37 hexahedra. (botom) Cells with 22 quadrilaterals are meshed

with 40 hexahedra. Elements are colour codeded to show the diferent sides of the original cubes (top-let and botom-let).

Image from [Verhetsel et al. 2019b].

the missing piece to transform a hex-dominant mesh into a full unstructured hex-mesh. To understand this, it is
helpful to think at the Schneiders’pyramid as a squared pyramid with one step of midpoint reinement. In this
regard, due to the presence of both quadrilateral and triangular faces such an element can be considered as a
topological bridge between tetrahedra and hexahedra, with midpoint subdivision being the step that allows to
convert all elements into hexahedra. [Shimada and Yamakawa 2002] introduced, in 2002, the hexhoop template
family and built a hexahedral subdivision for the pyramid of Schneiders, composed of 118 hexahedra. Later, in
2010, they improved their solution by creating a new hexahedral subdivision of 88 elements [Yamakawa and
Shimada 2010]. Recently, in 2018, a hexahedral subdivision of 36 elements was built by inding a set of lipping
operations allowing to turn the cube into Schneiders’ pyramid, by interpreting each operation as the addition
of a new hexahedron [Xiang and Liu 2018]. Verheltsel [2019a] used quad lips to ind another solution with 44
hexahedra.

Shellings. In mesh generation, lipping (or swapping) operators convert small cavities of elements into alter-
native collections of elements having the same boundary. Flips are used extensively in tetrahedral meshing
with the aim of improving the mesh. The łbistellar lipsž, the most basic operations, operate on a cavity of 5
vertices produced by removing two or three tetrahedra. Instead, the łedge removalž operation, a more general
transformation n-to-m lip, works on a cavity produced by the set of tetrahedra enclosing an edge. Rather than
adding more and more operations to the already big set of topological transformations, the łsmall polyhedron
reconnection (SPR)ž [Liu et al. 2007] provides an operation that can generalize all the lips. The SPR considers the
problem of inding all the possible triangulations of a cavity and choosing the best one.

ACM Trans. Graph.

44 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Flipping operators in cubical meshes were introduced by M. Bern, D. Eppstein and J. Erickson in [2002] and
are analogous to the lipping operators for simplicial meshes. Those authors prove that each domain that is
simply-connected and has an even number of quadrilateral faces also has a pseudo-shelling. A pseudo-shelling is
deined as a particular kind of hex-mesh built by adding elements one by one such that the remaining elements
always make a ball-shaped domain.

5.3 Atomic Operators

Atomic operators form a set of irreducible local operations which could be composed to described any topological
modiication [Tautges et al. 2008; Tautges and Knoop 2003]. It consists of three very local atomic operations,
which are the atomic pillow, the face shrink and the face open-collapse. An important feature of those operations
is that applying just a single atomic operation does not provide a valid hex-mesh. But it has been demonstrated
that lipping operations [Tautges et al. 2008] and sheet operations [Ledoux and Shepherd 2010] can be obtained
as a sequence of atomic operations. Unfortunately, the completeness of this set of operations is not proved, and
they are very diicult to be used for writing meshing algorithms in practice.

For instance, those operators do not capture a parity change in the number of hexahedra. Therefore, an extra
operator was presented in [Jurkova et al. 2008], where a Boy’s surface is added in the dual mesh representation. The
surface of Boy has the interesting property of having a single vertex. Thus, introducing it, in an appropriate way,
into the dual mesh representation, the parity of the hexahedra number changes in the primal mesh. In [Jurkova
et al. 2008], a sheet diagram is provided, but the primal mesh realization from this insertion is incomplete.
Interestingly, utilizing the Carbonera’s algorithm [2006] on a single hexahedron, it is possible to perform a parity
change. Regardless of the template set of the Carbonera’s method, it always replaces a hexahedron with an even
number of hex-elements without altering the boundary of the input hex.

5.4 Padding

Sometimes hexahedral meshes (as well as quad-meshes) can contain doublets. As described in [Mitchell and
Tautges 1995], a doublet is deined as two quad faces sharing two edges, and, in the hex-meshes case, this means
that two hexahedra share two faces (Fig. 25a). If doublets occur in a mesh, any kind of geometric embedding of the
faces forming the doublet has a low quality, even if we try to optimize it with some smoothing/untangling step. In
fact, one of the involved faces will always have an angle of at least π . The local connectivity of the mesh requires
a reinement step to remove doublets. The padding reinement operation, also known as pillowing, reines the
mesh structure in order to provide additional elements, and hence degrees of freedom, for existing approaces of
mesh optimization (e.g. untanglers). In quad-meshes, this step is trivial. Removing the two shared edges forming
a single quadrangular face is suicient. It is not possible to apply the same for hexahedral meshes because we can
not ensure that the hexahedra with doublet faces can be matched in a conformal coniguration. In this case, it is
required to increase the connectivity of the vertex shared by the two edges that form the doublet.

In [Mitchell and Tautges 1995], the authors propose a pipeline to face the problem in three steps. First of all, a
shrink set is deined as a set of hexahedra containing one (and only one) of the doublet faces. Then, the set is
separated from its boundary by reducing the size of its elements. In this way, an empty space is created (Fig. 25b).
Finally, each of the shrink set elements is connected to the boundary through a new layer of hexahedra, illing
the previously created empty space (Fig. 25c). After the padding, the original doublet’s faces are contained in two
diferent hexahedra, doublets are no longer present in the mesh, and the dihedral angles between faces can now
be improved (Fig. 25d).

The padding is basically a sheet insertion on a mesh. As described in [Shepherd 2007; Shepherd and Johnson
2008], it is a fundamental step in many applications. Starting from the mesh generation [Gao et al. 2019; Ito et al.
2009] or the generic reinement of hexahedral meshes [Benzley et al. 2005b; Malone 2012; Qian and Zhang 2010;

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 45

(a) doublets (b) divided shrink set

(c) padding layer (d) optimized hexahedra

Fig. 25. A summary of the padding pipeline: (a) The hexahedra H1 and H2 share two faces forming two doublets. (b) The

shrink set is disconnected to the other elements in the mesh. (c) The elements of the shrink set are linked to the mesh forming

the padding layer. (d) The hexahedra involved in the refinement can now be optimized with a smoothing/untangling step.

Tchon et al. 2004; Zhang et al. 2013], it becomes an essential ingredient in operations like grafting [Jankovich
et al. 1999], mesh cutting [Borden et al. 2002b].
In [Gregson et al. 2011] the padding is identiied as a key post-processing step for the hex-meshes obtained

from polycubes (see Sec. 4.7). In this mesh category, the surface edges belonging to the polycubes structure can
create conigurations similar to doublets. The degrees of freedom of the surface elements are then increased with
a padding step performed all around the mesh (all the inner volume becomes the shrink set and is separated
from the surface). In this way, a geometric optimization step can enhance the quality of the elements placed in
the smooth object parts. Notice that, in almost all polycube-based hex-meshing works, the padding operation is
applied as a unique hexahedral layer all over the surface. In the same context, in [Cherchi et al. 2019a], a smart
and localized padding for this hex-mesh category is proposed. The authors demonstrate that selective padding
in sporadic surface areas can signiicantly improve the whole mesh quality compared to the global padding
application.

ACM Trans. Graph.

46 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 26. Without controlling of alignment, the same set of singularities can introduce two hex-meshes having base complexes

with diferent complexity. Image from [Gao et al. 2015].

5.5 Structure Enhancement/Simplification

Hex-meshes with simple structures are preferred for isogeometric analysis [Hughes et al. 2005] since large
components allow the itting of high-order splines without breaking their smoothness so that accurate PDE
solving and fast convergence can be achieved. Note that the base complex of a hex-mesh is not only determined
by its singularities, but also the connections between them. Therefore, without careful control, the same set of
singularities can lead to dramatically diferent base complexes (Fig. 26). Gao et al. [2015] propose the irst solution
to reduce the number of components of the base complex by correcting misalignments of singularities. The
misalignment correction is achieved by removing hexahedral sheet deined within the base complex. To maintain
singularities, speciic conditions are posed for choosing the proper hexahedral sheets for removal. After obtaining
the hex-mesh with corrected misalignment issue, they employ an extended version of the parameterization-based
optimization from quad-meshes [Tarini et al. 2011] to hex-meshes to improve the geometric quality of the
hex-meshes. To speciically handle misalignment issue for polycube hex-meshes, [Cherchi et al. 2016] proposes
an approach by alternating two steps: (1) computing polycube corner pairs in the integer lattice, and (2) aligning
corner pairs through mixed-integer programming.

Robustly producing valid hex-meshes with a simple structure remains to be a challenging task. Gao et al. [2017c]
propose a simpliication algorithm that can iteratively reduce the structure (i.e., number of components and
singularities) complexity of a hex-mesh, while providing several guarantees during the simpliication process:
(1) topology consistency, (2) inversion-free, (3) the preservation of corner, line, and planar features, and (4) a
bounded, user-deined Hausdorf distance from the input surface. The core idea of their approach is to extend
the sheet and chord operations on hex element level to the structural level, as illustrated in Fig. 27. The input to
this approach can be an arbitrary hex-mesh. Especially, this approach can be paired with octree-based methods
discussed in Sec. 4.6 to robustly generate valid (i.e., with no lipped elements) and accurate hexahedral meshes
with coarse structures, without user-interactions (Fig. 28). A follow-up work [Xu et al. 2021] is conducted to
improve the ranking scheme of the sheets and chords to be removed. The experiments show that, while being
more complex, the introduced ranking leads to better simpliication results.
Through proving the equivalence between colorable quad-meshes and Strebel diferentials on a manifold

closed surface, Lei et al [2017] propose to irst construct a colorable quad-mesh and then partition the surface
into sub-volumes where each of them can be swept to generate a hex-mesh. While the theory is elegant, there
are several limitations of the work, prohibiting its adoption for practical applications. For example, the required
special user inputs are non trivial, only quad vertices with even valences are allowed, and distortions of the
hexahedra could be arbitrarily large.

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 47

Fig. 27. Removing either a base complex sheet (let) or a chord (right) on the global structure of a hex-mesh monotonically

reduce the number of components of the base complex. Image from [Gao et al. 2017c].

Fig. 28. Turn an octree-based hex-mesh with a highly complex structure into a hex-mesh with a coarse structure. Image

from [Gao et al. 2017c].

By adapting the editing operations of singularity pairs for quadrilateral meshes [Peng et al. 2011] to hexahedral
meshes, Shen et al. [2021] propose to employ chord collapse and insertion to lexibly control the singularities of a
hexahedral mesh. The main limitation of this approach is that chord insertions are not always feasible when the

ACM Trans. Graph.

48 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

structure of the mesh is complex. The authors demonstrate that the proposed editing operations can be used to
clear some connectivity inconsistency issues for sweeping based hex-meshing.

6 GEOMETRIC OPTIMIZATION OF ELEMENT QUALITY

The vast majority of hexahedral meshing algorithms employ a two-step process where the irst step generates an
initial mesh which is expected to be dominated by well-shaped elements, but often also contains some poorly-
shaped and even inverted, or negative Jacobian determinant, elements (cf. Sec. 3). This step is typically followed
by an optimization step whose goal is to maximize the quality of the mesh elements and speciically to produce
an inversion-free mesh, while preserving the meshed domain boundary surface intact. Improvement methods
that keep the mesh connectivity ixed while changing only the locations of the mesh vertices, are commonly
referred as geometric optimization, smoothing, or untangling methods [Owen 1998; Shepherd and Johnson 2008].
The latter terms are commonly used to describe the methods that speciically focus on reducing, ideally to zero,
the number of inverted elements. As noted by Knupp [2001b], for hexahedral meshes there can be more than one
deinition of inverted elements. He identiies four diferent scenarios: (a) the integral of the Jacobian determinant
over the element is non-positive; (b) the Jacobian determinant is non-positive at any of the Gaussian integration
points (used, e.g., in FEM) inside the element (c) the Jacobian determinant is non-positive at any of the element’s
corners, or (d) the Jacobian determinant is non-positive at some other speciic point(s) inside the element. The
vast majority of optimization and untangling methods, described below, focus on the scenario (c). The general
scenario, seeking for positive Jacobian determinant at every point, is tackled by a few methods [Johnen et al. 2017;
Marschner et al. 2020] based on optimization formulations attempting to maximize lower bounds of the Jacobian
determinant, cf. Sec. 3.1.2. As with mesh generation itself, geometric optimization methods for hex-meshes
face some distinctly diferent challenges from methods for tet-mesh optimization such as [Erten et al. 2009;
Freitag Diachin et al. 2006; Kelly et al. 2013; Sastry and Shontz 2014; Scherer et al. 2010], motivating a distinct
line of research dedicated to optimizing hex-mesh geometry.

One can easily deine an objective function whose global minimum (or maximum) constitutes the best quality
mesh possible for a given ixed connectivity (and either hard or soft constraints that hold the surface vertices on
the surface of the meshed object). However, essentially all such known objective functions are highly non-linear
and do not allow for robust global optimum computation. Thus the core challenge in mesh geometry optimization
is to obtain a function and a corresponding optimization method such that the optimum obtained has no inverted
elements and maximizes as much as possible the mesh Jacobian or other proxy quality metrics (see Sec. 3).

Consequently, the main diference between the methods is in the optimization strategy used. A few attempts
tried to develop generic global optimization strategies which directly optimize the quality across all mesh vertices
(Sec. 6.1); however existing methods are not widely used and exhibit inferior performance compared to existing
alternatives. Most existing and widely used methods are based on Gauss-Seidel iterations (Sec. 6.1.1), where
vertices are relocated one at a time. The advantage of this strategy is that one can explicitly prevent the quality
from dropping locally, e.g., preventing the formation of new inverted elements. The drawback is in increased
likelihood of converging to a purely local minimum. Recent research investigates diferent local-global approaches
for mesh optimization (Sec. 6.2). This line of research shows great promise, with several methods signiicantly
outperforming prior art. Below we review these three families of methods in more detail.

6.1 Global Optimization

Several authors aim to optimize mesh quality by simultaneously updating all vertex positions, e.g. [Gao and Chen
2016; Yilmaz and Kuzuoglu 2009]; however they only demonstrate results on simple inputs. It is not clear if these
approaches can be extended to a more general setting. The use of global non-linear methods for optimizing mesh
quality was investigated in depth by Sastry et al [2009] and Wilson [2011] for tetrahedral and hexahedral meshes

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 49

respectively. Both concluded that global methods that directly optimize hex shape metrics as a function of vertex
positions are typically less robust than the Gauss-Seidel approach, discussed next, and frequently converge to
poorer solutions.

6.1.1 Gauss-Seidel Iterations. Older optimization approaches, reviewed by [Frey and George 2008], iteratively
relocate interior mesh vertices to some weighted average, or center, of their neighbors, one vertex at a time.
Earlier methods used simple geometric averages, e.g., positioning vertices so as to minimize the Laplacian energy
around each vertex

min
i

| |vi − 1/Ni

∑

j ∈N (i)

vj | |
2

where vi are mesh vertex positions, Ni is vertex valence, and N (i) are the vertices adjacent to i . This basic
framework is often suicient to produce quality outputs given meshes with simple connectivity and low-detail
surface geometry, with quality surface quad-mesh. Recent methods, e.g., [Knupp 2003; Vartziotis and Papadrakakis
2017; Zhang et al. 2009], use more sophisticated local energy formulations that aim to optimize the size of the solid
angles at each vertex. For example, Knupp [2003] encode each hex corner geometry via the condition number of
a matrix describing the coordinate system at the corner vertex

M = (e0, e1, e2)

where ei are the hex edges emanating from the vertex. The smaller the condition number, the better-shaped the
hex is locally (corner solid angle closer to 90◦). His method uses line-search to move the vertices one at a time so
as to minimize the worst or average condition number impacted by the position of this vertex. Such iterative
methods are fairly eicient and can be easily parallelized. Unfortunately, applied as-is, such methods do not
guarantee an inversion-free output. Speciically, they are often unable to untangle previously inverted element,
and when applied as-is are known to frequently introduce new inverted elements near concave features along the
boundaries of the meshed domain [Owen 1998]. Several researchers advocate employing these vertex-relocation
based methods either pre or post untangling [Knupp 2003; Vartziotis and Papadrakakis 2017]. Speciically, they
suggest to constrain each vertex move so as to avoid new inversions, and rely on the untangling methods
to resolve all inverted elements. For example, the widely used Mesquite library [Brewer et al. 2003] uses the
algorithm of Knupp [2001b] to irst untangle a hex-mesh and then improves its quality iteratively moving one
vertex at a time using the method of [Knupp 2003]. Constraining all intermediate solutions to remain in the
inversion-free space, can produce sub-optimal, local minimum outputs.

Vartziotis and Himpel [2014a] have proposed new formulations of vertex-by-vertex optimization designed for
mixed element meshes; while these formulations were successfully demonstrated in 2D space, they have yet to
demonstrate those on a hexahedral or hex-dominant input.

Knupp [2001b] proposed an untangling method that focuses solely on correcting inverted hex-elements, while
allowing the quality of the non-inverted ones to deteriorate. The energy function he employs is based on the
observation that non-negative numbers are equal to their absolute values. Thus requiring the local volume
α = (v1 −v0) · (v2 −v0) × (v3 −v0) at a hex corner v0 (where vi , i = 1 . . . 3 are the corners adjacent to v0) to be
non-negative can be cast as minimizing the sum

∑

v

(|α | − α)

over the eight corners of each hexahedron and over all mesh hexahedra. Notably, the optimum of this function
can be minimized while the mesh contains zero volume elements. To prevent this coniguration, the author
suggests minimizing a modiied energy

∑

v

(|α − ϵV̄ | − (α − ϵV̄))

ACM Trans. Graph.

50 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

where V̄ is the expected average mesh element size (computed as total mesh volume divided by the number of
elements), and ϵ is a user deined parameter. This approach demonstrated that this optimized energy is convex as
a function of a single vertex position. If a valid solution can be achieved by moving these center vertices, thus
using an appropriate convex optimization strategy, this method is guaranteed to untangle all clusters of inverted
elements centered around individual vertices. This method fails on many inputs with clusters of connected
tangled elements, where only a tandem movement can result in a valid solution.
In some more recent works, e.g. [Ruiz-Gironés et al. 2014, 2015; Wilson 2011; Wilson et al. 2012], iterative

local Gauss-Seidel approaches are employed to correct the inverted elements and improve the overall quality
of the elements. In these works, the authors use a speciically designed shape metric to avoid convex elements
becoming inverted elements and explicitly encouraging untangling of inverted elements. Speciically, they start
from a metric introduced by [Knupp 2001a] and modify it to avoid division by zero in the presence of zero volume
elements. Given the Jacobian matrixM , the point-wise distortion is deined via the matrix condition number,

ν =
|M |2

F

3D(M)2/3

Here | |F is Froebenius norm and D(·) is the determinant. Notably this value goes to ininity as the determinant

approaches zero. To avoid instability near zero the authors replace D(M) with 1
2
D(M) +

√

D(M)2 + 4δ 2 where δ
is a user speciied small value. They propose several diferent strategies for optimizing the resulting energy. In
particular [Ruiz-Gironés et al. 2015] indicates that an approach where each Gauss-Seidel update performs only
one step of gradient descent toward the local minimum performs best in terms of output quality. Intuitively, this
observation is consistent with avoiding premature convergence to a local minimum. Gauss-Seidel methods such
as the ones above are widely used in industry.

6.2 Local-Global Optimization

Multiple recent methods employ local-global approaches for mesh optimization. They conceptually break the
mesh into a collection of local, overlapping sub-meshes, and use those in an iterative optimization process. In
each iteration, they irst optimize each sub-mesh independently, aiming for a solution that is both suiciently
good (inversion free and high quality) and maximally close to the current sub-mesh geometry. They then update
the vertex positions globally while striving to maximally retain the geometry of the just computed individual
local sub-meshes. The two steps are then repeated until no further improvement is possible. The main diference
between these approaches is in the choice of the local sub-meshes.

6.2.1 Corner-based. Corner-based approaches consider the eight overlapping simplices formed by the corners of
each mesh hexahedron (Fig. 29). These methods were originally proposed for computation and optimization of
maps between simplicial complexes e.g. [Aigerman and Lipman 2013; Schüller et al. 2013], but can be applied
as-is for hex-mesh optimization, by treating these meshes as consisting of overlapping corner tetrahedra. These
methods iterate between optimizing each tet’s geometry individually, so as to satisfy a lower bound on quality,
and solving for vertex positions that best preserve the resulting individual tet shapes. The global optimization
step balances tet shape preservation and preservation of the coordinates of the vertices on the outer surface of
the input mesh. As discussed by [Livesu et al. 2015], on many input this approach fails to adequately control
the trade-of between boundary surface preservation and quality optimization: holding the boundaries tightly
results in poor quality meshes, while relaxing the boundary constraints so as to obtain adequate quality leads to
excessive surface drift (Fig. 30).

6.2.2 Hex-based. Marechal [2009] proposes a local-global method that is well suited for grid or octree meshes
(with or without padding). At irst, a best matching perfect cube is computed for each individual hexahedron.
Since each mesh vertex is shared between multiple hexahedra, each vertex receives as target position the average

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 51

Fig. 29. Corner-based approaches optimize hex shape by considering the set of eight tetrahedra formed by each corner and

its three incident edges.

of all the target positions computed for each of its incident elements. Vertices are then carefully moved towards
their target position. Geometric idelity is balanced with per element quality, and surface vertices are allowed to
deviate from the nominal surface to avoid introducing lipped elements. To avoid excessive deviation from the
input boundaries or corruption of surface features, the method frequently terminates with barely convex meshes,
with minuscule minimum scaled Jacobian (≈ 0.01). Further quality improvement using this approach leads to
signiicant boundary drift.

6.2.3 Cone-based. Livesu et al [2015] introduce the notion of cones, sets of hex-mesh corners that surround an
oriented mesh edge (Fig. 31). They then describe an optimization method that iterates between a local step that
optimizes each cone independently to satisfy a minimal quality threshold with minimal changes in cone shape,
and a global step that seeks to position all mesh vertices so as to maximally preserve these updated local cone
shapes. Both the global and the local steps allow feature vertices to move along the underlying features, and
surface vertices to move on the object’s surface. The method had been shown to provide better balance between
surface preservation and quality optimization than prior approaches. Xu et al. [2018] introduce a cone-based
two-step optimization strategy whose irst step focuses on mesh untangling, potentially at the expense of surface
preservation. Their second step then improves surface idelity and overall mesh quality while preventing the
formation of new inverted elements.

6.3 Non-Linear Meshes

The method of Paille et al. [2013] aims to compute low-distortion maps between 3D domains and hexahedral
meshes with near-perfect element shape. The method progressively increases the order of the hex elements
to improve quality and surface itting. This approach can be used to optimize the quality of polynomial-basis
meshes but is not applicable to standard linear hex-meshes. In particular, while the higher-order elements in
the meshes it obtains may be inversion-free and high quality, the underlying linear mesh elements may remain
inverted. Most recently, Knupp et al. [2021] proposed a high-order hex-mesh optimization method that targets
objects with no underlying CAD representation but using on the ly computed implicit surface representations. It

ACM Trans. Graph.

52 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 30. A degraded hex-mesh obtained by randomly displacing interior vertices (let, first two columns), optimized with a

state-of-the-art corner based approach [Aigerman and Lipman 2013]. Hard constraining the surface does not allow to fully

untangle the mesh (middle right, see red elements and spikes at the botom and top). Relaxing it yields a mesh with positive

minimum Jacobian, but introduces excessive surface deviation (right). Scaled Jacobian is color coded, from pure red (SJ ≤ 0)

to pure blue (SJ = 1).

Fig. 31. Cone-based methods cast mesh untangling as the problem of finding a valid axis for pairs of oppositely oriented

cones associated to mesh edges. If the axis of each cone stays on the positive half space w.r.t. its base, then the Jacobian at

the corners of each element incident to such edge is guaranteed to be strictly positive. Image from [Livesu et al. 2015].

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 53

speciically targets conforming meshes with interior surfaces and is advertised as well suited for computations
with dynamically changing geometry. The authors demonstrate the method on a range of simple to medium
complexity inputs.

6.4 Simultaneous Geometry and Topology Optimization

Changing mesh geometry and connectivity in parallel can potentially signiicantly improve the output quality.
However, robustly changing the topology of meshes with general connectivity can be challenging due to the global
impact of such topological changes (cf. Sec. 5). Thus such research often focused on meshes with near-regular
connectivity. For instance Sun et al. [2012] propose an optimization method speciic for grid-based meshes that
employs a combination of modiied Laplacian smoothing and topological operations on the padding layer of
the input mesh. The method is demonstrated to work on simple inputs; thus its applicability in the general case
remains to be tested. Guided by a frame ield generated from an existing hex-mesh, Wang et al. [Wang et al. 2018]
propose to identify the hexahedral sheets containing hexahedra with the worst scale Jacobian quality, collapsing
the identiied sheets, and inserting new sheets with possibly higher quality indicated from the frame ield. The
insertion of new sheets relies on a stream quad surface extraction which may have robustness issues when the
mesh structure is complex.

6.5 Meshes Containing Hybrid Elements

Meshes containing spurious (non-hexahedral) elements demand geometric optimization schemes that are able
to improve the quality of arbitrary polyhedral cells. Diferent from standard inite elements, such as tetrahedra
and hexahedra, the literature on general polyhedra is scarce. The manual of the Verdict Library [Stimpson et al.
2007] is a prominent reference for quality metrics of inite elements, and briely reports only about pyramids,
wedges, and knives (Fig. 32), proposing the signed volume as a unique metric, obtained as the sum of the signed
volumes of a tetrahedral decomposition of each element. In a recent work, Lobos and colleagues proposed a novel
extension of the scaled Jacobian that applies to pyramids and prisms [Lobos et al. 2021]. These elements often
occur in hybrid meshes because they are used as topological bridges between tetrahedra and hexahedra, or arise
when collapsing edges from a regular grid. Nevertheless, some hex-dominant meshing algorithms do not ofer
any control on the topology of the hybrid elements they create (Sec. 4.9), and may even produce cells for which a
tetrahedralization does not exist [Goerigk and Si 2015]. To date, we are not aware of any mesh smoothing or
untangling algorithm that can operate on general polyhedral meshes containing elements that do not admit a
tetrahedralization.

Restricting to elements for which a tet decomposition exists, mesh optimization algorithms are based around
the ideas expressed in [Vartziotis and Himpel 2014b]. The authors start from the consideration that per element
volume is not a good metric, because it is scale-dependent, and proposed an alternative metric ś called mean
volume ś which is deined on the tetrahedralization of a general polyhedron. The mean volume metric exhibits
some desirable properties. In fact, it is scale-independent and is maximized by regular tetrahedra, hexahedra,
octahedra, pyramids and prisms. Consequently, following the gradient of the mean volume allows optimizing
hybrid meshes made of these elements [Vartziotis and Papadrakakis 2017]. Also, more general elements can
be deformed following the gradient, but it remains unclear whether this improves the mesh or not, because of
the lack of a canonical reference element. Alternatively, one could tetrahedralize each element and smooth the
resulting simplicial mesh, optimizing the shape of each tet. Schemes to convert pyramids, hexahedra and prisms
in a globally consistent manner are reported in [Dompierre et al. 1999], and are implemented in open-source
tools like CinoLib [2019]. Also in this case, it is not clear to what extent optimizing the tetrahedralization of

ACM Trans. Graph.

54 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 32. From let to right: pyramid, wedge, and knife ś the only hybrid elements listed in the Verdict Library [Stimpson et al.

2007], a popular reference for the computation of quality metrics of finite elements.

a hybrid mesh improves the original elements. The topic is indeed under-investigated, and with the prolifera-
tion of hex-dominant meshing techniques we expect more and more contributions to be released in the near future.

A parallel line of works is devoted to the study of shape regularity criteria for general polyhedral elements.
Shape regularity plays a central role in FEM analysis, as it allows to deine precise error estimates on the solution
of a PDE, which depends solely on geometric properties of mesh elements. These criteria are well known for
triangles, quads, tetrahedra and hexahedra, but the problem hasn’t been taken into consideration for general
polygons and polyhedra until recently. As of today, shape regularity for arbitrary polygonal and polyhedral
elements is relatively strict: concavities are admitted, but elements must have a bounded number of faces and
edges, and be star shaped [Lipnikov 2013; Mu et al. 2015]. Some numerical schemes for hybrid meshes (e.g., the
Virtual Element Method [Beirão da Veiga et al. 2014]) have empirically shown to be resilient to meshes containing
even large amounts of elements that spectacularly violate these criteria, suggesting that more permissive shape
regularity criteria could be devised. The problem is still open, and various research groups are working on it.
Note that shape regularity criteria are not quality metrics, and involve the assessment of geometric properties
that are computationally expensive to evaluate (e.g., being star-shaped) hence they can hardly plugged into mesh
optimization schemes. Recent studies are trying to discover new connections between basic geometric properties
of mesh elements and the performances of PDE solvers (e.g., approximation error, the condition number of the
stifness matrix), with the ultimate goal to isolate geometric quantities that can be used to drive mesh generation
and optimization algorithms in a PDE-aware manner [Attene et al. 2021].

7 VISUALIZATION

Researchers involved in mesh generation made extensive use of tools to explore the structure of a volumetric
mesh interactively. There are several reasons for the volumetric investigation of hex-meshes:

Evaluation Finite Element analysis often requires the visualization of the result of an experiment, such as
the stress distribution or heat propagation.

Visualization An interactive visualizer of volumetric meshes is a powerful tool for the visual inspection of a
model. Hence, researchers might use it to assess meshing algorithms’ performance in terms of element
quality or global element arrangement. Interactivity becomes more challenging for high-resolution datasets
or meshes with intricate 3D structures.

Assessment Secondarily, automated techniques might perform numerical measurements and plotting his-
tograms to assess the quality of a hex model or some 3D ield embedded in the elements.

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 55

(a) (b) (c)

Fig. 33. The interactive visualization tools ofered by Hexalab: Internal exploration using a sweeping plane (a) or the peeling

tool (b); Coloring elements by their quality and the resulting histogram (c).

Presentation Finally, if the produced images are of high quality, they constitute a valuable resource for
dissemination, e.g., scientiic publications.

Visualizing a volumetric dataset in an efective and user-friendly way is a challenging task. Themain challenge is
to render the internal elements eiciently, even if the external shell occludes them. Volumetric rendering [Balsa Ro-
dríguez et al. 2014] overcomes this limitation by integrating the inner ield along a particular view direction.
However, besides their practical use in the exploration of biomedical data or FEM, they cannot be efectively used
to visualize the mesh’s connectivity and the quality of its elements.
An alternative trend enables an interactive user-guided visual exploration of hex-meshes directly via cell

iltering or using transparency to reveal mesh internal structure. This approach allows for a detailed analysis of
the mesh structure, isolating weak points, or degenerate elements. Some basic library ofers a set of essential
tools to ilter and visualize the elements selectively [Livesu 2019]. Other advanced geometry processing [Levy
2022b] or mesh generation [Geuzaine and Remacle 2009; Zheng et al. 1995] tools ofer necessary instruments
to examine the internal cells, such as sweeping planes. Similarly, Paraview [Ayachit 2015] and [ANSYS 2022]
provide some methods for the visualization and exploration of volumetric datasets, including additional tools to
plot and elaborate statistics on volumetric ields embedded in the elements. Besides their use in most application
contexts, none of the tools mentioned above is tailored to hexahedral meshes. A diferent generation of software
like Hexalab [Bracci et al. 2019] or the method presented in [Xu and Chen 2018] have been designed explicitly
for hexahedral mesh visualization.

Hexalab ofers a set of interactively controlled tools to reveal the internal structure of the mesh. The user can
either use an interactively controlled sweeping plane (see Fig. 33 a) or peel the object surface layer-by-layer from
the outside (see Fig. 33 b). Even if removed from the visualization, the outer surface can be visualized with some
transparency efect. Hexalab also provides a high-quality rendering, including non-photorealistic efects on the
GPU, like ambient occlusion, to enhance the internal structure and the arrangement of the elements and better
communicate the shape of the cells. It also implements all the quality measures in [Gao et al. 2017a], ofering
automated techniques to numerical assess the quality of a mesh and plot histograms for the inspected model
(see Fig. 33 c). Hexalab is also an easily accessible portal online repository of hex-meshes, including a variety
of results from various state-of-the-art techniques. This characteristic makes this tool an excellent platform to
compare the performance of the diferent meshing techniques.

ACM Trans. Graph.

56 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

While Hexalab provides essential tools to visualize the global connectivity, such as the location and valence
of singularities, the approach of [Xu and Chen 2018] provides a sophisticated method for the exploration and
the visualization of the volumetric structure. This method exploits the connectivity between base complexes
composing the hex-mesh. The structure and connectivity of base complexes provide an excellent overview
of the hexahedral elements’ underlying low. The base complexes are groups of cells delimited by the sheets
emanating from singularities (Fig. 34 a). Adjacent base complexes following the same frame ield directions
compose dual-sheets (Fig. 34 b). A global optimization process uses the connectivity between the dual-sheets to
select the most signiicant ones and inally provide an eicient instrument to navigate the high-level overview of
the underlying structure (Fig. 34 c). The recent approach proposed by Neuhauser and colleagues [Neuhauser
et al. 2021] makes use of GPU shader functionality to generate an advanced volumetric rendering that focuses
on a subset of elements. This strategy allows, for example, to visualize poorly shaped elements or the elements
surrounding a singularity and, at the same time, gradually blend the visualization with the surrounding structure.

Most of the current visualization tools specialize in exploring the mesh connectivity and assessing elements’
quality and arrangement. However, most of the tools presented in this section show their limits when employed
in an actual industrial application.
The volumetric visualization systems discussed in this section do not scale directly to massive datasets

composed of millions of elements. As the opposite, the industrial systems (such as Paraview [Ayachit 2015] and
Ansys [ANSYS 2022]) allow for the visualization of meshes composed of millions of elements. However, the
rendering quality provided by such commercial packages is usually not as informative as the one provided by
the recent tools proposed in academia. Because meshes composed of millions of elements are the standard in
several FEM contexts, open-source tools like Hexalab must bridge this gap to have a chance of signiicant impact
in industry.

When a dataset becomes massive, current exploration tools based on transparency, ambient occlusion, or slicing
planes might become inadequate to ensure full visual access to the volume. We believe that future visualization

(a) (b) (c)

Fig. 34. The pre-processing pipeline of [Xu and Chen 2018]: (a) Extracting the base complex; (b) One Dual sheet layer; (c) The

final visualization.

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 57

tools could overcome these limitations by exploiting current VR developments and possibly interactive gesture
tracking.

Finally, most application scenarios require the visualization of complex ields deined over each volume element
(such as stress or tensor ields), exploring their variation, and doing some statistics. While Paraview [Ayachit
2015] ofers already some advanced tools to this scope, renderings are still not adequate to the state-of-the-art
techniques. The modern GPU architecture that supports real-time ray-tracing can trace a new path for the
advanced volumetric rendering of hexahedral meshes with complex embedded ields.

8 CURRENT TRENDS AND FUTURE PERSPECTIVES

In this section, we report on the status of hex-meshing as a whole and its future perspectives. Speciically, in
Sec. 8.1 we discuss open theoretical problems that are relevant for hex-mesh generation algorithms. In Sec. 8.2
we report on algorithmic issues of existing approaches. Unlike the previous section, in this case, the theoretical
formulation of the problem is clear, but current solutions are unsatisfactory, mainly for the intrinsic complexity
of the problem tackled. In Sec. 8.3 we indicate various activities that, even though they do not directly advance
the state of the art, may foster new research and facilitate the development of better techniques.

8.1 Theoretical Challenges

Characterization and Synthesis of Hex-Meshable Frame Fields. The fully automatic applicability of frame ield
based techniques (Sec. 4.8) is currently limited to rather simple shapes. User intervention to cure imperfections
in the guiding ield are required to handle general shapes. As reported in the dedicated section, the space of
frame ields is topologically larger than the space of hexahedral meshes. This raises two fundamental theoretical
questions:

(1) Given a frame ield, how to algorithmically verify whether a valid hexahedral mesh of identical topology
exists?

(2) How to restrict frame ield synthesis algorithms to operate in the space of ields that admit a hexahedraliza-
tion?

As a variant of the latter question, one may consider a restriction to a subspace of that space ś which raises the
question what subspace is simple enough to enable an eicient restriction, yet large enough to enable high-quality
hexahedralizations (with proper boundary and feature alignment, sizing, adequate levels of regularity, etc.).
Unfortunately, both questions are still unanswered and demand further research to understand these geometrical
entities at a deeper level. For the characterization of hex-meshable ields, in [Liu et al. 2018] the authors enumerate
all local conditions for hex-meshes having singular edges with valence 3 and 5. Also they report a global condition
which is a discrete version of the Poincaré-Hopf index formula. While their characterization can be easily extended
to a broader set of singular edges, as reported by the authors, the global condition is necessary but not suicient,
meaning that there may still exist ields that obey all these criteria but do not admit a valid mesh (e.g., due to
limit cycles [Viertel et al. 2016], or other global inconsistencies [Sokolov and Ray 2015]). The second question
cannot be answered at this point either, due to a limited understanding and a lack of simple suicient and
necessary conditions characterizing hex-meshable ields. To sidestep this issue, many authors start by computing
an unconstrained frame ield, then cure it with manual ixing [Liu et al. 2018] or adopting local heuristics [Jiang
et al. 2014; Li et al. 2012; Reberol et al. 2019; Viertel et al. 2016], and then use the corrected singular graph to
bootstrap methods such as [Corman and Crane 2019; Liu et al. 2018] which produce a smooth ield that conforms
to a prescribed singularity structure. Not only is this a cumbersome pipeline, but considering the inability to
precisely state whether a ield is hex-meshable or not, failure is still possible, even for semi-automatic methods
that put the user in the loop.

ACM Trans. Graph.

58 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Fig. 35. Two polycubes having non 3-connected graphs. The red nodes at the let is 6-connected; the one at the right is

4-connected. These orthogonal polyhedra are not included in the graph characterizations provided in [Eppstein and Mumford

2010] and [Zhao et al. 2019].

Characterization of Polycube Surface Structures. Various existing polycube methods (Sec. 4.7) exploit a graph
characterization of orthogonal polyhedra [Eppstein and Mumford 2010] in attempts to ensure that the domain
structures they generate actually correspond to polycubes. This characterization, however, is unnecessarily
limiting. For instance, it is restricted to 3-connected graphs, meaning that each polycube corner will have exactly
three incident polycube edges. As a result, valid polycubes such as the ones shown in Fig. 35 are not considered
valid. An even more restrictive aspect is the limitation to genus zero polycubes, though this can be alleviated to
an extent [Zhao et al. 2019]. Extending this characterization to 4- and 6-connected graphs, as in Fig. 35, has high
practical importance, especially for the purpose of meshing CAD shapes, where more than three sharp features
not rarely meet at one point and the inability to reproduce this layout in the generated polycube would inevitably
result in a lack of feature preservation and ś most likely ś in severe and unnecessary geometric distortion. At the
same time, as pointed out in Sec. 4.7, the purely graph-based approach is not suicient to recognize structural
issues, as it ignores the fact that in the polycube context one operates with a surface-embedded graph structure.
The approach of [Sokolov 2016] goes further in this regard, but inherently does not support abstract, generalized,
chart-based polycubes. A fully satisfactory, necessary and suicient criterion and associated method to (i) detect
(or even right away prevent) invalidities, e.g., in surface labelings and (ii) perturb them into the nearest valid
solution is still elusive, and this remains an open problem not only for practitioners in mesh generation.

8.2 Algorithmic Challenges

Volume Mappings. Many indirect methods that operate on a supporting tetrahedral mesh rely on a mapping
between the input object and a parametric space embedding the mesh connectivity. A common desideratum
to promote element validity is that this mapping is (globally or locally) injective. The generation of injective
volumetric maps is a broad topic that inds application in many ields. While there are reliable approaches for the
computation of such maps [Campen et al. 2016], they are not versatile enough for hex-mesh generation. In recent
years some more lexible methods with improved success rates have been introduced [Du et al. 2020; Garanzha

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 59

et al. 2021] but none of them can actually guarantee an injective result and failure cases are easily encountered
in the hex-meshing context. Besides injectivity, it is also important that the map has low geometric distortion.
Elements should preserve their good shape through the map so that a regular grid in parametric space translates
into a well-shaped uniform hex-mesh of the target object. To this end, current relatively robust methods such
as [Du et al. 2020] fall short, because they are focused more on the validity of the solution than on the distortion of
the map, and may therefore produce valid meshes that are unusable in practice. Recent literature has shown that
adaptively sampling the parametric space can be used to counterbalance map distortion, even in extreme cases
(Fig. 18). Nevertheless, devising new algorithms that provide guarantees of robustness and minimize geometric
distortion (possibly editing mesh connectivity) will be highly beneicial for many hex-meshing algorithms.
Volume mappings become even more complex when integer constraints are added to the formulation, leading to a
mixed-integer problem. These problems typically arise in frame-ield based methods (Sec. 4.8) due to the presence
of integer transition functions and integer alignment conditions, but may also arise in certain polycube methods
(Sec. 4.7), to ensure that input features and polycube edges map to integer isolines in parametric space. As the
resulting mixed-integer problems are very hard to solve to the optimum [Bommes et al. 2010], heuristics are
commonplace, e.g. based on rounding [Jiang et al. 2014; Li et al. 2012; Nieser et al. 2011] or reduction to linearly
constrained integer programs [Brückler et al. 2022a,b; Cherchi et al. 2016]. Yielding a map that is not only of
low distortion on average, but strictly locally injective can be even more challenging in this integer-constrained
setting.
Regardless of the presence of integer constraints, the generation of the hexahedral connectivity is a discrete
sampling, hence the fulillment of map injectivity (or lack thereof) does not guarantee a success or a failure. A
lucky enough sampling of an invalid map may yield well-shaped hexahedra as much as a coarse enough sampling
of an injective map may produce inverted elements with negative Jacobian determinant. Nevertheless, valid
maps with no inverted elements and low geometric distortion are a good proxy for the generation of well-shaped
hexahedral elements, and this is what existing methods strive for. Moreover, from a theoretical standpoint,
injectivity guarantees the existence of a (dense enough) sampling where the so generated hexahedra are valid,
even though the resulting sampling density may be so high to become impractical for real applications.

Feature Transfer. By their very deinition, direct methods are guaranteed to conform to the input geometry
and all its features. Conversely, indirect methods can only produce an approximation of the target shape. Many
indirect methods insert all (or a part) of the input features after the mesh generation stage, resolving a feature
transfer problem. This happens for all grid-based methods, but may also happen for methods based on domain
decomposition or polycube methods (e.g., to restore features that do not map to polycube edges). Feature transfer
is primarily a topological problem because feature lines must be assigned to chains of edges in the hex-mesh,
ensuring that no spurious overlaps or intersections are introduced. Knownmethods operate heuristically, inserting
one feature curve at a time along some pre-computed sequence (e.g., sorting features by their length). While
the irst insertion is free to occupy any mesh edge, the subsequent ones are constrained by previous insertions,
clearly designing a combinatorial problem with exponential complexity. Recent literature has shown that a greedy
processing sequence may lead to catastrophic results (see, e.g. Figs. 1,2,11 in [Born et al. 2021]). Besides the
intrinsic complexity of the general problem, the sparse hex-mesh connectivity and impossibility to apply local
reinement to increase the valence of a vertex (e.g. to accommodate more incoming arcs) makes this problem
much more challenging on structured meshes than on unstructured ones. Current methods such as [Gao et al.
2019] are limited to simply discarding a feature line if a non-intersecting chain of edges can be computed, and
insert it otherwise, regardless of its geometric deviation from the target curve. The use of more sophisticated
heuristics such as [Born et al. 2021] may signiicantly increase the number of features successfully transferred
and also help reduce the geometric distortion due to a wiser choice of the feature edges. Alternative methods
tailored to operate on the connectivity of hexahedral meshes may also be developed, and coupled with (as local

ACM Trans. Graph.

60 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

as possible) hex-mesh reinement techniques to resolve intricate conigurations. Considering the limitations of
the hex connectivity application-aware de-featuring may also play an important role [Bufa et al. 2022].

Volumetric Modeling. The prominent idea at the basis of Isogeometric Analysis (IGA) is to establish a uniied
geometric representation for both modeling and simulation, thus avoiding the need to iteratively convert from
one representation to the other throughout the product development cycle [Hughes et al. 2005]. Diferently
from Computer-Aided Design (CAD), which is historically concerned with boundary representations (B-Rep),
numerical simulation often necessitates an explicit volumetric representation of the product (V-Rep), which
typically comes in the form of a inite tetrahedral or hexahedral mesh. Therefore, the fulillment of the IGA
principles passes through the adoption ś also for the design part ś of V-Reps. Not only IGA, but also modern
manufacturing techniques call for this transition: composite materials and internal microstructures do not scale
well with B-Reps, and would beneit from an explicit volumetric representation. Volumetric modeling that operates
with tensor products [Antolin et al. 2019b,a; Massarwi and Elber 2016] has close analogies with the deinition of
structured hexahedral meshes that endow a coarse block decomposition. To this end, advances in this ield will
go hand in hand with advances in user interactive tools for the generation of semi-structured hexahedral meshes.
A few proposals already exist in the literature, but the topic is quite new and under-investigated.

User Interaction. Since no existing hex-meshing method combines robustness, quality, and generality in a
fully satisfactory way, manual or semi-manual hexahedral mesh generation is still a prominent approach in
industry [Lu et al. 2017]. Professional software such as [ANSYS 2022; CUBIT 2022] and many others are based on
interactive pipelines where the user provides a high-level understanding of the object, and is required to instruct
the program on how the shape can be split into simpler parts. If and when parts become suiciently simple, direct
methods such as sweeping and advancing front are launched to complete the discretization. Parts that are not
suiciently simple will remain empty, and the user is required to modify the current partitioning or split the
non-meshed elements into simpler sub-components. This process is extremely tedious, and requires the user to
łunderstandž (and overcome) the limitations of direct meshing approaches, in order to provide a decomposition
that nicely combines the necessity to keep the number of parts low and at the same time simple enough to be
processed separately in an automatic fashion [CoreForm 2022b]. Since these tools follow a divide-and-conquer
approach, direct hexmeshing techniques are preferred to indirect ones, because they ensure that the meshes of
all sub components will be conforming. In recent years, academic literature has started to explore the possibility
to couple user guidance with indirect approaches that operate on a supporting tetrahedral mesh [Li et al. 2021;
Takayama 2019; Yu et al. 2022; Yu and Wei 2020]. These methods are not based on the typical divide-and-conquer
paradigm, and their ability to scale on complex shapes it yet to be demonstrated.
The usefulness of interactive approaches is twofold: from the perspective of mesh users, they allow to hex-
mesh objects that would not be possible to produce automatically. From the perspective of practitioners mesh
generation, these interactive pipelines often permit to spot the weak parts of the pipeline, isolate corner cases, and
interactively explore alternative solutions. To this end, these tools may be highly important for the development
of better (i.e., more robust) fully automatic methods.

Hex-Mesh Booleans. In medicine, the simulation of human organs often relies on templated hexahedral or
hex-dominant meshes that well capture biological structures such as separation tissues or the alignment of
muscular ibers, efectively reproducing their activation [Buchaillard et al. 2009; Gérard et al. 2006; Rohan et al.
2017; Schonning et al. 2009; Takhounts et al. 2008]. Considering the important information encoded in the
connectivity of these meshes, when simulating complex body dynamics that involve multiple organs it becomes
important to create composite simulation domains that preserve as much as possible the connectivity of each
original mesh. Blending multiple meshes into a single one is a widely studied problem in the literature, especially
for the case of unstructured meshes composed of triangles or tetrahedra [Cherchi et al. 2020; Diazzi and Attene

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 61

2021; Hu et al. 2018; Zhou et al. 2016]. For structured meshes made of quads or hexahedra, the problem is more
complex because the necessary changes of the local connectivity have a global footprint. Recently, in [Nuvoli et al.
2019] the authors introduced a method to blend quadrilateral meshes with minimal topological impact. Extending
this idea to volumetric hex-meshes remains an appealing avenue for future research with a signiicative potential
impact for bio-medical applications.

Scalability. With the recent advancement of additive manufacturing and topology optimization strategies,
mechanical shapes are rapidly growing in complexity. Consequently, hex-meshing methods need to comply with
this trend by providing the ability to process large datasets at a reasonable computational overhead. Scalability
has not been a central point for most of the proposed methods, but it will increase in importance in the years to
come.

8.3 Practical Challenges

PDE-aware Volume Meshing. As discussed in Sec. 4.2, a deeper fundamental understanding of the connection
between a hex-mesh and the inal application is required. Most of the hex-meshing methods strive to ensure
every element to have a positive Jacobian determinant. While this is already hardly achievable reliably with
most of the proposed methods, even a positive Jacobian determinant throughout the entire mesh only avoids the
presence of degenerate elements. Still, it does not ensure the mesh its with the target application. The precise
connection between a hex-mesh and its inal application is usually elusive. In Sec. 3, we presented several quality
measures for individual hexes. Still, even for Finite Element Analysis, it is not clear how those metrics impact the
accuracy of the simulation in detail. Other applications might prefer the alignment of the elements to a particular
vector ield over their individual quality. Recent literature has started to investigate the correlation between
geometric quality and the accuracy of numerical solvers at a deeper level. A whole line of research is devoted to
the evaluation of the Virtual Element Methods for polygonal and polyhedral meshes [Attene et al. 2021; Cabiddu
et al. 2021; Sorgente et al. 2022, 2021]. More related to the topic of this survey is the study published in [Gao
et al. 2017a], who conducted a statistical correlation analysis between hexahedral meshes obtained with various
techniques, and the resolution of a few representative PDEs. While it remains diicult to design mesh generation
algorithms that can address geometric quality criteria at the mesh generation stage, a few exceptions exist. For
example, the VoroCrust algorithm [Abdelkader et al. 2020] is designed to intrinsically satisfy the orthogonality
criterion required by CFD solvers, obtained with a wise positioning of the Voronoi seeds that fully avoids the
necessity to cut (or clip) Voronoi cells. It would be interesting to investigate similar ideas to obtain a tighter
coupling of mesh generation and its downstream applications.

Tets vs Hexes. Meshes made of hexahedral elements were traditionally considered superior to tetrahedral
meshes, both in terms of performance and accuracy. Tuchinsky and Clark observed that since a hexahedral
mesh can cover the same volume of a tetrahedral mesh with roughly one-quarter of the elements, there is a 75%
saving in terms of computational cost [Tuchinsky and Clark 1997]. This estimate is based on the assumption that
łanalysis setup and pre-processing requires the same time for hex- and tet-based workž, which does not relect the
current state of mesh generation because creating and processing tetrahedral meshes is signiicantly easier and
more robust than creating hexahedral ones [Diazzi and Attene 2021; Hu et al. 2020, 2018]. Regarding accuracy,
it seems to be well understood and established that linear tetrahedra are to be avoided because they introduce
artiicial stifness in the problem (i.e., they łlockž) [Wang et al. 2004], whereas linear hexahedral elements do
not introduce such artifact. Typically locking depends on the number of degrees of freedom [Frâncu et al. 2021]
and disappears when higher order bases are used [Wang et al. 2004]. This makes hexahedral meshes particularly
suited for problems where linear elements are used, such as in the interactive simulation of hyper-elastic and

ACM Trans. Graph.

62 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

plastic phenomena (e.g. in surgical simulation [Gao and Peters 2021]) and in fast transient dynamic phenomena
that employ explicit time integration (e.g. crash and impact simulation) [Gravouil et al. 2009] because higher-order
basis functions would necessarily demand a reduction of the time step to achieve numerical stability, according to
the Courant−Friedrichs−Lewy condition [Courant et al. 1967; Weber et al. 2021]. In recent years some scientists
have questioned the superiority of hexahedral elements over tetrahedra and advocate the use of tetmeshes with
quadratic basis functions as general purpose simulation domains [Schneider et al. 2022]. The topic is somewhat
orthogonal to this survey, which focuses only on hex-mesh generation aspects. Whether it is for their (uncertain)
superiority or because of the presence of highly trusted legacy code that runs only on hexahedral grids, the
interest for hexahedral meshes is still high both in industry and in academia. This is witnessed by the growing
number of scientiic articles published in recent years [Beaufort et al. 2022], by the central role that hexahedral
grids occupy in industrial and commercial software, and ultimately by the interest that the industry manifests
for each advancement in hex-mesh generation. It is worth noting that, despite their importance, tetrahedra
and hexahedra cover just a fraction of the possible simulation domains. General polyhedral meshes made of
Voronoi [Lévy 2022] or cut [Tao et al. 2019] cells are a valid alternative and are particularly appreciated in
Lagrangian setups, where the mesh evolves over time and must be quickly generated to track features in a
simulated domain. For obvious reasons, this survey does not cover this body of literature.

File Formats. Many algorithms for hex- and hex-dominant mesh generation necessitate the ability to process
general polyhedral meshes, either at the intermediate steps of the pipeline [Gao et al. 2019; Livesu et al. 2021;
Maréchal 2009] or directly in the output mesh [Gao et al. 2017b; Livesu et al. 2020]. In general, these methods
put no constraints on the topology of each cell, which can therefore contain any amount of vertices, edges and
faces. While data structures capable of handling these entities exist (Sec. 9), we are not aware of any widely
accepted ile format that allows to save and load output hexahedral dominant meshes or intermediate steps of
hex-meshing pipelines. To our knowledge, popular tools such as VTK [2022] only support ile IO of canonical
inite elements, such as tetrahedra, hexahedra, pyramids and wedges, while methods that produce meshes with
more complex elements all rely on ad-hoc formats that were released alongside the algorithms themselves [Gao
et al. 2017b; Livesu et al. 2020], thus limiting the possibility to exchange material and ultimately triggering a
proliferation of alternative proposals. Considering the growing importance of hex-dominant meshes, it would be
important to deine a ile format for general polyhedral meshes, so that groups working in the ield can store and
release their data in a way that is intelligible by the other groups, and that can be easily supported by third party
software such as [Bracci et al. 2019] (e.g., for visualization, comparison, and analysis).

Datasets & Benchmarks. In recent years the computer graphics community has released multiple databases that
have been extremely useful for practitioners in the ield, raising the bar for new algorithms in terms of scalability
and ability to handle a variety of inputs with diferent complexity, from easy ones to highly challenging. To make
a practical example, the Thingi10K [Zhou and Jacobson 2016] dataset has quickly become a popular means to
empirically validate the robustness of surface mesh generation and processing algorithms [Hu et al. 2018; Pietroni
et al. 2021] and some of its models are so pathological that being able to process them is an achievement by itself,
with authors reporting both running times and memory consumption (see e.g. Fig. 17 in [Hu et al. 2020] and
Fig.1 in [Cherchi et al. 2020]). To this end, new methods for hexahedral and hex-dominant meshing can greatly
beneit from the release of similar databases. The Hexalab project [Bracci et al. 2019] collects output data from
the most prominent mesh generation methods in the literature, but it is not meant to be a validation database for
novel methods. A few contributions in this direction have been proposed very recently: [Ledoux 2022; Reberol
et al. 2019] propose input CAD models, while [Beaufort et al. 2022] ofers input tetrahedral meshes with tagged
feature entities. Speciically, hard constraints on the preservation of feature curves and (boundary and interior)
surfaces can be very challenging for meshing algorithms.

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 63

Beyond PDEs: Novel Applications. The numerical resolution of Partial Diferential Equations (PDEs) is by far
the most prominent application of volumetric meshes in general, and of hexahedral meshing in particular.
Nevertheless, in recent years both meshes of this kind and techniques that were originally developed in the ield
have been used in alternative applications, such as topology optimization and advanced manufacturing [Arora
et al. 2019; Stutz et al. 2022; Wu et al. 2021]. To this end, current themes in automatic hex-mesh generation are
beneicial not only for the numerical resolution of PDEs, but may also reach a broader audience.

9 AVAILABLE RESOURCES

Besides various professional and semi-professional tools such as VTK [Schroeder et al. 1998] and its front end
ParaView [Ayachit 2015], Cubit [CUBIT 2022], MeshGems [Distene SAS 2022], Gmsh [Geuzaine and Remacle
2009], CoreForm [CoreForm 2022a], CGAL [Fabri and Pion 2009] and many others, over the years academics
have released both data and a variety of open-source tools to aid not only their research, but also the activities of
other practitioners in the ield. This section summarizes the most prominent available resources for hexahedral
and hex-dominant meshing. Note that the list of authors releasing their data, code and toolkits is in constant
evolution.

Datasets. In Tab. 3 we list datasets released by authors of the methods surveyed in Sec. 4. This includes in
particular sets of example hexahedral meshes generated by these various methods, but also hex-dominant meshes
(e.g., [Gao et al. 2017b]) as well as challenging input models (e.g., [Beaufort et al. 2022; Ledoux 2022; Reberol et al.
2019]). The HexaLab project [Bracci et al. 2019] is a uniied portal to visualize hexahedral meshes directly in a
web browser as well as to download them. It collects meshes produced with the most recent techniques in the
ield, with a focus on pure hexahedral meshes, and includes most of the output data listed in Tab. 3.

Algorithms. In recent years, more and more authors are releasing their source code, either through activities
for the reproducibility of scientiic experiments, such as [Bonneel et al. 2020; GRSI 2022], or simply by publishing
their code on Github or similar portals. In Tab. 4 we report on all the implementation of algorithms surveyed in
this article, both in the form of source code or pre-compiled binaries.

Toolkits. While there exist countless open source libraries for the processing of surface (e.g. triangular) meshes,
the number of tools that ofer data structures for volume meshes is scarce. Besides, most of these tools are
dedicated to tetrahedral meshes only. They do not support alternative cells, such as hexahedra or general
polyhedral elements that may arise at the intermediate steps of the meshing pipeline [Livesu et al. 2020; Maréchal
2009; Pitzalis et al. 2021], or in hex-dominant methods. In Tab. 5 we report on the most prominent existing
software tools for volume mesh processing, summarizing their main features w.r.t. the scope of this survey.

ACKNOWLEDGMENTS

D. Bommes has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (AlgoHex, grant agreement No.853343). G. Cherchi gratefully acknowl-
edges the support to his research by PON R&I 2014-2020 AIM1895943-1. M. Campen gratefully acknowledges
funding from the Deutsche Forschungsgemeinschaft (DFG) - 427469366. A. Shefer thanks NSERC for their
ongoing support. M. Livesu was partly supported by EU ERC Advanced Grant CHANGE No. 694515.

REFERENCES

Ahmed Abdelkader, Chandrajit L Bajaj, Mohamed S Ebeida, Ahmed H Mahmoud, Scott A Mitchell, John D Owens, and Ahmad A Rushdi.

2020. VoroCrust: Voronoi meshing without clipping. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1ś16.

Noam Aigerman and Yaron Lipman. 2013. Injective and Bounded Distortion Mappings in 3D. ACM Trans. Graph. 32, 4 (2013), 1ś14.

Altair. 2022. HyperMesh. https://www.altair.com/hypermesh/

ANSYS. 2022. ANSYS. https://www.ansys.com/products/meshing

ACM Trans. Graph.

https://www.altair.com/hypermesh/
https://www.ansys.com/products/meshing

64 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Table 3. List of input/output datasets for the hex and hex-dominant methods surveyed in this article available at the time of

writing. Meshes that are included also in the HexaLab database [Bracci et al. 2019] are flagged accordingly.

Method
Data

Available

File

Formats

On

Hexalab
URL

[Gregson et al. 2011] output hex-meshes .MESH yes zip

[Li et al. 2012] output hex-meshes .VTK yes link

[Livesu et al. 2013] output hex-meshes
.VTU
.MESH

yes webpage

[Huang et al. 2014]
input tet-meshes
polycube maps

output hex-meshes
.VTK yes zip

[Livesu et al. 2015]
input hex-mesesh
output hex-meshes

.MESH yes zip

[Fang et al. 2016]
input tet-meshes
output hex-mesh

.VTK yes zip

[Fu et al. 2016]
input tet-meshes
polycube maps

output hex-meshes
.VTK yes

link
link

[Cherchi et al. 2016]

input polycubes (hex)
output polycubes (hex)
intput hex-meshes
output hex-meshes

.MESH yes zip

[Livesu et al. 2016]
input surface meshes
input curve-skeletons
output hex-meshes

.OBJ
.SKEL
.MESH

yes zip

[Gao et al. 2016]
input surface meshes
output hex-meshes

.OFF
.MESH

yes zip

[Wu et al. 2017] output hex-mesh .MESH yes ś

[Livesu et al. 2017] output hex-meshes .MESH yes zip
[Shang et al. 2017] output hex-meshes .VTK yes link

[Gao et al. 2017c]
input hex-meshes
output hex-meshes

.VTK no zip

[Gao et al. 2017b] output hex-dominant meshes .HYBRID no zip

[Wu et al. 2018] output hex-meshes .MESH yes ś

[Cherchi et al. 2019a] output hex-meshes .MESH yes zip
[Corman and Crane 2019] output hex-meshes .VTK yes zip

[Takayama 2019] output hex-meshes .VTK yes zip

[Gao et al. 2019]
input surface mesh

input features
output hex-meshes

.OBJ
.FGRAPH
.MESH
.VTK

yes zip

[Reberol et al. 2019] input CAD models .GEO no zip

[Yang et al. 2019] output hex-meshes .VTK no link

[Palmer et al. 2020] input tet-mesh .OVM no zip

[Livesu et al. 2020]

input surface meshes
input rosy ields
input features
cutting loops

reined surface meshes
output hex-meshes

.OBJ
.ROSY
.SHARP
.TXT
.MESH

yes github

[Guo et al. 2020]

input surface meshes
input features

polycubes (surface)
polycubes CE (surface)
output hex-meshes

.OBJ
.FEA
.VTK

yes link

[Xu et al. 2021] output hex-meshes .MESH yes github

[Bukenberger et al. 2021] output hex-meshes .MESH yes ś

[Pitzalis et al. 2021] output conforming grids .MESH yes ś
[Ledoux 2022] input CAD models .STEP no gitlab

[Beaufort et al. 2022]
input tet-meshes
input features

.VTK no webpage
ACM Trans. Graph.

https://www.cs.ubc.ca/labs/imager/tr/2011/HexMeshingPolycubeDeformation/HexMeshing_files/HexMeshSGP2011_sample_data.zip
https://app.box.com/s/1yng7m1eky0tgo3q9b39msrrxmiwoa7a
http://www.cs.ubc.ca/labs/imager/tr/2013/polycut/
http://www.cad.zju.edu.cn/home/hj/14/l1-poly/l1-poly-dat.zip
http://www.cs.ubc.ca/labs/imager/tr/2015/untangler/downloads/untangler_res.zip
http://www.cad.zju.edu.cn/home/hj/16/closed-form-polycube/closed-form-polycube.7z
http://pan.baidu.com/s/1o7YUFYq
http://pan.baidu.com/s/1bp5fiRP
https://www.gianmarcocherchi.com/dataset/pc_simpl_dataset.zip
http://pers.ge.imati.cnr.it/livesu/papers/LMPS16/LMPS16.zip
https://gaoxifeng.github.io/papers/2015/TVCG_data.zip
http://pers.ge.imati.cnr.it/livesu/papers/LAPS17/LAPS17.zip
https://ndownloader.figstatic.com/articles/5020001/versions/1
https://cims.nyu.edu/gcl/papers/Robust-Hex-2017.zip
https://cims.nyu.edu/gcl/papers/Robust-Meshes-2017-data.zip
https://www.gianmarcocherchi.com/dataset/sel_padding_dataset.zip
http://www.cs.cmu.edu/~kmcrane/Projects/SymmetricMovingFrames/data.zip
http://research.nii.ac.jp/~takayama/dual-sheet-meshing/dual-sheet-meshing.zip
https://cims.nyu.edu/gcl/papers/2019-OctreeMeshing.zip
https://mxncr.github.io/data/ff_correction_models.zip
http://rec.ustc.edu.cn/share/e6a45a90-d2f2-11e9-a4e0-a95fc4721cf6
http://cgg.unibe.ch/media/papers/7/InputFiles.zip
https://github.com/mlivesu/LoopyCuts/tree/master/test_data
https://drive.google.com/file/d/1g1RwWSkPRhl4HpcstE5hJALF3Zpq61pQ/view
https://github.com/ohehe/HexMeshSimplification
https://gitlab.com/franck.ledoux/mambo
https://cgg.unibe.ch/hexme/

Hex-Mesh Generation and Processing: a Survey • 65

Table 4. List of available implementation of hex-mesh processing algorithms.

Method Type

Sample

Input

Available

License URL

[Lévy and Liu 2010] C++ yes ś link

[Huang et al. 2011] executable yes ś zip

[Baudouin et al. 2014]
C++

(Gmsh branch)
no GPL 2 gitlab

[Gregson et al. 2011]
[Livesu et al. 2013]
[Livesu et al. 2015]

executable yes
patented,

one month trial
webpage

[Fang et al. 2016] C++ yes ś zip

[Lyon et al. 2016] C++ yes GPL 3 webpage

[Fu et al. 2016]
C++

(incomplete)
no ś zip

[Gao et al. 2017b] C++ yes ś github

[Gao et al. 2017a] C++ no ś github
[Gao et al. 2017c] C++ no MPL 2 github
[Xu and Chen 2018] C++ no GPL 3 github

[Xu et al. 2018] C++ yes ś github
[Liu et al. 2018] C++ yes GPL 3 gitlab

[Yang et al. 2019] C++ yes ś link

[Bracci et al. 2019]
C++

Javascript
yes MIT github

[Takayama 2019] C++ no BSD 3 bitbucket

[Gao et al. 2019] C++ yes ś github

[Reberol et al. 2019]
C++

(Gmsh branch)
no GPL 2 gitlab

[Palmer et al. 2020] Matlab yes MIT github

[Verhetsel et al. 2019b] C no GPL zip
[Livesu et al. 2020] C++ yes GPL 3 github

[Guo et al. 2020] C++ yes MIT github
[Marschner et al. 2020] Matlab yes MIT github

[Yu and Wei 2020] C++ yes ś github

[Pitzalis et al. 2021] C++ no MIT github

[Livesu et al. 2021]
C++

(inside Cinolib)
no MIT github

[Neuhauser et al. 2021] C++ yes BSD 2 github

[Xu et al. 2021] executable yes ś github

[Li et al. 2021] C++ no MIT github

[Yu et al. 2022] C++ yes ś github

Pablo Antolin, Annalisa Bufa, Elaine Cohen, John F Dannenhofer, Gershon Elber, Stefanie Elgeti, Robert Haimes, and Richard Riesenfeld.

2019b. Optimizing micro-tiles in micro-structures as a design paradigm. Computer-Aided Design 115 (2019), 23ś33.

Pablo Antolin, Annalisa Bufa, and Massimiliano Martinelli. 2019a. Isogeometric analysis on V-reps: First results. Computer Methods in

Applied Mechanics and Engineering 355 (2019), 976ś1002.

Farah Aqilah, Mazharul Islam, Franjo Juretic, Joel Guerrero, David Wood, and Farid Nasir Ani. 2018. Study of Mesh Quality Improvement for

CFD Analysis of an Airfoil. IIUM Engineering Journal 19, 2 (2018), 203ś212.

Cecil G. Armstrong, Harold J. Fogg, Christopher M. Tierney, and Trevor T. Robinson. 2015. Common Themes in Multi-block Structured

Quad/Hex Mesh Generation. Procedia Engineering 124 (2015), 70ś82.

Rahul Arora, Alec Jacobson, Timothy R. Langlois, Yijiang Huang, Caitlin Mueller, Wojciech Matusik, Ariel Shamir, Karan Singh, and David I.W.

Levin. 2019. Volumetric Michell Trusses for Parametric Design & Fabrication. In Proceedings of ACM Symposium on Computation Fabrication.

1ś13.

Marco Attene. 2010. A lightweight approach to repairing digitized polygon meshes. The visual computer 26, 11 (2010), 1393ś1406.

M. Attene, S. Biasotti, S. Bertoluzza, D. Cabiddu, M. Livesu, G. Patanè, M. Pennacchio, D. Prada, and M. Spagnuolo. 2021. Benchmarking the

Geometrical Robustness of a Virtual Element Poisson Solver. Mathematics and Computers in Simulation 190 (2021).

ACM Trans. Graph.

https://app.box.com/s/vh9mz9eody9xuxj7xtp2f19d8d7gya97
http://www.cad.zju.edu.cn/home/hj/11/SH-cross-frame-1607-JiongCHEN.7z
https://gitlab.onelab.info/gmsh/gmsh/-/tree/quadMeshingTools
http://www.cs.ubc.ca/labs/imager/tr/2018/HexDemo/
http://www.cad.zju.edu.cn/home/hj/16/closed-form-polycube/closed-form-polycube-release-V1.0.7z
https://www.graphics.rwth-aachen.de/software/libHexEx/
http://staff.ustc.edu.cn/~fuxm/projects/EfficientPolyCube/PolyCube.zip
https://github.com/gaoxifeng/robust_hex_dominant_meshing
https://github.com/gaoxifeng/Evaluation_code_SGP2017
https://github.com/gaoxifeng/Robust-Hexahedral-Re-Meshing
https://github.com/Cotrik/CotrikMesh
https://cotrik.github.io/research/projects/2017_hexmesh_optimization/files/AngleBased_HexOpt_Materials.zip
https://gitlab.vci.rwth-aachen.de:9000/SCOF/SingularityConstrainedOctahedralFields
http://rec.ustc.edu.cn/share/dcd64240-c881-11e9-af13-3b5e4718f6cd
https://github.com/cnr-isti-vclab/HexaLab
https://bitbucket.org/kenshi84/dual-sheet-meshing/src/master/
https://github.com/gaoxifeng/Feature-Preserving-Octree-Hex-Meshing
https://gitlab.onelab.info/gmsh/gmsh/-/tree/hexbl
https://github.com/dpa1mer/arff
https://www.hextreme.eu/Download/topological-hex-0.3.0.tar.gz
https://github.com/mlivesu/LoopyCuts
https://github.com/msraig/CE-PolyCube
https://github.com/zoemarschner/SOS-hex
https://github.com/CMU-CBML/HexGen_Hex2Spline
https://github.com/cg3hci/Gen-Adapt-Ref-for-Hexmeshing
https://github.com/mlivesu/cinolib/blob/master/include/cinolib/hex_transition_schemes.h
https://github.com/chrismile/HexVolumeRenderer
https://github.com/ohehe/HexMeshSimplification
https://github.com/lingxiaoli94/interactive-hex-meshing
https://github.com/CMU-CBML/HexDom

66 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Table 5. List of existing open source toolkits for visualization and processing of hex and hex-dominant meshes. Note that

while some of these tools endow a broader set of facilities (e.g. for surface mesh processing), the table summarizes only the

aspects that are relevant for the scope of this article.

Name Type
Supported

geometries

File

formats

Rendering

facilities

Visual

inspection

Mesh

attributes

Tools for

volume

processing

License URL

CinoLib
[Livesu 2019]

C++ library
(header only)

tetrahedra,
hexahedra,
general

polyhedra

.MESH,
.VTU,
.VTK,

.HEDRA1,

.HEXEX2,
.HYBRID3,
Tetgen4

yes

plane slicing
(axis aligned),
thresholding,

manual selection,
ambient occlusion

generic
attributes
for all
mesh

elements

grid hex-meshing
facilities

(schemes [Livesu et al. 2021],
surface mapping,

faeture mapping [Gao et al. 2019]),
hex-to-tet
conversion

[Dompierre et al. 1999],
extraction of

coarse block layouts,
volume smoothing,
subdivision schemes,

padding,
all quality metrics in
[Stimpson et al. 2007]

MIT github

HexaLab
[Bracci et al. 2019]

web app hexahedra
.MESH,
.VTK

yes

plane slicing,
thresholding,
peeling,
manual selection,
ambient occlusion

scalar attributes
(per cell)

all quality metrics in
[Stimpson et al. 2007]

GPL 3
webpage
github

GEOGRAM
Graphite
[Levy 2022a]

C++ library

tetrahedra,
hexahedra,
pyramids,
wedges,
connectors
(between solid elements)

.GEOGRAM5

.MESH
yes plane slicing

generic
attributes
for all
mesh elements

quality metrics,
histograms

BSD 3 zip

OpenVolumeMesh
[Kremer et al. 2013]

C++ library general polyhedra .OVM6 no ś

generic
attributes
for all
mesh elements

ś GPL 3 webpage

PolyScope
[Sharp et al. 2022]

C++ library

tetrahedra,
hexahedra,
hybrid
(soup of
non conforming
tets and hexa)

.MESH yes plane slicing
scalars and vectors
for all
mesh elements

ś MIT webpage

PyMesh
[Zhou 2022]

Python library
tetrahedra,
hexahedra

.MESH,

.MSH,
Tetgen4

yes plane slicing
scalars and vectors
for all
mesh elements

ś ś webpage

Py3DViewer
[Cherchi et al. 2019b]

Python library
tetrahedra,
hexahedra

.MESH yes plane slicing
integer attributes
(per cell)

ś MIT github

1 https://github.com/mlivesu/cinolib/blob/master/include/cinolib/io/write_HEDRA.cpp 4 https://wias-berlin.de/software/tetgen/formats.html
2 https://www.graphics.rwth-aachen.de/media/resource_iles/hexex_input_examples.zip 5 http://alice.loria.fr/software/geogram/doc/html/geoile_8h_source.html
3 https://github.com/gaoxifeng/robust_hex_dominant_meshing/blob/master/src/meshio.cpp 6 https://www.graphics.rwth-aachen.de/media/openvolumemesh_static/Documentation/OpenVolumeMesh-Doc-Latest/ile_format.html

Marco Attene, Marcel Campen, and Leif Kobbelt. 2013. Polygon mesh repairing: An application perspective. Comput. Surveys 45, 2 (2013),

1ś33.

Utkarsh Ayachit. 2015. The ParaView Guide: A Parallel Visualization Application. Kitware, Inc.

M. Balsa Rodríguez, E. Gobbetti, J.A. Iglesias Guitián, M. Makhinya, F. Marton, R. Pajarola, and S.K. Suter. 2014. State-of-the-Art in Compressed

GPU-Based Direct Volume Rendering. Computer Graphics Forum 33, 6 (2014), 77ś100.

KE Barrett. 1996. Jacobians for isoparametric inite elements. Communications in Numerical Methods in Engineering 12, 11 (1996), 755ś766.

Tristan Carrier Baudouin, Jean-François Remacle, Emilie Marchandise, François Henrotte, and Christophe Geuzaine. 2014. A frontal approach

to hex-dominant mesh generation. Advanced Modeling and Simulation in Engineering Sciences 1, 1 (2014), 1ś30.

Arthur Bawin, François Henrotte, and Jean-François Remacle. 2021. Automatic feature-preserving size ield for three-dimensional mesh

generation. Internat. J. Numer. Methods Engrg. 122, 18 (2021), 4825ś4847.

Pierre-Alexandre Beaufort, Jonathan Lambrechts, François Henrotte, Christophe Geuzaine, and Jean-François Remacle. 2017. Computing

cross ields A PDE approach based on the Ginzburg-Landau theory. Procedia engineering 203 (2017), 219ś231.

Pierre-Alexandre Beaufort, Maxence Reberol, Denis Kalmykov, Heng Liu, Franck Ledoux, and David Bommes. 2022. Hex Me If You Can.

Computer Graphics Forum 41, 5 (2022).

L Beirão da Veiga, Franco Brezzi, Luisa Donatella Marini, and Alessandro Russo. 2014. The hitchhiker’s guide to the virtual element method.

Mathematical Models and Methods in Applied Sciences 24, 08 (2014), 1541ś1573.

ACM Trans. Graph.

https://github.com/mlivesu/cinolib
https://www.hexalab.net
https://github.com/cnr-isti-vclab/HexaLab
https://members.loria.fr/BLevy/PACKAGES/geogram_1.7.7.zip
https://www.graphics.rwth-aachen.de/software/openvolumemesh/
http://polyscope.run
https://pymesh.readthedocs.io/en/latest/
https://github.com/cg3hci/py3DViewer
https://github.com/mlivesu/cinolib/blob/master/include/cinolib/io/write_HEDRA.cpp
https://wias-berlin.de/software/tetgen/fformats.html
https://www.graphics.rwth-aachen.de/media/resource_files/hexex_input_examples.zip
http://alice.loria.fr/software/geogram/doc/html/geofile_8h_source.html
https://github.com/gaoxifeng/robust_hex_dominant_meshing/blob/master/src/meshio.cpp
https://www.graphics.rwth-aachen.de/media/openvolumemesh_static/Documentation/OpenVolumeMesh-Doc-Latest/file_format.html

Hex-Mesh Generation and Processing: a Survey • 67

Steven E. Benzley, N. J. Harris, M. A, M. J. Borden Scott, and S. J. Owen. 2005a. Conformal Reinement and Coarsening of Unstructured

Hexahedral Meshes. Journal of Computing and Information Science in Engineering 5 (2005), 330ś337.

Steven E. Benzley, Nathan J. Harris, Michael Scott, Michael Borden, and Steven J. Owen. 2005b. Conformal Reinement and Coarsening of

Unstructured Hexahedral Meshes. Journal of Computing and Information Science in Engineering 5, 4 (2005), 330ś337.

Marshall W. Bern, David Eppstein, and Jef Erickson. 2002. Flipping Cubical Meshes. Engineering with Computers 18, 3 (2002), 173ś187.

Ted Blacker. 1996. The cooper tool. In Proceedings of International Meshing Roundtable.

Ted Blacker. 2000. Meeting the challenge for automated conformal hexahedral meshing. In Proceedings of International Meshing Roundtable.

11ś20.

T.D. Blacker and R.J. Meyers. 1993. Seams and Wedges in Plastering:A 3D Hexahedral Mesh Generation Algorithm. Engineering with

Computers 2, 9 (1993), 83ś93.

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013a. Integer-Grid Maps for Reliable Quad Meshing.

ACM Trans. Graph. 32, 4 (2013).

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization of Quadrilateral Meshes. Computer Graphics Forum 30,

2 (2011), 375ś384.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Cláudio T. Silva, Marco Tarini, and Denis Zorin. 2013b. Quad-Mesh Generation and

Processing: A Survey. Computer Graphics Forum 32, 6 (2013), 51ś76.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3, Article 77 (jul 2009),

10 pages.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2010. Practical mixed-integer optimization for geometry processing. In International

Conference on Curves and Surfaces. Springer, 193ś206.

Nicolas Bonneel, David Coeurjolly, Julie Digne, and Nicolas Mellado. 2020. Code replicability in computer graphics. ACM Transactions on

Graphics (TOG) 39, 4 (2020), 93ś1.

Michael J. Borden, Steven E. Benzley, and Jason F. Shepherd. 2002a. Hexahedral Sheet Extraction. In Proceedings of International Meshing

Roundtable. 147ś152.

Michael J. Borden, Jason F. Shepherd, and Steven E. Benzley. 2002b. Mesh Cutting: Fitting Simple All-Hexahedral Meshes to Complex

Geometries. In Proceedings, 8th International Society of Grid Generation Conference.

J. Born, P. Schmidt, and L. Kobbelt. 2021. Layout Embedding via Combinatorial Optimization. Computer Graphics Forum 40, 2 (2021), 277ś290.

Matteo Bracci, Marco Tarini, Nico Pietroni, Marco Livesu, and Paolo Cignoni. 2019. HexaLab. net: an online viewer for hexahedral meshes.

Computer-Aided Design 110 (2019), 24ś36.

Michael L. Brewer, Lori Freitag Diachin, Patrick M. Knupp, Thomas Leurent, and Darryl J. Melander. 2003. The Mesquite Mesh Quality

Improvement Toolkit. In Proceedings of International Meshing Roundtable.

Hendrik Brückler, David Bommes, and Marcel Campen. 2022a. Volume Parametrization Quantization for Hexahedral Meshing. ACM Trans.

Graph. 41, 4 (2022).

Hendrik Brückler, Ojaswi Gupta, Manish Mandad, and Marcel Campen. 2022b. The 3D Motorcycle Complex for Structured Volume

Decomposition. Computer Graphics Forum 41, 2 (2022).

Stéphanie Buchaillard, Pascal Perrier, and Yohan Payan. 2009. A biomechanical model of cardinal vowel production: Muscle activations and

the impact of gravity on tongue positioning. The Journal of the Acoustical Society of America 126, 4 (2009), 2033ś2051.

Annalisa Bufa, Ondine Chanon, and Rafael Vázquez. 2022. Analysis-aware defeaturing: Problem setting and a posteriori estimation.

Mathematical Models and Methods in Applied Sciences 32, 02 (2022), 359ś402. https://doi.org/10.1142/S0218202522500099

Dennis R Bukenberger, Marco Tarini, and Hendrik PA Lensch. 2021. At-Most-Hexa Meshes. In Computer Graphics Forum. Wiley Online

Library.

Daniela Cabiddu, Giuseppe Patanè, and Michela Spagnuolo. 2021. PEMesh: a Graphical Framework for the Analysis of the InterplayBetween

Geometry and PEM Solvers. arXiv preprint arXiv:2102.11578 (2021).

Shengyong Cai and Timothy J Tautges. 2015. Optimizing corner assignment of submap surfaces. Procedia Engineering 124 (2015), 83ś95.

Nestor A Calvo and Sergio R Idelsohn. 2000. All-hexahedral element meshing: Generation of the dual mesh by recurrent subdivision. Computer

Methods in Applied Mechanics and Engineering 182, 3 (2000), 371ś378.

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality quad layouts on manifolds. ACM Trans. Graph. 31, 4

(2012), 1ś11.

Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis Zorin. 2021. Eicient and Robust Discrete Conformal

Equivalence with Boundary. ACM Trans. Graph. 40, 6 (2021).

Marcel Campen and Leif Kobbelt. 2014. Dual strip weaving: Interactive design of quad layouts using elastica strips. ACM Trans. Graph. 33, 6

(2014), 1ś10.

Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless Parametrization with Arbitrary Cones for Arbitrary Genus.

ACM Trans. Graph. 39, 1 (2019).

Marcel Campen, Claudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial Foliations. ACM Trans. Graph. 35, 4 (2016).

ACM Trans. Graph.

https://doi.org/10.1142/S0218202522500099

68 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Marcel Campen and Denis Zorin. 2017. Similarity Maps and Field-Guided T-Splines: A Perfect Couple. ACM Trans. Graph. 36, 4 (2017).

Carlos D. Carbonera and Jason F. Shepherd. 2006. A Constructive Approach to Constrained Hexahedral Mesh Generation. In Proceedings of

International Meshing Roundtable. 435ś452.

Jesse Chan, Zheng Wang, Axel Modave, Jean-Francois Remacle, and Tim Warburton. 2016. GPU-accelerated discontinuous Galerkin methods

on hybrid meshes. J. Comput. Phys. 318 (2016), 142ś168.

Alexandre Chemin, François Henrotte, Jean-François Remacle, and Jean Van Schaftingen. 2018. Representing Three-Dimensional Cross Fields

Using Fourth Order Tensors. In Proceedings of International Meshing Roundtable, Vol. 127. 89ś108.

Jinming Chen, Shuming Gao, Rui Wang, and Haiyan Wu. 2016. An approach to achieving optimized complex sheet inlation under constraints.

Computers & Graphics 59 (2016), 39ś56.

Long Chen, Gang Xu, Shiyi Wang, Zeyun Shi, and Jin Huang. 2019. Constructing volumetric parameterization based on directed graph

simpliication of ℓ1 polycube structure from complex shapes. Computer Methods in Applied Mechanics and Engineering 351 (2019), 422ś440.

G. Cherchi, P. Alliez, R. Scateni, M. Lyon, and D. Bommes. 2019a. Selective Padding for Polycube-Based Hexahedral Meshing. Computer

Graphics Forum 38, 1 (2019), 580ś591.

Gianmarco Cherchi, Marco Livesu, and Riccardo Scateni. 2016. Polycube Simpliication for Coarse Layouts of Surfaces and Volumes. Computer

Graphics Forum 35, 5 (2016), 11ś20.

Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and robust mesh arrangements using loating-point

arithmetic. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1ś16.

Gianmarco Cherchi, Luca Pitzalis, Giovanni Laerte Frongia, and Riccardo Scateni. 2019b. The Py3DViewer Project: A Python Library for fast

Prototyping in Geometry Processing. In Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference.

Philippe G. Ciarlet. 2002. Finite Element Method for Elliptic Problems.

CoreForm. 2022a. CoreForm. https://coreform.com/products/coreform-cubit/government/

CoreForm. 2022b. Coreform Cubit Basics: Hex Meshing Fundamentals. https://www.youtube.com/watch?v=TOfq-Pknl_A

Etienne Corman and Keenan Crane. 2019. Symmetric Moving Frames. ACM Trans. Graph. 38, 4 (2019).

Richard Courant, Kurt Friedrichs, and Hans Lewy. 1967. On the partial diference equations of mathematical physics. IBM journal of Research

and Development 11, 2 (1967), 215ś234.

Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections on Discrete Surfaces. Computer Graphics Forum (SGP) 29, 5

(2010), 1525ś1533.

Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4 (2011).

CUBIT. 2022. CUBIT. https://cubit.sandia.gov

Joel Daniels, Cláudio T Silva, Jason Shepherd, and Elaine Cohen. 2008. Quadrilateral mesh simpliication. ACM Trans. Graph. 27, 5 (2008), 1ś9.

David Desobry, Yoann Coudert-Osmont, Etienne Corman, Nicolas Ray, and Dmitry Sokolov. 2021. Designing 2d and 3d non-orthogonal frame

ields. Computer-Aided Design 139 (2021), 103081.

Sailkat Dey. 1999. Curvilinear Mesh Generation in 3D. In Proceedings of International Meshing Roundtable. 407ś417.

Lorenzo Diazzi and Marco Attene. 2021. Convex polyhedral meshing for robust solid modeling. ACM Transactions on Graphics (TOG) (2021).

Distene SAS. 2022. MeshGems. http://www.meshgems.com/volume-meshing-meshgems-hexa.html

Julien Dompierre, Paul Labbé, Marie-Gabrielle Vallet, and Ricardo Camarero. 1999. How to Subdivide Pyramids, Prisms, and Hexahedra into

Tetrahedra. Proceedings of International Meshing Roundtable 99 (1999), 195.

Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart. 2006. Spectral Surface Quadrangulation. ACM Trans.

Graph. 25, 3 (2006), 1057ś1066.

Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z Kovalsky, Yajie Yan, Danny M Kaufman, and Tao Ju. 2020. Lifting simplices to ind

injectivity. ACM Trans. Graph. 39, 4 (2020), 120ś1.

Mohamed S Ebeida, Anjul Patney, John D Owens, and Eric Mestreau. 2011. Isotropic conforming reinement of quadrilateral and hexahedral

meshes using two-reinement templates. Internat. J. Numer. Methods Engrg. 88, 10 (2011), 974ś985.

Matthias Eck and Hugues Hoppe. 1996. Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type. In Proceedings of the

23rd Annual Conference on Computer Graphics and Interactive Techniques. 325ś334.

Ahmed H. Elsheikh and Mustafa Elsheikh. 2014. A consistent octree hanging node elimination algorithm for hexahedral mesh generation.

Advances in Engineering Software 75 (2014), 86 ś 100.

David Eppstein. 1999. Linear complexity hexahedral mesh generation. Computational Geometry 12, 1-2 (1999), 3ś16.

David Eppstein and Elena Mumford. 2010. Steinitz Theorems for Orthogonal Polyhedra. In Proceedings Symposium on Computational Geometry.

429ś438.

Jef Erickson. 2013. Theoretical advances in hexahedral mesh generation. In Proc. 29th Annu. Symp. Comput. Geometry Workshop Mesh Gener.

13ś17.

Jef Erickson. 2014. Eiciently Hex-Meshing Things with Topology. Discrete & Computational Geometry 52, 3 (2014), 427ś449.

Hale Erten, Alper Üngör, and Chunchun Zhao. 2009. Mesh Smoothing Algorithms for Complex Geometric Domains. In Proceedings of

International Meshing Roundtable. 175ś193.

ACM Trans. Graph.

https://coreform.com/products/coreform-cubit/government/
https://www.youtube.com/watch?v=TOfq-Pknl_A
https://cubit.sandia.gov
http://www.meshgems.com/volume-meshing-meshgems-hexa.html

Hex-Mesh Generation and Processing: a Survey • 69

Vance Faber and Max Gunzburger. 1999. Centroidal Voronoi Tessellations: Applications and Algorithms. Siam Review 41 (1999), 637ś676.

Andreas Fabri and Sylvain Pion. 2009. CGAL: The computational geometry algorithms library. In Proceedings of the 17th ACM SIGSPATIAL

international conference on advances in geographic information systems. 538ś539.

Xianzhong Fang, Jin Huang, Yiying Tong, and Hujun Bao. 2021. Metric-Driven 3D Frame Field Generation. IEEE Transactions on Visualization

and Computer Graphics (2021).

Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex Meshing Using Closed-form Induced Polycube. ACM Trans. Graph. 35,

4 (2016), 124:1ś124:9.

N. T. Folwell and S. A. Mitchell. 1999. Reliable Whisker Weaving via Curve Contraction. Engineering with Computers 15, 3 (1999), 292ś302.

Mihai Frâncu, Arni Asgeirsson, Kenny Erleben, and Mads JL Rùnnow. 2021. Locking-Proof Tetrahedra. ACM Transactions on Graphics (TOG)

40, 2 (2021), 1ś17.

Lori Freitag Diachin, Patrick Knupp, Todd Munson, and Suzanne Shontz. 2006. A comparison of two optimization methods for mesh quality

improvement. Engineering with Computers 22, 2 (2006), 61ś74.

Pascal Frey and Paul George. 2008. Mesh Generation: Application to Finite Elements: Second Edition. Iste.

Xiao-Ming Fu, Chong-Yang Bai, and Yang Liu. 2016. Eicient Volumetric PolyCube-Map Construction. Computer Graphics Forum 35, 7 (2016),

97ś106.

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-Free Mappings by Simplex Assembly. ACM Trans. Graph. 35, 6 (2016).

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing locally injective mappings by advanced MIPS. ACM Trans. Graph. 34, 4 (2015),

1ś12.

Xiao-Ming Fu, Jian-Ping Su, Zheng-Yu Zhao, Qing Fang, Chunyang Ye, and Ligang Liu. 2021. Inversion-free geometric mapping construction:

A survey. Computational Visual Media 7, 3 (2021), 289ś318.

Ruiliang Gao and Jörg Peters. 2021. Improving Hexahedral-FEM-Based Plasticity in Surgery Simulation. In International Conference on Medical

Image Computing and Computer-Assisted Intervention. Springer, 571ś580.

Xifeng Gao and Guoning Chen. 2016. A Local Frame based Hexahedral Mesh Optimization. In Proceedings of International Meshing Roundtable.

Xifeng Gao, Zhigang Deng, and Guoning Chen. 2015. Hexahedral mesh re-parameterization from aligned base-complex. ACM Trans. Graph.

34, 4 (2015), 142.

Xifeng Gao, Jin Huang, Kaoji Xu, Zherong Pan, Zhigang Deng, and Guoning Chen. 2017a. Evaluating Hex-mesh Quality Metrics via

Correlation Analysis. Computer Graphics Forum 36, 5 (2017), 105ś116.

Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. 2017b. Robust Hex-dominant Mesh Generation Using Field-guided Polyhedral

Agglomeration. ACM Trans. Graph. 36, 4 (2017), 114:1ś114:13.

Xifeng Gao, Tobias Martin, Sai Deng, Elaine Cohen, Zhigang Deng, and Guoning Chen. 2016. Structured Volume Decomposition via

Generalized Sweeping. IEEE Transactions on Visualization and Computer Graphics 22, 7 (2016), 1899ś1911.

Xifeng Gao, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen. 2017c. Robust structure simpliication for hex re-meshing.

ACM Trans. Graph. 36, 6 (2017), 185.

Xifeng Gao, Hanxiao Shen, and Daniele Panozzo. 2019. Feature Preserving Octree-Based Hexahedral Meshing. Computer Graphics Forum 38,

5 (2019), 135ś149.

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray, and Dmitry Sokolov. 2021. Foldover-Free Maps in 50

Lines of Code. ACM Trans. Graph. 40, 4 (2021).

Jean-Michel Gérard, Reiner Wilhelms-Tricarico, Pascal Perrier, and Yohan Payan. 2006. A 3D dynamical biomechanical tongue model to study

speech motor control. arXiv preprint physics/0606148 (2006).

Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D inite element mesh generator with built-in pre-and post-processing

facilities. Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309ś1331.

Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equivalence of Polyhedral Surfaces. ACM Trans. Graph. 40, 4

(2021).

Nadja Goerigk and Hang Si. 2015. On Indecomposable Polyhedra and the Number of Steiner Points. Procedia Engineering 124 (2015), 343ś355.

Dmitry Golovaty, Jose Alberto Montero, and Daniel Spirn. 2021. A Variational Method for Generating n-Cross Fields Using Higher-Order

Q-Tensors. SIAM Journal on Scientiic Computing 43, 5 (2021), A3269śA3304. https://doi.org/10.1137/19M1287857

Jens Gravesen, Anton Evgrafov, Dang-ManhNguyen, and Peter Nùrtoft. 2014. Planar Parametrization in Isogeometric Analysis. InMathematical

Methods for Curves and Surfaces. 189ś212.

Anthony Gravouil, Thomas Elguedj, and Hubert Maigre. 2009. An explicit dynamics extended inite element method. Part 2: Element-by-

element stable-explicit/explicit dynamic scheme. Computer Methods in Applied Mechanics and Engineering 198, 30-32 (2009), 2318ś2328.

James Gregson, Alla Shefer, and Eugene Zhang. 2011. All-Hex Mesh Generation via Volumetric PolyCube Deformation. Computer Graphics

Forum 30, 5 (2011), 1407ś1416.

GRSI. 2022. Graphics Replicability Stamp Initiative. http://www.replicabilitystamp.org

Hao-Xiang Guo, Xiaohan Liu, Dong-Ming Yan, and Yang Liu. 2020. Cut-enhanced PolyCube-maps for feature-aware all-hex meshing. ACM

Trans. Graph. 39, 4 (2020), 106ś1.

ACM Trans. Graph.

https://doi.org/10.1137/19M1287857
http://www.replicabilitystamp.org

70 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Allen Hatcher. 2000. Algebraic topology. Cambridge Univ. Press, Cambridge.

Alejo Hausner. 2001. Simulating Decorative Mosaics. In Proc. of the 28th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH ’01). 573ś580.

Victoria Hernandez-Mederos, Jorge Estrada-Sarlabous, and Dionne Leon Madrigal. 2006. On local injectivity of 2D triangular cubic Bezier

functions. Investigación Operacional 27, 3 (2006), 261ś276.

Kai Hormann, Konrad Polthier, and Alla Shefer. 2008. Mesh Parameterization: Theory and Practice. In ACM SIGGRAPH ASIA 2008 Courses.

Kangkang Hu, Jin Qian, and Yongjie Jessica Zhang. 2013. Adaptive All-Hexahedral Mesh Generation Based on A Hybrid Octree and Bubble

Packing. In Proceedings of International Meshing Roundtable.

Kangkang Hu and Yongjie Jessica Zhang. 2016. Centroidal Voronoi tessellation based polycube construction for adaptive all-hexahedral mesh

generation. Computer Methods in Applied Mechanics and Engineering 305 (2016), 405 ś 421.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast tetrahedral meshing in the wild. ACM Transactions on

Graphics (TOG) 39, 4 (2020), 117ś1.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral meshing in the wild. ACM Trans.

Graph. 37, 4 (2018), 60ś1.

Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun. 2014. ℓ1-Based Construction of Polycube Maps from

Complex Shapes. ACM Trans. Graph. 33, 3 (2014), 25:1ś25:11.

Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. 2011. Boundary Aligned Smooth 3D Cross-Frame Field. ACM Trans. Graph. 30, 6

(2011), 1ś8.

Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. 2005. Isogeometric analysis: CAD, inite elements, NURBS, exact geometry and mesh

reinement. Computer Methods in Applied Mechanics and Engineering 194, 39-41 (2005), 4135ś4195.

Yasushi Ito, Alan M Shih, and Bharat K Soni. 2009. Octree-based reasonable-quality hexahedral mesh generation using a new set of reinement

templates. Internat. J. Numer. Methods Engrg. 77, 13 (2009), 1809ś1833.

Steven R. Jankovich, Steven E. Benzley, Jason F. Shepherd, and Scott A. Mitchell. October 1999. The Graft Tool: An All-Hexahedral Transition

Algorithm for Creating Multi-directional Swept Volume Mesh. In Proceedings of International Meshing Roundtable. 387ś392.

Tengfei Jiang, Jin Huang, Yuanzhen Wang, Yiying Tong, and Hujun Bao. 2014. Frame ield singularity correction for automatic hexahedraliza-

tion. IEEE Transactions on Visualization and Computer Graphics 20, 8 (2014), 1189ś1199.

Amaury Johnen, J-F Remacle, and Christophe Geuzaine. 2013. Geometrical validity of curvilinear inite elements. J. Comput. Phys. 233 (2013),

359ś372.

Amaury Johnen, J-C Weill, and J-F Remacle. 2017. Robust and eicient validation of the linear hexahedral element. Procedia Engineering 203

(2017), 271ś283.

Katerina Jurkova, Franck Ledoux, Raphael Kuate, Thomas Rickmeyer, Timothy J. Tautges, and Hamdi Zorgati. 2008. Local Topological

Modiications of Hexahedral Meshes; Part II: Combinatorics and Relation To Boy Surface. In ESAIM Proceedings, Vol. 24. 34ś45.

Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface Parameterization using Branched Coverings. Computer

Graphics Forum 26, 3 (2007), 375ś384.

Yasumi Kawamura, Md. Shahidul Islam, and Yoichi Sumi. 2008. A strategy of automatic hexahedral mesh generation by using an improved

whisker-weaving method with a surface mesh modiication procedure. Engineering with Computers 24 (2008), 215ś219.

Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce. 2013. Mesh Improvement Methodology for 3D Volumes with Non-planar Surfaces. In

Proceedings of International Meshing Roundtable. 55ś69.

Ho-Young Kim and Hyun-Gyu Kim. 2021. A hexahedral-dominant FE meshing technique using trimmed hexahedral elements preserving

sharp edges and corners. Engineering with Computers (10 2021). https://doi.org/10.1007/s00366-021-01526-0

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction ields. ACM Transactions on Graphics (ToG)

32, 4 (2013), 1ś10.

P. Knupp. 1998. Next-generation sweep tool: A method for generating all-hex meshes on two-and-a-half dimensional geometries. In Proceedings

of International Meshing Roundtable. 505ś513.

Patrick Knupp. 2007. Remarks on Mesh Quality. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

Patrick Knupp, Tzanio Kolev, Ketan Mittal, and Vladimir Z. Tomov. 2021. Adaptive Surface Fitting and Tangential Relaxation for High-Order

Mesh Optimization. (2021). arXiv:2105.12165

Patrick M Knupp. 1990. On the invertibility of the isoparametric map. Computer Methods in Applied Mechanics and Engineering 78, 3 (1990),

313ś329.

Patrick M. Knupp. 2000. Achieving inite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part

IIÐA framework for volume mesh optimization and the condition number of the Jacobian matrix. Internat. J. Numer. Methods Engrg. 48, 8

(2000), 1165ś1185.

Patrick M. Knupp. 2001a. Algebraic Mesh Quality Metrics. SIAM Journal on Scientiic Computing 23, 1 (2001), 193ś218.

P. M. Knupp. 2001b. Hexahedral and Tetrahedral Mesh Untangling. Engineering with Computers 17, 3 (2001), 261ś268.

Patrick M. Knupp. 2003. A method for hexahedral mesh shape optimization. Internat. J. Numer. Methods Engrg. 58, 2 (2003), 319ś332.

ACM Trans. Graph.

https://doi.org/10.1007/s00366-021-01526-0
https://arxiv.org/abs/2105.12165

Hex-Mesh Generation and Processing: a Survey • 71

Julien Dompierre Ko-Foa Tchon and Ricardo Camarero. 2002. Conformal Reinement of All-Quadrilateral and All-Hexahedral Meshes

According to an Anisotropic Metric. In Proceedings of International Meshing Roundtable. 231ś242.

Nicolas Kowalski, Franck Ledoux, and Pascal Frey. 2016. Smoothness driven frame ield generation for hexahedral meshing. Computer-Aided

Design 72 (2016), 65ś77.

Nicolas Kowalski, Franck Ledoux, Matthew L Staten, and Steve J Owen. 2012. Fun sheet matching: towards automatic block decomposition

for hexahedral meshes. Engineering with Computers 28, 3 (2012), 241ś253.

Michael Kremer, David Bommes, and Leif Kobbelt. 2013. OpenVolumeMeshśA versatile index-based data structure for 3D polytopal complexes.

In Proceedings of the 21st International Meshing Roundtable. Springer, 531ś548.

Michael Kremer, David Bommes, Isaak Lim, and Leif Kobbelt. 2014. Advanced Automatic Hexahedral Mesh Generation from Surface Quad

Meshes. 147ś164.

Mingwu Lai, Steven Benzley, and David White. 2000. Automated hexahedral mesh generation by generalized multiple source to multiple

target sweeping. Internat. J. Numer. Methods Engrg. 49, 1-2 (2000), 261ś275.

Frank Ledoux. 2022. MAMBO. https://gitlab.com/franck.ledoux/mambo

Franck Ledoux and Jason Shepherd. 2010. Topological modiications of hexahedral meshes via sheet operations: a theoretical study. Engineering

with Computers 26, 4 (2010), 433ś447.

Franck Ledoux and Jean-Christophe Weill. 2008. An Extension of the Reliable Whisker Weaving Algorithm. In Proceedings of International

Meshing Roundtable. 215ś232.

Na Lei, Xiaopeng Zheng, Jian Jiang, Yu-Yao Lin, and David Xianfeng Gu. 2017. Quadrilateral and hexahedral mesh generation based on

surface foliation theory. Computer Methods in Applied Mechanics and Engineering 316 (2017), 758ś781. Special Issue on Isogeometric

Analysis: Progress and Challenges.

Richard Leroy. 2008. Certiicates of positivity and polynomial minimization in the multivariate Bernstein basis. Ph.D. Dissertation. University of

Rennes 1.

Bruno Levy. 2022a. GeoGram. http://alice.loria.fr/software/geogram/

Bruno Levy. 2022b. Graphite. http://alice.loria.fr/software/graphite/doc/html/.

Bruno Lévy. 2022. Partial optimal transport for a constant-volume Lagrangian mesh with free boundaries. J. Comput. Phys. 451 (2022), 110838.

Bruno Lévy and Yang Liu. 2010. L p Centroidal Voronoi Tessellation and its applications. ACM Trans. Graph. 29, 4 (2010), 1ś11.

Bo Li, Xin Li, Kexiang Wang, and Hong Qin. 2010. Generalized PolyCube Trivariate Splines. In Shape Modeling International. 261ś265.

Bo Li, Xin Li, KexiangWang, and Hong Qin. 2013. Surface mesh to volumetric spline conversion with generalized polycubes. IEEE Transactions

on Visualization and Computer Graphics 19, 9 (2013), 1539ś1551.

Lingxiao Li, Paul Zhang, Dmitriy Smirnov, S Mazdak Abulnaga, and Justin Solomon. 2021. Interactive All-Hex Meshing via Cuboid

Decomposition. ACM Trans. Graph. 40, 6 (2021).

TS Li, RM McKeag, and CG Armstrong. 1995. Hexahedral meshing using midpoint subdivision and integer programming. Computer Methods

in Applied Mechanics and Engineering 124, 1-2 (1995), 171ś193.

Yufei Li, Yang Liu, Weiwei Xu, Wenping Wang, and Baining Guo. 2012. All-Hex Meshing Using Singularity-Restricted Field. ACM Trans.

Graph. (2012).

Hongwei Lin, Sinan Jin, Hongwei Liao, and Qun Jian. 2015. Quality Guaranteed All-hex Mesh Generation by a Constrained Volume Iterative

Fitting Algorithm. Computer-Aided Design 67, C (2015), 107ś117.

Konstantin Lipnikov. 2013. On shape-regularity of polyhedral meshes for solving PDEs. In Proceedings of International Meshing Roundtable.

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018. Singularity-constrained octahedral ields for hexahedral

meshing. ACM Trans. Graph. 37, 4 (2018), 93.

Jianfei Liu, Shuli Sun, and Yongqiang Chen. 2007. SPR ś A New Method for Mesh Improvement and Boundary Recovery. In Computational

Mechanics. Springer, 180ś186.

Lei Liu, Yongjie Zhang, Yang Liu, and Wenping Wang. 2015. Feature-preserving T-mesh construction using skeleton-based polycubes.

Computer-Aided Design 58 (2015), 162ś172.

Shang-sheng Liu and Rajit Gadh. 1997. Automatic Hexahedral Mesh Generation by Recursive Convex and Swept Volume Decomposition. In

Proceedings of International Meshing Roundtable. 217ś231.

S.-S. Liu, J. Uicker, and R. Gadh. 1999. A dual geometryÐtopology constraint approach for determination of pseudo-swept shapes as applied

to hexahedral mesh generation. Computer-Aided Design 31, 6 (1999), 413 ś 426.

Marco Livesu. 2019. Cinolib: A Generic Programming Header Only C++ Library for Processing Polygonal and Polyhedral Meshes. In

Transactions on Computational Science XXXIV. 64ś76.

Marco Livesu, Marco Attene, Giuseppe Patane, and Michela Spagnuolo. 2017. Explicit Cylindrical Maps for General Tubular Shapes.

Computer-Aided Design 90 (2017), 27 ś 36.

Marco Livesu, Alessandro Muntoni, Enrico Puppo, and Riccardo Scateni. 2016. Skeleton-driven Adaptive Hexahedral Meshing of Tubular

Shapes. Computer Graphics Forum 35, 7 (2016), 237ś246.

ACM Trans. Graph.

https://gitlab.com/franck.ledoux/mambo
http://alice.loria.fr/software/geogram/

72 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Marco Livesu, Nico Pietroni, Enrico Puppo, Alla Shefer, and Paolo Cignoni. 2020. LoopyCuts: Practical Feature-Preserving BlockDecomposition

for Strongly Hex-Dominant Meshing. ACM Trans. Graph. 39, 4 (2020).

Marco Livesu, Luca Pitzalis, and Gianmarco Cherchi. 2021. Optimal Dual Schemes for Adaptive Grid Based Hexmeshing. ACM Trans. Graph.

(2021).

Marco Livesu, Alla Shefer, Nicholas Vining, and Marco Tarini. 2015. Practical Hex-mesh Optimization via Edge-cone Rectiication. ACM

Trans. Graph. 34, 4 (2015), 141:1ś141:11.

Marco Livesu, Nicholas Vining, Alla Shefer, James Gregson, and Riccardo Scateni. 2013. PolyCut: Monotone Graph-cuts for PolyCube

Base-complex Construction. ACM Trans. Graph. 32, 6 (2013), 171:1ś171:12.

Claudio Lobos, Cristopher Arenas, Esteban Daines, and Nancy Hitschfeld. 2021. Measuring geometrical quality of diferent 3D linear element

types. Numerical Algorithms (2021), 1ś24.

Jean Hsiang-Chun Lu, William Roshan Quadros, and Kenji Shimada. 2017. Evaluation of user-guided semi-automatic decomposition tool for

hexahedral mesh generation. Journal of Computational Design and Engineering 4, 4 (2017), 330ś338.

Yong Lu, Rajit Gadh, and Timothy J Tautges. 2001. Feature based hex meshing methodology: feature recognition and volume decomposition.

Computer-Aided Design 33, 3 (2001), 221ś232.

Xiaojuan Luo, Mark S. Shephard, Jean-François Remacle, Robert M. O’Bara, Mark W. Beall, Barna A. Szabó, and Ricardo Actis. 2002. p-Version

Mesh Generation Issues. In Proceedings of International Meshing Roundtable. 343ś354.

Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: robust hexahedral mesh extraction. ACM Trans. Graph. 35, 4 (2016), 123.

John B. Malone. 2012. Two-Reinement by Pillowing for Structured Hexahedral Meshes. Ph.D. Dissertation. BYU.

Manish Mandad and Marcel Campen. 2020. Eicient piecewise higher-order parametrization of discrete surfaces with local and global

injectivity. Computer-Aided Design 127 (2020), 102862.

Manish Mandad, Ruizhi Chen, David Bommes, and Marcel Campen. 2022. Intrinsic mixed-integer polycubes for hexahedral meshing.

Computer Aided Geometric Design 94 (2022).

Loïc Maréchal. 2009. Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Features. In Proceedings of International

Meshing Roundtable. 65ś84.

Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum

39, 5 (2020), 133ś147.

Fady Massarwi and Gershon Elber. 2016. A B-spline based framework for volumetric object modeling. Computer-Aided Design 78 (2016),

36ś47.

Karl Merkley, Corey D. Ernst, Jason F. Shepherd, and M. J. Borden. 2007. Methods and Applications of Generalized Sheet Insertion for

Hexahedral Meshing. In Proceedings of International Meshing Roundtable. 233ś250.

Sia Meshkat and Dafna Talmor. 2000. Generating a mixed mesh of hexahedra, pentahedra and tetrahedra from an underlying tetrahedral

mesh. Internat. J. Numer. Methods Engrg. 49, 1-2 (2000), 17ś30.

Ray J. Meyers and Timothy J. Tautges. 1998. The "Hex-Tet" Hex-Dominant Meshing Algorithm as Implemented in CUBIT. In IMR.

AR Mitchell, G Phillips, and E Wachspress. 1971. Forbidden shapes in the inite element method. IMA Journal of Applied Mathematics 8, 2

(1971), 260ś269.

Scott A. Mitchell. 1996. A characterization of the quadrilateral meshes of a surface which admit a compatible hexahedral mesh of the enclosed

volume. In Proceedings of STACS 96. 465ś476.

Scott A. Mitchell and Timothy J. Tautges. 1995. Pillowing Doublets: Reining a Mesh to Ensure That Faces Share At Most One Edge. In

Proceedings of International Meshing Roundtable.

Scott AMitchell and Stephen A Vavasis. 1992. Quality mesh generation in three dimensions. In Proc. eighth annual symposium on Computational

Geometry. 212ś221.

Katsuhiro Miyoshi and Ted D. Blacker. 2000. Hexahedral Mesh Generation Using Multi-Axis Cooper Algorithm. In Proceedings of International

Meshing Roundtable. 89ś97.

ADOS Moraes, P Lage, G Cunha, and LFLR da Silva. 2013. Analysis of the non-orthogonality correction of inite volume discretization on

unstructured meshes. In Proceedings of the 22nd International Congress of Mechanical Engineering. 3,7.

Lin Mu, XiaoshenWang, and YanqiuWang. 2015. Shape regularity conditions for polygonal/polyhedral meshes, exempliied in a discontinuous

Galerkin discretization. Numerical Methods for Partial Diferential Equations 31, 1 (2015), 308ś325.

Matthias Müller-Hannemann. 2001. Shelling hexahedral complexes for mesh generation. Graph Algorithms and Applications 5, 5 (2001),

59ś91.

M. Müller-Hannemann. 2002. Quadrilateral surface meshes without self-intersecting dual cycles for hexahedral mesh generation. Computa-

tional Geometry 22 (2002), 75ś97.

Peter Murdoch, Steven Benzley, Ted Blacker, and Scott A. Mitchell. 1997. The spatial twist continuum: A connectivity based method for

representing all-hexahedral inite element meshes. Finite Elements in Analysis and Design 28, 2 (1997), 137 ś 149.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-Aligned Global Parametrization. ACM Trans. Graph. 33, 4 (2014).

ACM Trans. Graph.

Hex-Mesh Generation and Processing: a Survey • 73

Christoph Alexander Neuhauser, Junpeng Wang, and Ruediger Westermann. 2021. Interactive Focus+Context Rendering for Hexahedral

Mesh Inspection. IEEE Transactions on Visualization and Computer Graphics (2021), 1ś1.

M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCoverśParameterization of 3D Volumes. Computer Graphics Forum 30, 5 (2011), 1397ś1406.

Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni, Paolo Cignoni, and Nico Pietroni. 2019. QuadMixer: Layout Preserving

Blending of Quadrilateral Meshes. ACM Trans. on Graphics 38, 6 (2019).

Steven Owen and Saigal Sunil. 2000. H-Morph: An Indirect Approach to Advancing Front Hex Meshing. Internat. J. Numer. Methods Engrg. 1,

49 (2000), 289ś312.

Steven J Owen. 1998. A survey of unstructured mesh generation technology. Proceedings of International Meshing Roundtable, 239ś267.

Steven J Owen, Ryan M Shih, and Corey D Ernst. 2017. A template-based approach for parallel hexahedral two-reinement. Computer-Aided

Design 85 (2017), 34ś52.

Gilles-Philippe Paillé, Pierre Poulin, and Bruno Lévy. 2013. Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance

Minimization. Computer Graphics Forum 32, 5 (2013), 103ś112.

Gilles-Philippe Paillé, Nicolas Ray, Pierre Poulin, Alla Shefer, and Bruno Lévy. 2015. Dihedral Angle-Based Maps of Tetrahedral Meshes.

ACM Trans. Graph. 34, 4 (2015).

David Palmer, David Bommes, and Justin Solomon. 2020. Algebraic Representations for Volumetric Frame Fields. ACM Trans. Graph. 39, 2

(2020).

Michael Parrish, M. J. Borden, M. L. Staten, and S. E. Benzley. 2007. A Selective Approach to Conformal Reinement of Unstructured Hexahedral

Finite Element Meshes. In Proceedings of International Meshing Roundtable. 251ś268.

Jeanne Pellerin, Amaury Johnen, and Jean-Francois Remacle. 2017. Identifying combinations of tetrahedra into hexahedra: a vertex based

strategy. Procedia Engineering 203 (2017), 2ś13.

Chi-Han Peng, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. 2011. Connectivity Editing for Quadrilateral Meshes. ACM Trans.

Graph. 30, 6 (2011), 1ś12.

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini. 2021. Reliable feature-line driven quad-remeshing. ACM

Trans. on Graphics 40, 4 (2021).

Luca Pitzalis, Marco Livesu, Gianmarco Cherchi, Enrico Gobbetti, and Riccardo Scateni. 2021. Generalized Adaptive Reinement for Grid-based

Hexahedral Meshing. ACM Transactions on Graphics (SIGGRAPH Asia) 40, 6 (2021). https://doi.org/10.1145/3478513.3480508

Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. 2002. Bezier and B-Spline Techniques. Springer-Verlag.

Hartmut Prautzsch and Leif Kobbelt. 1994. Convergence of subdivision and degree elevation. Advances in Computational Mathematics 2, 1

(1994), 143ś154.

M.A. Price and C.G. Armstrong. 1997. Hexahedral mesh generation by medial surface subdivision: Part II. solids with lat and concave edges.

Internat. J. Numer. Methods Engrg. 40, 1 (1997), 111ś136.

M.A. Price, C.G. Armstrong, and M.A. Sabin. 1995. Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex

edges. Internat. J. Numer. Methods Engrg. 38, 19 (1995), 3335ś3359.

François Protais, Maxence Reberol, Nicolas Ray, Etienne Corman, Franck Ledoux, and Dmitry Sokolov. 2022. Robust Quantization for Polycube

Maps. Computer-Aided Design 150 (2022).

Jin Qian and Yongjie Zhang. 2010. Sharp Feature Preservation in Octree-Based Hexahedral Mesh Generation for CAD Assembly Models. In

Proceedings of International Meshing Roundtable. 243ś262.

Jin Qian and Yongjie Zhang. 2012. Automatic unstructured all-hexahedral mesh generation from B-Reps for non-manifold CAD assemblies.

Engineering with Computers 28, 4 (2012), 345ś359.

William Roshan Quadros. 2014. LayTracks3D: A New Approach to Meshing General Solids using Medial Axis Transform. Procedia Engineering

82 (2014), 72 ś 87.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Scalable locally injective mappings. ACM Trans. Graph.

36, 4 (2017), 1.

Nicolas Ray, Dmitry Sokolov, and Bruno Lévy. 2016. Practical 3D frame ield generation. ACM Trans. Graph. 35, 6 (2016), 233.

Nicolas Ray, Dmitry Sokolov, Maxence Reberol, Franck Ledoux, and Bruno Levy. 2018. Hex-dominant meshing: mind the gap! Computer-Aided

Design 102 (2018), 94ś103.

Faniry H Razaindrazaka and Konrad Polthier. 2017. Optimal base complexes for quadrilateral meshes. Computer Aided Geometric Design 52

(2017), 63ś74.

Maxence Reberol, Alexandre Chemin, and Jean-François Remacle. 2019. Multiple Approaches to Frame Field Correction for CAD Models.

arXiv preprint arXiv:1912.01248 (2019).

Maxence Reberol, Kilian Verhetsel, François Henrotte, David Bommes, and Jean-François Remacle. 2021. Robust topological construction of

all-hexahedral boundary layer meshes. (2021).

Xevi Roca, Abel Gargallo-Peiró, and Josep Sarrate. 2012. Deining Quality Measures for High-Order Planar Triangles and Curved Mesh

Generation. In Proceedings of International Meshing Roundtable. 365ś383.

ACM Trans. Graph.

https://doi.org/10.1145/3478513.3480508

74 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

X. Roca and J. Sarrate. 2008. Local Dual Contributions on Simplices: A Tool for Block Meshing. In Proceedings of International Meshing

Roundtable. 513ś531.

P-Y Rohan, Claudio Lobos, Mohammad Ali Nazari, Pascal Perrier, and Yohan Payan. 2017. Finite element models of the human tongue:

a mixed-element mesh approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 5, 6 (2017),

390ś400.

Eloi Ruiz-Gironés, Xevi Roca, and Josep Sarrate. 2011. Using a computational domain and a three-stage node location procedure for

multi-sweeping algorithms. Advances in Engineering Software 42, 9 (2011), 700ś713.

Eloi Ruiz-Gironés, Xevi Roca, and Josep Sarrate. 2012. The receding front method applied to hexahedral mesh generation of exterior domains.

Engineering with Computers 28, 4 (2012), 391ś408.

Eloi Ruiz-Gironés, Xevi Roca, and Jose Sarrate. 2014. Optimizing Mesh Distortion by Hierarchical Iteration Relocation of the Nodes on the

CAD Entities. Procedia Engineering 82 (2014), 101ś113.

E. Ruiz-Gironés, X. Roca, J. Sarrate, R. Montenegro, and J.M. Escobar. 2015. Simultaneous untangling and smoothing of quadrilateral and

hexahedral meshes using an object-oriented framework. Advances in Engineering Software 80 (2015), 12ś24.

Malcolm Arthur Sabin. 1997. Spline inite elements. Ph.D. Dissertation. Leeds University.

Raviprakash R Salagame and Ashok D Belegundu. 1994. Distortion, degeneracy and rezoning in inite elementsÐA survey. Sadhana 19, 2

(1994), 311ś335.

Josep Sarrate Ramos, Eloi Ruiz-Gironés, and Francisco Javier Roca Navarro. 2014. Unstructured and semi-structured hexahedral mesh

generation methods. Computational Technology Reviews 10 (2014), 35ś64.

Shankar Sastry and Suzanne Shontz. 2014. A parallel log-barrier method for mesh quality improvement and untangling. Engineering with

Computers 30, 4 (2014), 503ś515.

Shankar Prasad Sastry and Suzanne M. Shontz. 2009. A Comparison of Gradient- and Hessian-Based Optimization Methods for Tetrahedral

Mesh Quality Improvement. In Proceedings of International Meshing Roundtable. 631ś648.

M. Scherer, R. Denzer, and P. Steinmann. 2010. A ictitious energy approach for shape optimization. Internat. J. Numer. Methods Engrg. 82, 3

(2010), 269ś302.

Teseo Schneider, Jeremie Dumas, Xifeng Gao, Mario Botsch, Daniele Panozzo, and Denis Zorin. 2019. Poly-Spline Finite-Element Method.

ACM Trans. Graph 38, 3 (2019), 19:1ś19:16.

Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling simulation accuracy from mesh

quality. ACM transactions on graphics (2018).

Teseo Schneider, Yixin Hu, Xifeng Gao, Jérémie Dumas, Denis Zorin, and Daniele Panozzo. 2022. A Large-Scale Comparison of Tetrahedral

and Hexahedral Elements for Solving Elliptic PDEs with the Finite Element Method. ACM Trans. Graph. 41, 3, Article 23 (mar 2022),

14 pages. https://doi.org/10.1145/3508372

R. Schneiders. 1996a. A grid-based algorithm for the generation of hexahedral element meshes. Engineering with Computers 12, 3 (1996),

168ś177.

Robert Schneiders. 1996b. Reining quadrilateral and hexahedral element meshes. transition 2 (1996), 1.

R. Schneiders. 1997. An algorithm for the generation of hexahedral element meshes based on a octree technique. In Proceedings of International

Meshing Roundtable. 183ś194.

R. Schneiders. 1999. Quadrilateral and Hexahedral Element Meshes. In Handbook of Grid Generation, Nigel P. Weatherill Joe F. Thompson,

Bharat K. Soni (Ed.). CRC Press, Chapter 21.

Robert Schneiders. 2000. Algorithms for quadrilateral and hexahedral mesh generation. Proceedings of the VKI Lecture Series on Computational

Fluid Dynamic 4 (2000).

Robert Schneiders and Rolf Bünten. 1995. Automatic generation of hexahedral inite element meshes. Computer Aided Geometric Design 12, 7

(1995), 693 ś 707.

R. Schneiders, R. Schindler, and F. Weiler. 1996. Octree-based Generation of Hexahedral Element Meshes. In Proceedings of International

Meshing Roundtable. 205ś215.

Alexandra Schonning, Binu Oommen, Irina Ionescu, and Ted Conway. 2009. Hexahedral mesh development of free-formed geometry: The

human femur exempliied. Computer-Aided Design 41, 8 (2009), 566ś572.

Will Schroeder, Kenneth M Martin, and William E Lorensen. 1998. The visualization toolkit an object-oriented approach to 3D graphics.

Prentice-Hall, Inc.

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013. Locally Injective Mappings. Computer Graphics Forum

32, 5 (2013), 125ś135.

M.A. Scott, S.E. Benzley, and S.J. Owen. 2006. Improved many-to-one sweeping. Internat. J. Numer. Methods Engrg. 65 (2006), 332ś348.

Feifei Shang, Yangke Gan, and Yufei Guo. 2017. Hexahedral mesh generation via constrained quadrilateralization. PLOS ONE 12, 5 (2017),

1ś27.

Nicholas Sharp et al. 2022. Polyscope. www.polyscope.run.

ACM Trans. Graph.

https://doi.org/10.1145/3508372

Hex-Mesh Generation and Processing: a Survey • 75

Alla Shefer, Michal Etzion, Ari Rappoport, and Michel Bercovier. 1999. Hexahedral mesh generation using the embedded Voronoi graph.

Engineering with Computers 15, 3 (1999), 248ś262.

Chun Shen, Shuming Gao, and Rui Wang. 2021. Topological operations for editing the singularity on a hex mesh. Engineering with Computers

37, 2 (2021), 1357ś1375.

Chun Shen, Shuming Gao, and Rui Wang. 2022a. Hexahedral mesh adaptation based on posterior-error estimation. Engineering with Computers

(2022), 1ś12.

Hanxiao Shen, Leyi Zhu, Ryan Capouellez, Daniele Panozzo, Marcel Campen, and Denis Zorin. 2022b. Which Cross Fields can be Quadrangu-

lated? Global Parameterization from Prescribed Holonomy Signatures. ACM Trans. Graph. 41, 4 (2022).

Jason F. Shepherd. 2007. Topologic and Geometric Constraint-Based Hexahedral Mesh Generation. Ph.D. Dissertation. School of Computing.

Advisor(s) Johnson, Chris R.

Jason F Shepherd, Mark W Dewey, Adam C Woodbury, Steven E Benzley, Matthew L Staten, and Steven J Owen. 2010. Adaptive mesh

coarsening for quadrilateral and hexahedral meshes. Finite Elements in Analysis and Design 46, 1-2 (2010), 17ś32.

J. F. Shepherd and C. R. Johnson. 2008. Hexahedral mesh generation constraints. Engineering with Computers 24, 3 (2008), 195ś213.

Jonathan Shewchuk. 2002. What is a good linear inite element? interpolation, conditioning, anisotropy, and quality measures (preprint).

(2002).

B. Shih and H. Sakurai. 1996. Automated Hexahedral Mesh Generation by Swept Volume Decomposition and Recomposition. In Proceedings

of International Meshing Roundtable.

K. Shimada and S. Yamakawa. 2002. Hex-Dominant Mesh Generation with Directionality Control via Packing Rectangular Solid Cells. In

Geometric Modeling and Processing. 107.

Dmitry Sokolov. 2016. Modélisation géométrique. habilthesis. Université de Lorrainee.

Dmitry Sokolov and Nicolas Ray. 2015. Fixing normal constraints for generation of polycubes. Technical Report. LORIA.

Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016. Hexahedral-Dominant Meshing. ACM Trans. Graph. 35, 5 (2016),

157:1ś157:23.

Yousuf Soliman, Dejan Slepčev, and Keenan Crane. 2018. Optimal cone singularities for conformal lattening. ACM Trans. Graph. 37, 4 (2018),

1ś17.

Justin Solomon, Amir Vaxman, and David Bommes. 2017. Boundary element octahedral ields in volumes. ACM Trans. Graph. 36, 3 (2017), 28.

Tommaso Sorgente, Silvia Biasotti, Gianmarco Manzini, and Michela Spagnuolo. 2022. The role of mesh quality and mesh quality indicators

in the virtual element method. Advances in Computational Mathematics 48, 1 (2022), 1ś34.

Tommaso Sorgente, Daniele Prada, Daniela Cabiddu, Silvia Biasotti, Giuseppe Patane, Micol Pennacchio, Silvia Bertoluzza, Gianmarco

Manzini, and Michela Spagnuolo. 2021. VEM and the Mesh. arXiv preprint arXiv:2103.01614 (2021).

Matthew Staten, Scott Canann, and Steven Owen. 1999. BMSweep: Locating Interior Nodes During Sweeping. Engineering with Computers 15

(1999), 212ś218.

M. Staten and K. Shimada. 2010. A close look at valences in hexahedral element meshes. Internat. J. Numer. Methods Engrg. 83 (2010), 899ś914.

Matthew L. Staten, Robert A. Kerr, Steven J. Owen, and Ted D. Blacker. 2006. Unconstrained Paving and Plastering: Progress Update. In

Proceedings of International Meshing Roundtable.

Matthew L. Staten, Robert A. Kerr, Steven J. Owen, Ted D. Blacker, Marco Stupazzini, and Kenji Shimada. 2010a. Unconstrained plastering -

Hexahedral mesh generation via advancing-front geometry decomposition. Internat. J. Numer. Methods Engrg. 81 (2010), 135ś171.

Matthew L. Staten, Steven J. Owen, and Ted D. Blacker. 2005. Unconstrained Paving & Plastering: A New Idea for All Hexahedral Mesh

Generation. In Proceedings of International Meshing Roundtable. 399ś416.

M. L. Staten, J. F. Shepherd, F. Ledoux., and K. Shimada. 2010b. Hexahedral Mesh Matching: Converting non-conforming hexahedral-to-

hexahedral interfaces into conforming interfaces. Internat. J. Numer. Methods Engrg. 82, 12 (2010), 1475ś1509.

CJ Stimpson, CD Ernst, P Knupp, PP Pébay, and D Thompson. 2007. The Verdict library reference manual. Sandia National Laboratories

Technical Report 9 (2007).

Florian Cyril Stutz, Tim Felle Olsen, Jeroen Peter Groen, Tuan Nguyen Trung, Niels Aage, Ole Sigmund, Justin Solomon, and Jakob Andreas

Bñrentzen. 2022. Synthesis of Frame Field-Aligned Multi-Laminar Structures. ACM Trans. Graph. 41, 5, Article 170 (may 2022), 20 pages.

https://doi.org/10.1145/3516522

Y. Su, K. H. Lee, and A. Senthil Kumar. 2004. Automatic hexahedral mesh generation for multi-domain composite models using a hybrid

projective grid-based method. Computer-Aided Design 36 (2004), 203ś215.

Lu Sun, Guoqun Zhao, and Xinwu Ma. 2012. Quality improvement methods for hexahedral element meshes adaptively generated using

grid-based algorithm. Internat. J. Numer. Methods Engrg. 89, 6 (2012), 726ś761.

LH Tack, R Schneiders, J Debye, R Kopp, and W Oberschelp. 1994. Two-and three-dimensional remeshing, mesh reinement and application

to simulation of micromechanical processes. Computational Materials Science 3, 2 (1994), 241ś246.

Kenshi Takayama. 2019. Dual Sheet Meshing: An Interactive Approach to Robust Hexahedralization. Computer Graphics Forum 38, 2 (2019),

37ś48.

ACM Trans. Graph.

https://doi.org/10.1145/3516522

76 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Erik G Takhounts, Stephen A Ridella, Vikas Hasija, Rabih E Tannous, J Quinn Campbell, Dan Malone, Kerry Danelson, Joel Stitzel, Steve

Rowson, and Stefan Duma. 2008. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon)

inite element head model. Stapp car crash journal 52 (2008), 1.

Michael Tao, Christopher Batty, Eugene Fiume, and David IW Levin. 2019. Mandoline: robust cut-cell generation for arbitrary triangle meshes.

ACM Transactions on Graphics (TOG) 38, 6 (2019), 1ś17.

Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. PolyCube-Maps. ACM Trans. Graph. 23, 3 (2004).

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011. Simple Quad Domains for Field Aligned Mesh

Parametrization. ACM Trans. Graph. 30, 6 (2011), 1ś12.

Timothy J. Tautges, Sarah E. Knoop, and Thomas J. Rickmeyer. 2008. Local topological modiication of hexahedral meshes. Part I: A set of

dual-based operations. ESAIM Proceedings 24 (2008), 14ś33.

T. Tautges and Sarah E. Knoop. 2003. Topology Modiication of Hexahedral Meshes Using Atomic Dual-based Operations. In Proc. International

Meshing Roundtable.

Timothy J Tautges. 2001. The generation of hexahedral meshes for assembly geometry: survey and progress. Internat. J. Numer. Methods

Engrg. 50, 12 (2001), 2617ś2642.

Timothy J Tautges. 2004. MOAB-SD: integrated structured and unstructured mesh representation. Engineering With Computers 20, 3 (2004),

286ś293.

Timothy J Tautges, Ted Blacker, and Scott A Mitchell. 1996. The whisker weaving algorithm: a connectivity-based method for constructing

all-hexahedral inite element meshes. Internat. J. Numer. Methods Engrg. 39, 19 (1996), 3327ś3349.

Ko-Foa Tchon, Julien Dompierre, and Ricardo Camarero. 2004. Automated reinement of conformal quadrilateral and hexahedral meshes.

Internat. J. Numer. Methods Engrg. 59, 12 (2004), 1539ś1562.

Tessaels. 2022. Tessael. https://www.tessael.com/

W.P. Thurston. 1993. Hexahedral decomposition of polyhedra. Posting to Newsgroup sci.math (1993).

Philip M Tuchinsky and Brett W Clark. 1997. The łHexTetž hex-dominant automesher: An interim progress report. In Proceedings of the 6th

International Meshing Roundtable, Sandia National Laboratories, Albuquerque, USA. 183ś193.

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2015. Extraction of the Quad Layout of a Triangle Mesh

Guided by Its Curve Skeleton. ACM Trans. Graph. 35, 1 (2015), 6:1ś6:13.

Dimitris Vartziotis and Benjamin Himpel. 2014a. Eicient and Global Optimization-Based Smoothing Methods for Mixed-Volume Meshes. In

Proceedings of International Meshing Roundtable. 293ś311.

D. Vartziotis and B. Himpel. 2014b. Eicient Mesh Optimization Using the Gradient Flow of the Mean Volume. SIAM J. Numer. Anal. 52, 2

(2014), 1050ś1075.

Dimitris Vartziotis and Manolis Papadrakakis. 2017. Improved GETMe by adaptive mesh smoothing. Computer Assisted Methods in Engineering

and Science 20, 1 (2017), 55ś71.

Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional

ield synthesis, design, and processing. In Computer graphics forum, Vol. 35. Wiley Online Library, 545ś572.

Kilian Verhetsel, Jeanne Pellerin, and Jean-Francois Remacle. 2019a. A 44-element mesh of Schneiders’ pyramid: Bounding the diiculty of

hex-meshing problems. Computer-Aided Design 116 (2019), 102735.

Kilian Verhetsel, Jeanne Pellerin, and Jean-François Remacle. 2019b. Finding hexahedrizations for small quadrangulations of the sphere. ACM

Transactions on Graphics (TOG) 38, 4 (2019), 1ś13.

Ryan Viertel and Braxton Osting. 2019. An approach to quad meshing based on harmonic cross-valued maps and the GinzburgśLandau

theory. SIAM Journal on Scientiic Computing 41, 1 (2019), A452śA479.

Ryan Viertel, Matthew L Staten, and Franck Ledoux. 2016. Analysis of Non-Meshable Automatically Generated Frame Fields. Technical Report.

Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

VTK. 2022. File Formats for VTK 4.2. https://vtk.org/wp-content/uploads/2015/04/ile-formats.pdf

Ved Vyas and Kenji Shimada. 2009. Tensor-Guided Hex-Dominant Mesh Generation with Targeted All-Hex Regions. In Proceedings of

International Meshing Roundtable. 377ś396.

Erke Wang, Thomas Nelson, and Rainer Rauch. 2004. Back to elements - tetrahedra vs. hexahedra. In Proceedings of the 2004 International

ANSYS Conference.

Rui Wang, Shuming Gao, Zhihao Zheng, and Jinming Chen. 2018. Hex mesh topological improvement based on frame ield and sheet

adjustment. Computer-Aided Design 103 (2018), 103ś117.

Rui Wang, Chun Shen, Jinming Chen, Haiyan Wu, and Shuming Gao. 2017. Sheet operation based block decomposition of solid models for

hex meshing. Computer-Aided Design 85 (2017), 123 ś 137.

Benjamin Weber, Gunilla Kreiss, and Murtazo Nazarov. 2021. Stability analysis of high order methods for the wave equation. J. Comput. Appl.

Math. (2021), 113900.

Xiaodong Wei, Yongjie Jessica Zhang, Deepesh Toshniwal, Hendrik Speleers, Xin Li, Carla Manni, John A Evans, and Thomas JR Hughes.

2018. Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric

ACM Trans. Graph.

https://www.tessael.com/
https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf

Hex-Mesh Generation and Processing: a Survey • 77

analysis. Computer Methods in Applied Mechanics and Engineering 341 (2018), 609ś639.

F Weiler, R Schindler, and R Schneiders. 1996. Automatic geometry-adaptive generation of quadrilateral and hexahedral element meshes for the

FEM. Technical Report. Mississippi State Univ., Mississippi State, MS (United States).

Jean-Christophe Weill and Franck Ledoux. 2019. Towards an automatic and reliable hexahedral meshing.

David R. White, Lai Mingwu, Steven E. Benzley, and Gregory D. Sjaardema. 1995. Automated Hexahedral Mesh Generation by Virtual

Decomposition. (1995).

David R. White, Sunil Saigal, and Steven J. Owen. 2004. CCSweep: automatic decomposition of multi-sweep volumes. Engineering with

Computers 20, 3 (2004), 222ś236.

Martin Wicke, Mario Botsch, and Markus H. Gross. 2007. A Finite Element Method on Convex Polyhedra. Computer Graphics Forum 26, 3

(2007), 355ś364.

Thomas Wilson. 2011. Simultaneous Untangling and Smoothing of Hexahedral Meshes. Ph.D. Dissertation. Escola Tècnica Superior d’Enginyers

de Camins, Canals i Ports de Barcelona.

T.J. Wilson, J. Sarrate, X. Roca, Rafael Montenegro, and J. Escobar. 2012. Untangling and Smoothing of Quadrilateral and Hexahedral Meshes.

Civil-Comp Proceedings 100 (2012).

Haiyan Wu and Shuming Gao. 2014. Automatic Swept Volume Decomposition based on Sweep Directions Extraction for Hexahedral Meshing.

Procedia Engineering 82 (2014), 136 ś 148.

Haiyan Wu, Shuming Gao, Rui Wang, and Jinming Chen. 2018. Fuzzy clustering based pseudo-swept volume decomposition for hexahedral

meshing. Computer-Aided Design 96 (2018), 42ś58.

Haiyan Wu, Shuming Gao, Rui Wang, and Mao Ding. 2017. A global approach to multi-axis swept mesh generation. Procedia engineering 203

(2017), 414ś426.

Jun Wu, Weiming Wang, and Xifeng Gao. 2021. Design and Optimization of Conforming Lattice Structures. IEEE Transactions on Visualization

and Computer Graphics 27, 1 (2021), 43ś56.

Shang Xiang and Jianfei Liu. 2018. A 36-Element Solution To Schneiders’ Pyramid Hex-Meshing Problem And A Parity-Changing Template

For Hex-Mesh Revision. (2018). arXiv:1807.09415 [cs.CG]

Gang Xu, Ran Ling, Yongjie Jessica Zhang, Zhoufang Xiao, Zhongping Ji, and Timon Rabczuk. 2021. Singularity Structure Simpliication of

Hexahedral Meshes via Weighted Ranking. Computer-Aided Design 130 (2021), 102946.

Kaoji Xu and Guoning Chen. 2018. Hexahedral mesh structure visualization and evaluation. IEEE Transactions on Visualization and Computer

Graphics 25, 1 (2018), 1173ś1182.

Kaoji Xu, Xifeng Gao, and Guoning Chen. 2018. Hexahedral mesh quality improvement via edge-angle optimization. Computers & Graphics

70 (2018), 17ś27.

Kaoji Xu, Xifeng Gao, Zhigang Deng, and Guoning Chen. 2017. Hexahedral Meshing With Varying Element Sizes. Computer Graphics Forum

36, 8 (2017), 540ś553.

Soji Yamakawa and Kenji Shimada. 2002. HEXHOOP: Modular Templates for Converting a Hex-Dominant Mesh to an ALL-Hex Mesh.

Engineering with Computers 18 (2002), 211ś228.

Soji Yamakawa and Kenji Shimada. 2003. Increasing the Number and Volume of Hexahedral and Prism Elements in a Hex-Dominant Mesh by

Topological Transformations. In Proceedings of the 12th International Meshing Roundtable. 403ś413.

Soji Yamakawa and Kenji Shimada. 2010. 88-Element solution to Schneiders’ pyramid hex-meshing problem. International Journal for

Numerical Methods in Biomedical Engineering 26, 12 (2010), 1700ś1712.

Yang Yang, Xiao-Ming Fu, and Ligang Liu. 2019. Computing Surface PolyCube-Maps by Constrained Voxelization. Computer Graphics Forum

38, 7 (2019), 299ś309.

A. Egemen Yilmaz and Mustafa Kuzuoglu. 2009. A particle swarm optimization approach for hexahedral mesh smoothing. Internat. J. Numer.

Methods Engrg. 60, 1 (2009), 55ś78.

Yuxuan Yu, Jialei Ginny Liu, and Yongjie Jessica Zhang. 2022. HexDom: Polycube-Based Hexahedral-Dominant Mesh Generation. Springer

International Publishing, Cham, 137ś155. https://doi.org/10.1007/978-3-030-92540-6_7

Yuxuan Yu and Xiaodong Wei. 2020. HexGen and Hex2Spline: polycube-based hexahedral mesh generation and unstructured spline

construction for isogeometric analysis framework in LS-DYNA. In Springer INdAM Serie: Proceedings of INdAM Workshop łGeometric

Challenges in Isogeometric Analysis.ž.

Pengfei Zhan, Xianhai Meng, Zhongxiang Duan, and Qin Yang. 2018. A Tetra-hex Hybrid Mesh Generation Method Based on Delaunay

Triangulation. In Proceedings of the 2018 International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA 2018).

Atlantis Press, 272ś275.

Shangyou Zhang. 2005. Subtetrahedral test for the positive Jacobian of hexahedral elements.

Yongjie Zhang and Chandrajit Bajaj. 2006. Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Computer Methods

in Applied Mechanics and Engineering 195, 9 (2006), 942 ś 960.

Yongjie Zhang, Chandrajit Bajaj, and Guoliang Xu. 2009. Surface smoothing and quality improvement of quadrilateral/hexahedral meshes

with geometric low. Communications in Numerical Methods in Engineering 25, 1 (2009), 1ś18.

ACM Trans. Graph.

https://arxiv.org/abs/1807.09415
https://doi.org/10.1007/978-3-030-92540-6_7

78 • N. Pietroni, M. Campen, A. Shefer, G. Cherchi, D. Bommes, X. Gao, R. Scateni, F. Ledoux, J.-F. Remacle, M. Livesu

Yongjie Zhang, Yuri Bazilevs, Samrat Goswami, Chandrajit L Bajaj, and Thomas JR Hughes. 2007. Patient-speciic vascular NURBS modeling

for isogeometric analysis of blood low. Computer Methods in Applied Mechanics and Engineering 196, 29-30 (2007), 2943ś2959.

Y. Zhang, T. J. R. Hughes, and C. L. Bajaj. 2010. An Automatic 3D Mesh Generation Method for Domains with Multiple Materials. Computer

Methods in Applied Mechanics and Engineering 199, 5-8 (2010), 405ś415.

Yongjie Zhang, Xinghua Liang, and Guoliang Xu. 2013. A robust 2-reinement algorithm in octree or rhombic dodecahedral tree based

all-hexahedral mesh generation. Computer Methods in Applied Mechanics and Engineering 256 (2013), 88 ś 100.

Hui Zhao, Xuan Li, Wencheng Wang, Xiaoling Wang, Shaodong Wang, Na Lei, and Xiangfeng Gu. 2019. Polycube Shape Space. Computer

Graphics Forum 38, 7 (2019), 311ś322.

Yao Zheng, Roland W Lewis, and David T Gethin. 1995. FEView: An interactive visualization tool for inite elements. Finite Elements in

Analysis and Design 19, 4 (1995), 261ś294.

Qingnan Zhou. 2022. PyMesh. https://github.com/PyMesh/PyMesh.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrangements for solid geometry. ACM Transactions on Graphics

(TOG) 35, 4 (2016), 1ś15.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing models. arXiv preprint arXiv:1605.04797 (2016).

Miloš Zlámal. 1968. On the inite element method. Numer. Math. 12, 5 (1968), 394ś409.

ACM Trans. Graph.

	Abstract
	1 Introduction
	2 Hex-Mesh Structure
	2.1 Primal Structure
	2.2 Dual Structure
	2.3 Block Structure
	2.4 Structural Regularity
	2.5 Integer-Grid Maps

	3 Hex-Mesh Geometry
	3.1 Geometric Map
	3.2 Shape Quality

	4 Hex-Mesh generation
	4.1 Input
	4.2 Output
	4.3 Advancing/Receding Front
	4.4 Dual Approaches
	4.5 Domain Decomposition
	4.6 Grid based
	4.7 Polycube Maps
	4.8 Frame Fields
	4.9 Hex-Dominant Meshing

	5 Topological operators
	5.1 Sheet Operators
	5.2 Flipping Operators
	5.3 Atomic Operators
	5.4 Padding
	5.5 Structure Enhancement/Simplification

	6 Geometric Optimization of Element Quality
	6.1 Global Optimization
	6.2 Local-Global Optimization
	6.3 Non-Linear Meshes
	6.4 Simultaneous Geometry and Topology Optimization
	6.5 Meshes Containing Hybrid Elements

	7 Visualization
	8 Current trends and future perspectives
	8.1 Theoretical Challenges
	8.2 Algorithmic Challenges
	8.3 Practical Challenges

	9 Available resources
	Acknowledgments
	References

