
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH 10, 2022 1

Robust Multi-Robot Trajectory Optimization Using
Alternating Direction Method of Multiplier

Ruiqi Ni1, Zherong Pan2, and Xifeng Gao2

Abstract—We propose a variant of alternating direction
method of multiplier (ADMM) to solve constrained trajectory
optimization problems. Our ADMM framework breaks a joint
optimization into small sub-problems, leading to a low iteration
cost and decentralized parameter updates. Starting from a
collision-free initial trajectory, our method inherits the theoretical
properties of primal interior point method (P-IPM), i.e., guaran-
teed collision avoidance and homotopy preservation throughout
optimization, while being orders of magnitude faster. We have
analyzed the convergence and evaluated our method for time-
optimal multi-UAV trajectory optimizations and simultaneous
goal-reaching of multiple robot arms, where we take into consider
kinematics-, dynamics-limits, and homotopy-preserving collision
constraints. Our method highlights an order of magnitude’s
speedup, while generating trajectories of comparable qualities
as state-of-the-art P-IPM solver.

Index Terms—ADMM, trajectory optimization, multi-robot
and motion planning

I. INTRODUCTION

This paper focuses on trajectory optimization problems,
a fundamental topic in robotic motion planning. Although
the problem finds countless domains of applications, their
pivotal common feature could be illustrated through the lens
of two applications: goal-reaching of multiple UAVs and
articulated robot arms. UAV trajectory optimization has been
studied vastly [1]. Due to their small size and differential-flat
dynamics [2], point-mass models can be used and Cartesian-
space trajectories are linear functions of configuration vari-
ables. Furthermore, the quality of a UAV trajectory could be
measured via convex metrics such as jerk or snap, casting
trajectory optimization as convex programs. However, when
flying in obstacle-rich environments and among other UAVs,
non-convex, collision constraints must be considered [3].
Failing to satisfy these constraints can render a generated
trajectory completely useless. Handling articulated robot arms
poses an even more challenging problem, where the linear
dynamic assumption must be replaced with a nonlinear for-
ward kinematic function that maps from configuration- to
Cartesian-space, rendering all the Cartesian-space constraints
non-convex. In summary, trajectory optimizer should pertain
three properties: (versatility) handle non-convex constraints
and kinematic models; (robustness) guarantee to satisfy all
the constraints throughout optimization; (efficacy) rapidly

Manuscript received: November 16, 2021; Revised February 5, 2022;
Accepted March 4, 2022.

This paper was recommended for publication by Editor Stephen J. Guy
upon evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by NSF-IIS-1910486.
1 Department of Computer Science, Florida State University,

rn19g@my.fsu.edu. 2 Lightspeed & Quantum Studios, Tencent America,
{zherong.pan.usa, gxf.xisha}@gmail.com.

Digital Object Identifier (DOI): see top of this page.

refine feasible initial trajectories into nearby, locally optimal
solutions.

We observe that prior trajectory optimization techniques ex-
hibit remarkable performs under certain assumptions but have
partial coverage of the three features above. For example, off-
the-shelf primal-dual optimizers can solve general constrained
programs and have been applied to trajectory optimization [4,
3, 5]. However, these methods violate robustness by allowing
a feasible trajectory to leave the constraint manifold. Similarly,
penalty methods [6, 7, 8] have been used for trajectory
optimization by replacing hard constraints with soft energies,
which cannot guarantee robustness. On the other hand, we
proposed a new optimizer in our prior work [9] for UAV
trajectory planning with perfect versatility and robustness,
where all the constraints are converted into primal-only log-
barrier functions with finite duality gap. As a result, all the
constraints are satisfied throughout the optimization with the
Continuous Collision Detection (CCD) bounded line search
step. With the improved robustness, however, comes a signifi-
cant sacrifice in efficacy. For the same benchmarks, our primal-
only methods can take 3−5× more computations to converge as
compared with primal-dual counterparts. This is due to the log-
barrier functions introducing arbitrarily large gradients near
the constraint boundaries. As a result, an optimizer needs to
use a costly line-search after each iteration to ensure a safe
solution that satisfies all the stiff constraints. The gradient-
flows of such objective functions are known as stiff dynamics,
for which numerical time-integration can have ill-convergence
as studied [10].

Main Results: We propose a variant of ADMM-type solver
that inherits the versatility and robustness from [9], while we
achieve orders of magnitude higher performance. Intuitively,
ADMM separates non-stiff and stiff objective terms into
different sub-problems using slack variables, so that each sub-
problem is well-conditioned. Moreover, since sub-problems
are independent and involve very few decision variables, an
ADMM iteration can be trivially parallelized and incurs a
much lower cost. Existing convergence analysis, however, only
guarantees that ADMM converges for convex problems or non-
convex problems with linear or affine constraints [11]. We
present improved analysis which shows that our ADMM vari-
ant converges for both UAV and articulated trajectory planning
problems under nonlinear collision constraints, kinematic- and
dynamic-limits. We have applied our method to large-scale
multi-UAV trajectory optimization and articulated multi-robot
goal-reaching problems as defined in Section III. During our
evaluations (Section V), we observe tens of times’ speedup
over Newton-type methods. Our algorithms are detailed in
Section IV.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH 10, 2022

II. RELATED WORK

We review related trajectory generation techniques and
cover necessary backgrounds in operations research.

Trajectory Generation aims at computing robot trajec-
tories from high-level goals and constraints. Their typical
scenarios of applications involve navigation [12], multi-UAV
coordination [13], human-robot interaction [14], tele-operation
[15], trajectory following [16], etc., where frequent trajectory
update is a necessity to handle various sources of uncertainty.
Due to the limited computational resources, early works use
pre-computations to reduce the runtime cost. For example,
Panagou, Shimoda et al. [12, 17] modulate a vector field to
guide agents in a collision-free manner, while assuming point
robots and known environments. Closed-form solutions such
as [18, 19] exist but are limited to certain types of dynamic
systems or problem paradigms. More recently, Belghith et al.,
Karaman et al. [20, 21] have established anytime-variants of
sampling-based roadmaps that continually improve an initial
feasible solution during execution.

Trajectory Optimization refines robot trajectories given
a feasible or infeasible initial guess. Trajectory optimization
dates back to [22, 4], but has recently gained significantly at-
tention due to the maturity of nonlinear programming solvers.
These methods have robots’ goal of navigation formulated as
objective functions, while taking various safety requirements
as (non)linear constraints. They achieve unprecedented success
in real-time control of high-dimensional articulated bodies
[23] and large swarms of UAVs [3]. In particular, trajectory
optimizer can also be used for trajectory generation by setting
the initial trajectory to be a trivial solution [23, 24, 25]. On
the down side, most trajectory optimization techniques suffer
from a lack of robustness. Many works formulate constraints
as soft objective functions [26, 23] or use primal-dual interior
point methods to handle non-convex constraints [4, 27, 25],
which does not guarantee constraint satisfaction. On the other
hand, some techniques [28, 29] restrict the solution space to a
disjoint convex subset so that efficient solvers are available, but
these methods are limited to returning sub-optimal solutions.
Instead, Ni et al. [9] starts from a strictly feasible initial
guess and uses a primal-only method to transform non-convex
constraints into log-barrier functions with finite duality gap.
Using a line-search with CCD as safe-guard, it is guaranteed
to satisfy all constraints and no restrictions in solution space
are needed. But optimizer in this case can make slow progress,
being blocked by the large gradient of log-barrier functions.
This dilemma between efficacy and robustness has been
studied as stiff dynamic systems [10], for which dedicated
techniques are developed for different applications such as
numerical continuation [30]. Unlike these methods, we show
that first-order methods can be combined with barrier methods
to achieve significant speedup.

Alternating Direction Method of Multiplier is a first-
order optimization framework originally designed in convex-
programming paradigm [31]. ADMM features a low iteration
cost and moderate accuracy of solutions, making it a stellar
fit for trajectory optimization where many iterations can be
performed within a short period of time. ADMM uses slack

variables to split the problem into small subproblems and
approximately maintains the consistency between slack and
original variables by updating the Lagrangian multipliers.
Although theoretical convergence guarantee was only available
under convex assumptions, ADMM has been adapted to solve
non-linear fluid dynamics control [32], collision-free UAV
trajectory generation [24], and bipedal locomotion [33], where
good empirically performances have been observed. It was not
until very recently that the good performances of ADMM in
nonlinear settings have been theoretically explained by [34,
35, 11]. Unfortunately, even these latest analysis cannot cover
many robotic applications such as [24]. Our new ADMM
algorithm correctly divides the responsibility between the slack
and original variables, where the slack variables handle non-
stiff function terms and the original variables handle stiff ones.
By using line-search to ensure strict function decrease, we
can prove convergence (speed) of our algorithm to a robust
solution.

III. TRAJECTORY OPTIMIZATION PARADIGM

...
...

z1 z2

z4 z3

x0x1

xN−1

xN

xN+1

n ● +d = 0

Fig. 1: Illustrative
problem with the red
dashed line being the
separating plane.

We motivate our analysis using a
2D collision-free trajectory optimization
problem as illustrated in Figure 1, while
our algorithm is applied to both 2D and
3D workspaces alike. Consider a point
robot traveling in a 2D workspace along
a piecewise linear trajectory discretized
using N + 1 linear segments and N + 2
vertices. We further assume the start
and goal positions are fixed, leaving
the intermediary N points as decision
variables. This trajectory can be param-
eterized by a vector x ∈ R2N where
xi ∈ R2 is the ith vertex. For simplicity
in this example, our goal is for the trajectory to be as smooth as
possible. Further, the robot must be collision-free and cannot
intersect the box-shaped obstacle in the middle and we assume
that the four vertices of the box are Z = {z1; z2; z3; z4}. These
collision constraints can be expressed as:

d(hull(Xi);hull(Z)) ≥ 0 ∀i = 1;⋯;N − 1;

where Xi = {xi; xi+1} is the ith line segment (Xi ∈ R4

in this illustrative toy example), hull(●) denotes the convex
hull and d is Euclidean the distance between two convex
objects. A collision-free trajectory optimization problem can
be formulated as:

argmin
x

∑
i

XT
i LXi (1)

s.t. d(hull(Xi); hull(Z)) ≥ 0 ∀i = 1;⋯;N − 1;

where L is the Laplacian stencil measuring smoothness and
XT
i LXi measures the squared length of ith line segment.

However, Equation 1 only considers geometric or kinematic
constraints and a robot might not be able to traverse the
optimized trajectory due to the violation physical constraints.
In many problems, including autonomous driving [36] and
UAV path planning [37], a simplified physical model can
be incorporated that only considers velocity and acceleration



NI et al.: ROBUST MULTI-ROBOT TRAJECTORY OPTIMIZATION 3

limits. We could approximate the velocity and acceleration
using �nite-difference as:

Vi < x i � 1 � x i A i < x i � 2 � 2x i � 1 � x i ;

and formulate the time-optimal, collision-free trajectory opti-
mization problem as:

argmin
x; � t

Q
i

X T
i LX i ~� t2 � w� t (2)

s.t. d̂ hullˆX i • ; hullˆZ •• C0 ¦ i � 1; � ; N � 1
YVi YB vmax� t ¦ i � 1; � ; N � 1

YA i YB amax� t2 ¦ i � 1; � ; N � 2;

where we useP i X T
i LX i ~� t2 to measure trajectory smooth-

ness with time, e.g. Dirichlet energy, and we use a coef�cient
w to balance between optimality in terms of trajectory length
and arrival time. Here,v; amax are the upper bounds of veloc-
ities and accelerations. Although the above example is only
considering a single robot and piecewise linear trajectories,
extensions to several practical problem settings are straight-
forward, as discussed below.

� i

� i

� j

� j

x i

x j
nx � d � 0

Fig. 2: The con�guration of two robot arms includes joint angles
� i ; � j . The set of Cartesian points on the robot,x i ; x j (green), are
mapped from� i ; � j using forward kinematic functions. To avoid
collisions between the two robot arms, a convex hull is computed
for each robot link (blue), and a separating plane (red) is used to
ensure the pair of convex hulls stay on different sides.

A. Time-Optimal Multi-UAV Trajectory Optimization

We �rst extend our formulation to handle multiple UAV
trajectories represented using composite Bézier curves with
N pieces of orderM . In this case, the decision variablex
is a set ofN ˆM � 2• � 3 control points orx >R3ˆ N ˆ M � 2• � 3•

(note that the two neighboring curves share3 control points to
ensure second order continuity and we refer readers to [9] for
more details). For thei th piece of B́ezier curve, the velocity
and acceleration are de�ned as:

X i <
’
–
”

x i ˆ M � 2• � M � 3
�

x i ˆ M � 2• � 3

“
—
•

Vi ˆs• < _I ˆs•X i A i ˆs• < •I ˆs•X i ;

where X i are theM � 1 control points of thei th Bézier
curve piece, andI ˆs•, _I ˆs• and •I ˆs• are the B́ezier curve's
interpolation stencil for position, velocity and acceleration,
respectively, withs >�0; 1� being the natural parameter. It can
be shown thatVi ˆs•; A i ˆs• are also B́ezier curves of orders
M � 1 andM � 2, respectively. The velocity and acceleration
limits must hold for everys > �0; 1� , for which a �nite-
dimensional, conservative approximation is to require all the
control points of _I ˆs• and •I ˆs• are bounded byvmax and
amax. With a slight abuse of notation, we reuseI; _I; •I without
parameters to denote the matrices extracting the control points
of I ˆs•X i ; _I ˆs•X i ; •I ˆs•X i , respectively. In other words, we
de�ne the vectorsVi < _IX i and A i < •IX i as the control

points of thei th Bézier curve, then the form of velocity and
acceleration limits are identical to Equation 2.

For multiple UAVs, however, we need to consider the
additional collision constraints between different trajectories.
To further unify the notations, we concatenate the control
points of different UAVs into a single vectorx, i.e., two
Bézier curve pieces might correspond to different UAVs, and
we introduce collision constraints between different UAVs:

dˆhullˆX i • ; hullˆX j •• C0 ¦ i; j >different UAV:

Our �nal formulation of time-optimal multi-UAV trajectory
optimization takes the following form:

argmin
x; � t

Q
i

OˆX i ; � t • (3)

s.t. d̂ hullˆX i • ; hullˆZ •• C0 ¦ i � 1; � ; N � 1
dˆhullˆX i • ; hullˆX j •• C0 ¦ i; j >different UAV
YVi YB vmax� t ¦ i � 1; � ; N � 1

YA i YB amax� t2 ¦ i � 1; � ; N � 2;

where we generalize the objective function with smoothness
and time optimality to take an arbitrary, possibly non-convex
form, OˆX i ; � t• , which is a function of a single piece of sub-
trajectoryX i . Almost all the objective functions in trajectory
optimization applications can be written in this form. For
example, smoothness can be written as the sum of total
curvature, snap, or jerk of each piece, and the end-point cost
is only related to the last piece.

B. Goal-Reaching of Articulated Robot Arms

The position of UAV at any instances on the i th Bézier
curve isI ˆs•X i , which is a linear function of decision variable
X i and thus x. However, more general problem settings
require non-linear relationships, of which a typical case is
articulated robot arms as illustrated in Figure 2. Consider the
problem of multiple interacting robot arms in a shared 3D
workspace. Each arm's Cartesian-space con�guration at the
i th time instance is represented by a triangle mesh with a
set of vertices concatenated into the vectorx i . However, we
need to maintain the corresponding con�guration� i , whereS� i S
is the degrees of freedom of each arm (DOF). Our decision
variable is � > RDOF� N , each x i is a derived variable of
� i via the forward kinematics functionx i < FKˆ � i • , and
a linear interpolated Cartesian-space trajectory is:X i ˆ � • �
˜ x i ; x i � 1• � ˜ FK ˆ � i • ; FK ˆ � i � 1•• . We further de�ne the
velocity and acceleration in con�guration space as:

Vi ˆ � • < � i � 1 � � i A i ˆ � • < � i � 2 � 2� i � 1 � � i :

In summary, the multi-arm goal-reaching problem can be
formulated as:

argmin
�; � t

Q
i

OˆX i ˆ � • ; � t• (4)

s.t. d̂ hullˆX i ˆ � •• ; hullˆZ •• C0 ¦ i � 1; � ; N � 1
dˆhullˆX i ˆ � •• ; hullˆX j ˆ � ••• C0 ¦ i; j >different arm
YVi ˆ � •Y B vmax� t ¦ i � 1; � ; N � 1

YA i ˆ � •Y B amax� t2 ¦ i � 1; � ; N � 2:

Equation 4 takes a more general form than all the previous
problems, and we would propose our variant of ADMM
algorithm assuming this formulation. If our method is applied



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH 10, 2022

to UAV trajectory optimization, we can plug in the degenerate
relationship FK̂� i • � � i .

Remark 3.1: By using separating planes to formulate col-
lision constraints, we assume each robot link is convex. This
treatment allows us to use only one separating plane between
a pair of robot links. If concave features of robot links
must be modeled accurately, then robot link must be further
decomposed into convex parts, and a separating plane must be
used between each pair of parts, leading to more separating
planes and iterations.

IV. ADMM-T YPE TRAJECTORYOPTIMIZATION

ADMM is a variant of the Augmented Lagrangian Method
(ALM) that does not update the penalty parameter. The main
advantage of ADMM is that, by introducing slack variables,
each substep consists of either a small problem involving the
non-stiff part of the objective function or a large problem
involving the stiff part of the objective function or constraints.
As a result, the ADMM solver allows larger timestep sizes to
be taken for the non-stiff part, leading to faster convergence.
Although ADMM has only �rst-order convergence rate, it can
quickly approximate a locally optimal solution with moderate
accuracy, which is suf�ciently for trajectory optimization.

X 0X 1

X 2

X 3

X 4

�X 0

�X 1

�X 2

�X 3

�X 4

Fig. 3: ADMM main-
tain two sets of vari-
ables X i and �X i . X i

satis�es all constraints
throughout optimization,
while �X i can violate con-
straints during intermedi-
ary iterations. On conver-
gence, however, bothX i

and �X i satisfy all con-
straints.

ADMM handles inequality con-
straints by reformulating them as
indicator functions, but we are
handling possibly non-convex con-
straints for which projection opera-
tors, which is associated with indi-
cator functions, do not have closed-
form solutions. Instead, we follow
our prior work [9] and rely on a
log-barrier relaxations with non-zero
duality gap. For example, if we
have a hard constraintgˆx• C 0
whereg is some differentiable func-
tion, then the feasible domain can
be identi�ed with the �nite sub-
level set of the log-barrier function:
� logˆgˆx•• . We apply this tech-
nique to the velocity and accelera-
tion limits. A similar technique can
be used for collision constraints with
the help of a separating plane, which
is illustrated in Figure 1 asnT Y� d � 0 (n is the plane normal,
d is the position, andY is the arbitrary point on the plane).
Since we only consider distance between convex hulls, two
convex hulls are non-overlapping if and only if there is a
separating plane such that the two hulls are on different sides.
We propose to optimize the parameters of the separating plane
(n; d) as additional slack variables. As a result, the collision
constraints become convex when �xingn; d and optimizing the
trajectory alone. Applying this idea to all the constraints and
we can transform Equation 4 into the following unconstrained
optimization:

argmin
�; � t;d i ;d ij

Yn i Y;Yn ij Y� 1

L ˆ �; � t; n i ; di ; n ij ; dij • < Q
i

OˆX i ˆ � • ; � t• �


 Q
i

logˆvmax� t � YVi Y•� 
 Q
i

logˆamax� t2 � YA i Y•�


 Q
i

<@@@@>
Q

x >X i

logˆn i xˆ � • � di • � Q
z>Z

logˆ � n i z � di •
=AAAA?

�


 Q
ij

<@@@@>
Q

x >X i

logˆn ij xˆ � • � dij • � Q
x >X j

logˆ � n ij xˆ � • � dij •
=AAAA?

; (5)

where
 is the weight of log-barrier function that can be tuned
for each problem to control the exactness of constraint satis-
faction. We use the same subscript convention as Section III.
Speci�cally, for i th trajectory pieceX i and the obstacleZ , we
introduce a separating planenT

i Y � di � 0. For the pair ofi th
and j th trajectories pieces that might collide, we introduce a
separating planenT

ij Y � dij � 0.
Equation 5 is a strongly coupled problem with six sets

of decision variables, where the constraints (or log-barrier
functions) and the objectiveO are added up. However, these
two kinds of functions have very different properties. The log-
barrier functions are “stiff” and do not have a Lipschitz con-
stant, which could generate arbitrarily large blocking gradients
near the constraint boundaries, but the objectiveO is well-
conditioned, oftentimes having a �nite Lipschitz constant. Our
main idea is to handle these functions in separate subproblems.

Algorithm 1: AM

Input: � 0 ; � t0 ; ‰n i ; di Ž
0

; ‰n ij ; dij Ž
0

1: for k � 0; 1; � do P Update�; � t
2: � k � 1 ; � tk � 1 � argmin

�; � t
L ˆ �; � t; n k

i ; dk
i ; nk

ij ; dk
ij •

3: for collision constraint betweeni th piece of trajectory and
environmentdo P Optimize separating plane

4: ‰n i ; di Ž
k � 1

� argmin
Yn i Y� 1;d i

L ˆ � k � 1 ; � tk � 1 ; n i ; di ; nk
ij ; dk

ij •

5: for collision constraint betweeni th andj th piece of trajectory
do

6: ‰n ij ; dij Ž
k � 1

� argmin
Yn ij Y� 1;d ij

7: L ˆ � k � 1 ; � tk � 1 ; nk � 1
i ; dk � 1

i ; n ij ; dij •

A. Alternating Minimization (AM)

Before we describe our ADMM-type method, we review
the basic alternating minimization scheme. AM has been used
in trajectory optimization to handle time-optimality [38] and
collision constraints [39]. A similar method can be applied
to minimize Equation 5 that alternates between updating the
separating planeni ; di ; nij ; dij and the robot con�gurations�
as outlined in AM 1. AM can be used along with ADMM
while being easier to analyze. Prior work [39] did not provide
a convergence analysis and Wanget al. [38] setup the �rst
order convergence for a speci�c, strictly convex objective
function where each minimization subproblem is a single-
valued map. In the appendices of our arxiv version [40], we
establish the convergence of AM 1 for twice-differentiable
objective functions with plane normalsni ; nij constrained to
the unit circle/sphere. In the next section, we will combine
AM and ADMM, speci�cally we update robot con�gurations
� using ADMM and update separating planesni ; di ; nij ; dij

using AM.



NI et al.: ROBUST MULTI-ROBOT TRAJECTORY OPTIMIZATION 5

Algorithm 2: ADMM with Stiffness Decoupling

Input: � 0 ; � t0 ; � �t0
i ; �X 0

i ; � 0
i ; ‰n i ; di Ž

0
; ‰n ij ; dij Ž

0

1: for k � 0; 1; � do P Update�; � t; �X i ; � i

2: � k � 1 ; � tk � 1 � argmin
�; � t

L ˆ �; � t; � �t i ; �X k
i ; � k

i ; nk
i ; dk

i ; nk
ij ; dk

ij •

3: for i th piece of trajectorydo
4: � �tk � 1

i ; �X k � 1
i � argmin

� �t i ; �X i

5: L ˆ � k � 1 ; � tk � 1 ; � �t i ; �X i ; � k
i ; nk

i ; dk
i ; nk

ij ; dk
ij • �

6: %
2 Y�X i � �X k

i Y2

7: � k � 1
i � � k

i � %̂X i ˆ � k � 1• � �X k � 1
i •

8: � k � 1
i � � k

i � %̂ � tk � 1 � � �tk � 1
i •

9: for collision-free constraint betweeni th piece of trajectory
and environmentdo P Optimize separating plane

10: ‰n i ; di Ž
k � 1

� argmin
Yn i Y� 1;d i

11: L ˆ � k � 1 ; � tk � 1 ; � �tk � 1
i ; �X k � 1

i ; � k � 1
i ; n i ; di ; nk

ij ; dk
ij •

12: for collision-free constraint betweeni th and j th piece of
trajectorydo

13: ‰n ij ; dij Ž
k � 1

� argmin
Yn ij Y� 1;d ij

14: L ˆ � k � 1 ; � tk � 1 ; � �tk � 1
i ; �X k � 1

i ; � k � 1
i ; nk � 1

i ; dk � 1
i ; n ij ; dij •

B. ADMM with Stiffness Decoupling

The key idea behind ADMM is to treat stiff and non-stiff
functions separately by introducing slack variables. Speci�-
cally, we introduce slack variables�X i for eachi � 1; � ; N
and transforms Equation 5 into the following equivalent form:

argmin
�; � t; � �t i ; �X i

d i ;d ij ;Yn i Y;Yn ij Y� 1

Q
i

� Oˆ �X i ; � �t i • � � (6)


 Q
i

logˆvmax� t � YVi Y•� Q
i


 logˆamax� t2 � YA i Y•�


 Q
i

<@@@@>
Q

x >X i

logˆn i xˆ � • � di • � Q
z>Z

logˆ � n i z � di •
=AAAA?

�


 Q
ij

<@@@@>
Q

x >X i

logˆn ij xˆ � • � dij • � Q
x >X j

logˆ � n ij xˆ � • � dij •
=AAAA?

s.t.X i ˆ � • � �X i , � t � � �t i :

By convention, we use a bar to indicate slack variables, i.e.
�Vi ˆs• � _Aˆs• �X i and �A i ˆs• � •Aˆs• �X i .

Remark4.1: We choose to have all slack variables reside in
Cartesian space. As a result, if non-linear forward kinematics
functions are used, ADMM must handle nonlinear constraint
X i ˆ � • � �X i .
ADMM proceeds by transforming the equality constraints in
Equation 6 into augmented Lagrangian terms. We arrive at the
following augmented Lagrangian function:

L ˆ �; � t; � �t i ; �X i ; � i ; n i ; di ; n ij ; dij • < Q
i

Oˆ �X i ; � �t i • �


 Q
i

logˆ vmax� t � YVi Y• � 
 Q
i

logˆ amax� t2 � YA i Y•�


 Q
i

<@@@@>
Q

x >X i

logˆ n i xˆ � • � di • � Q
z>Z

logˆ � n i z � di •
=AAAA?

�


 Q
ij

<@@@@>
Q

x >X i

logˆ n ij xˆ � • � dij • � Q
x >X j

logˆ � n ij xˆ � • � dij •
=AAAA?

�

Q
i

%

2
YX i ˆ � • � �X i Y

2 � � T
i ˆ X i ˆ � • � �X i • �

Q
i

%

2
Y� t � � �t i Y

2 � � T
i ˆ � t � � �t i • ; (7)

where %is the penalty parameter,� i is the augmented La-
grangian multiplier for �X i . We can now present our ADMM
algorithm seeking stationary points of Equation 7. Each itera-
tion of our ADMM 2 is a �ve-way update that alternates be-
tween˜ �; � t• ; ˜ � �t i ; �X i • ; ˜ � i ; � i • ; ‰ni ; di Ž; ‰nij ; dij Ž. Note
that our objective function only appears in the˜ � �t i ; �X i • -
subproblem, which does not involve any stiff, log-barrier
functions. Therefore, ADMM 2 achieves stiffness decoupling.

Remark4.2: For each optimization subproblem of ADMM
2, we assume that the decision variable is initialized from
last iteration. In the appendices of our arxiv version [40],
we show that subproblems in AM 1 and ADMM 2 only
need to be solved approximately. Speci�cally, we update
�; � t; n i ; di ; nij ; dij using a single (Riemannian) line search
step, and we update� �t; �X using a linearized functionL .
For brevity, we denote these approximate oracles using an�
symbol.

Remark4.3: ADMM always maintains two representations
of the trajectory,X i and �X i , whereX i is used to satisfy the
collision constraints and�X i (the slack variable) focuses on
minimizing the objective functionO at the risk of violating
the collision constraints, as illustrated in Figure 3. It is know
that using slack variables can loosen constraint satisfaction. As
a result, we choose to formulate collision constraints and other
hard constraints onX i instead of �X i , so that all the constraints
can be satis�ed using a line-search step onX i variables.
For collision constraints in particular, we inherit the line-step
technique from [9] that is safe-guarded by CCD. The CCD
procedure ensures that there always exists a separating plane to
split each pair of convex objects and the Lagrangian function
L always takes a �nite value. On convergence, however, the
two representations coincide and both collision-free and local
optimal conditions hold.

Remark 4.4: When updating the separating plane, the
normal vector must be constrained to have unit length. These
constraints can be reparameterized as an optimization on
SOˆ3•. Speci�cally, given the current solution denoted as
ncurr

ij with Yncurr
ij Y � 1, we reparameterizenij by pre-

multiplying a rotation matrixR � exp̂ r • by ncurr
ij , where we

use the Rodriguez formula to parameterize a rotation matrix as
the exponential of an arbitrary 3-dimensional vectorr . Instead
of using nij as decision variables, we letnij � exp̂ r •ncurr

ij
and user as our decision variables. Whichever valuer takes,
we can ensureYnij Y � 1 (we refer reads to [42] for more
details).

V. EVALUATIONS

Our implementation uses C++11. Experiments are per-
formed on a workstation with a 3.5 GHz Intel Core i9
processor. For experiments, we choose a uni�ed set of pa-
rametersvmax � 2m~s; amax � 2m~s2 for UAVs (resp.
vmax � 0:1m~s; amax � 0:1m~s2 for articulated bodies),
w � 108; %� 0:1 unless otherwise stated. We use the same
weight, 
 � 10, for all the log-barrier functions. Although
�ne-tuning 
 separately for each log-barrier function can lead
to better results, we �nd the same
 � 10 achieves reasonably




	Introduction
	Related Work
	Trajectory Optimization Paradigm
	Time-Optimal Multi-UAV Trajectory Optimization
	Goal-Reaching of Articulated Robot Arms

	ADMM-Type Trajectory Optimization
	Alternating Minimization (AM)
	ADMM with Stiffness Decoupling

	Evaluations
	Conclusion & Limitation

