
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH 10, 2022 1

Robust Multi-Robot Trajectory Optimization Using
Alternating Direction Method of Multiplier

Ruiqi Ni1, Zherong Pan2, and Xifeng Gao2

Abstract—We propose a variant of alternating direction
method of multiplier (ADMM) to solve constrained trajectory
optimization problems. Our ADMM framework breaks a joint
optimization into small sub-problems, leading to a low iteration
cost and decentralized parameter updates. Starting from a
collision-free initial trajectory, our method inherits the theoretical
properties of primal interior point method (P-IPM), i.e., guaran-
teed collision avoidance and homotopy preservation throughout
optimization, while being orders of magnitude faster. We have
analyzed the convergence and evaluated our method for time-
optimal multi-UAV trajectory optimizations and simultaneous
goal-reaching of multiple robot arms, where we take into consider
kinematics-, dynamics-limits, and homotopy-preserving collision
constraints. Our method highlights an order of magnitude’s
speedup, while generating trajectories of comparable qualities
as state-of-the-art P-IPM solver.

Index Terms—ADMM, trajectory optimization, multi-robot
and motion planning

I. INTRODUCTION

This paper focuses on trajectory optimization problems,
a fundamental topic in robotic motion planning. Although
the problem finds countless domains of applications, their
pivotal common feature could be illustrated through the lens
of two applications: goal-reaching of multiple UAVs and
articulated robot arms. UAV trajectory optimization has been
studied vastly [1]. Due to their small size and differential-flat
dynamics [2], point-mass models can be used and Cartesian-
space trajectories are linear functions of configuration vari-
ables. Furthermore, the quality of a UAV trajectory could be
measured via convex metrics such as jerk or snap, casting
trajectory optimization as convex programs. However, when
flying in obstacle-rich environments and among other UAVs,
non-convex, collision constraints must be considered [3].
Failing to satisfy these constraints can render a generated
trajectory completely useless. Handling articulated robot arms
poses an even more challenging problem, where the linear
dynamic assumption must be replaced with a nonlinear for-
ward kinematic function that maps from configuration- to
Cartesian-space, rendering all the Cartesian-space constraints
non-convex. In summary, trajectory optimizer should pertain
three properties: (versatility) handle non-convex constraints
and kinematic models; (robustness) guarantee to satisfy all
the constraints throughout optimization; (efficacy) rapidly
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refine feasible initial trajectories into nearby, locally optimal
solutions.

We observe that prior trajectory optimization techniques ex-
hibit remarkable performs under certain assumptions but have
partial coverage of the three features above. For example, off-
the-shelf primal-dual optimizers can solve general constrained
programs and have been applied to trajectory optimization [4,
3, 5]. However, these methods violate robustness by allowing
a feasible trajectory to leave the constraint manifold. Similarly,
penalty methods [6, 7, 8] have been used for trajectory
optimization by replacing hard constraints with soft energies,
which cannot guarantee robustness. On the other hand, we
proposed a new optimizer in our prior work [9] for UAV
trajectory planning with perfect versatility and robustness,
where all the constraints are converted into primal-only log-
barrier functions with finite duality gap. As a result, all the
constraints are satisfied throughout the optimization with the
Continuous Collision Detection (CCD) bounded line search
step. With the improved robustness, however, comes a signifi-
cant sacrifice in efficacy. For the same benchmarks, our primal-
only methods can take 3−5× more computations to converge as
compared with primal-dual counterparts. This is due to the log-
barrier functions introducing arbitrarily large gradients near
the constraint boundaries. As a result, an optimizer needs to
use a costly line-search after each iteration to ensure a safe
solution that satisfies all the stiff constraints. The gradient-
flows of such objective functions are known as stiff dynamics,
for which numerical time-integration can have ill-convergence
as studied [10].

Main Results: We propose a variant of ADMM-type solver
that inherits the versatility and robustness from [9], while we
achieve orders of magnitude higher performance. Intuitively,
ADMM separates non-stiff and stiff objective terms into
different sub-problems using slack variables, so that each sub-
problem is well-conditioned. Moreover, since sub-problems
are independent and involve very few decision variables, an
ADMM iteration can be trivially parallelized and incurs a
much lower cost. Existing convergence analysis, however, only
guarantees that ADMM converges for convex problems or non-
convex problems with linear or affine constraints [11]. We
present improved analysis which shows that our ADMM vari-
ant converges for both UAV and articulated trajectory planning
problems under nonlinear collision constraints, kinematic- and
dynamic-limits. We have applied our method to large-scale
multi-UAV trajectory optimization and articulated multi-robot
goal-reaching problems as defined in Section III. During our
evaluations (Section V), we observe tens of times’ speedup
over Newton-type methods. Our algorithms are detailed in
Section IV.
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II. RELATED WORK

We review related trajectory generation techniques and
cover necessary backgrounds in operations research.

Trajectory Generation aims at computing robot trajec-
tories from high-level goals and constraints. Their typical
scenarios of applications involve navigation [12], multi-UAV
coordination [13], human-robot interaction [14], tele-operation
[15], trajectory following [16], etc., where frequent trajectory
update is a necessity to handle various sources of uncertainty.
Due to the limited computational resources, early works use
pre-computations to reduce the runtime cost. For example,
Panagou, Shimoda et al. [12, 17] modulate a vector field to
guide agents in a collision-free manner, while assuming point
robots and known environments. Closed-form solutions such
as [18, 19] exist but are limited to certain types of dynamic
systems or problem paradigms. More recently, Belghith et al.,
Karaman et al. [20, 21] have established anytime-variants of
sampling-based roadmaps that continually improve an initial
feasible solution during execution.

Trajectory Optimization refines robot trajectories given
a feasible or infeasible initial guess. Trajectory optimization
dates back to [22, 4], but has recently gained significantly at-
tention due to the maturity of nonlinear programming solvers.
These methods have robots’ goal of navigation formulated as
objective functions, while taking various safety requirements
as (non)linear constraints. They achieve unprecedented success
in real-time control of high-dimensional articulated bodies
[23] and large swarms of UAVs [3]. In particular, trajectory
optimizer can also be used for trajectory generation by setting
the initial trajectory to be a trivial solution [23, 24, 25]. On
the down side, most trajectory optimization techniques suffer
from a lack of robustness. Many works formulate constraints
as soft objective functions [26, 23] or use primal-dual interior
point methods to handle non-convex constraints [4, 27, 25],
which does not guarantee constraint satisfaction. On the other
hand, some techniques [28, 29] restrict the solution space to a
disjoint convex subset so that efficient solvers are available, but
these methods are limited to returning sub-optimal solutions.
Instead, Ni et al. [9] starts from a strictly feasible initial
guess and uses a primal-only method to transform non-convex
constraints into log-barrier functions with finite duality gap.
Using a line-search with CCD as safe-guard, it is guaranteed
to satisfy all constraints and no restrictions in solution space
are needed. But optimizer in this case can make slow progress,
being blocked by the large gradient of log-barrier functions.
This dilemma between efficacy and robustness has been
studied as stiff dynamic systems [10], for which dedicated
techniques are developed for different applications such as
numerical continuation [30]. Unlike these methods, we show
that first-order methods can be combined with barrier methods
to achieve significant speedup.

Alternating Direction Method of Multiplier is a first-
order optimization framework originally designed in convex-
programming paradigm [31]. ADMM features a low iteration
cost and moderate accuracy of solutions, making it a stellar
fit for trajectory optimization where many iterations can be
performed within a short period of time. ADMM uses slack

variables to split the problem into small subproblems and
approximately maintains the consistency between slack and
original variables by updating the Lagrangian multipliers.
Although theoretical convergence guarantee was only available
under convex assumptions, ADMM has been adapted to solve
non-linear fluid dynamics control [32], collision-free UAV
trajectory generation [24], and bipedal locomotion [33], where
good empirically performances have been observed. It was not
until very recently that the good performances of ADMM in
nonlinear settings have been theoretically explained by [34,
35, 11]. Unfortunately, even these latest analysis cannot cover
many robotic applications such as [24]. Our new ADMM
algorithm correctly divides the responsibility between the slack
and original variables, where the slack variables handle non-
stiff function terms and the original variables handle stiff ones.
By using line-search to ensure strict function decrease, we
can prove convergence (speed) of our algorithm to a robust
solution.

III. TRAJECTORY OPTIMIZATION PARADIGM

...
...
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Fig. 1: Illustrative
problem with the red
dashed line being the
separating plane.

We motivate our analysis using a
2D collision-free trajectory optimization
problem as illustrated in Figure 1, while
our algorithm is applied to both 2D and
3D workspaces alike. Consider a point
robot traveling in a 2D workspace along
a piecewise linear trajectory discretized
using N + 1 linear segments and N + 2
vertices. We further assume the start
and goal positions are fixed, leaving
the intermediary N points as decision
variables. This trajectory can be param-
eterized by a vector x ∈ R2N where
xi ∈ R2 is the ith vertex. For simplicity
in this example, our goal is for the trajectory to be as smooth as
possible. Further, the robot must be collision-free and cannot
intersect the box-shaped obstacle in the middle and we assume
that the four vertices of the box are Z = {z1, z2, z3, z4}. These
collision constraints can be expressed as:

d(hull(Xi),hull(Z)) ≥ 0 ∀i = 1,⋯,N − 1,

where Xi = {xi, xi+1} is the ith line segment (Xi ∈ R4

in this illustrative toy example), hull(●) denotes the convex
hull and d is Euclidean the distance between two convex
objects. A collision-free trajectory optimization problem can
be formulated as:

argmin
x

∑
i

XT
i LXi (1)

s.t. d(hull(Xi), hull(Z)) ≥ 0 ∀i = 1,⋯,N − 1,

where L is the Laplacian stencil measuring smoothness and
XT
i LXi measures the squared length of ith line segment.

However, Equation 1 only considers geometric or kinematic
constraints and a robot might not be able to traverse the
optimized trajectory due to the violation physical constraints.
In many problems, including autonomous driving [36] and
UAV path planning [37], a simplified physical model can
be incorporated that only considers velocity and acceleration
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limits. We could approximate the velocity and acceleration
using finite-difference as:

Vi ≜ xi+1 − xi Ai ≜ xi+2 − 2xi+1 + xi,
and formulate the time-optimal, collision-free trajectory opti-
mization problem as:

argmin
x,∆t

∑
i

XT
i LXi/∆t

2
+w∆t (2)

s.t. d(hull(Xi), hull(Z)) ≥ 0 ∀i = 1,⋯,N − 1

∥Vi∥ ≤ vmax∆t ∀i = 1,⋯,N − 1

∥Ai∥ ≤ amax∆t
2

∀i = 1,⋯,N − 2,

where we use ∑iXT
i LXi/∆t2 to measure trajectory smooth-

ness with time, e.g. Dirichlet energy, and we use a coefficient
w to balance between optimality in terms of trajectory length
and arrival time. Here, v, amax are the upper bounds of veloc-
ities and accelerations. Although the above example is only
considering a single robot and piecewise linear trajectories,
extensions to several practical problem settings are straight-
forward, as discussed below.

θi

θi

θj

θj

xi

xj
nx + d = 0

Fig. 2: The configuration of two robot arms includes joint angles
θi, θj . The set of Cartesian points on the robot, xi, xj (green), are
mapped from θi, θj using forward kinematic functions. To avoid
collisions between the two robot arms, a convex hull is computed
for each robot link (blue), and a separating plane (red) is used to
ensure the pair of convex hulls stay on different sides.

A. Time-Optimal Multi-UAV Trajectory Optimization

We first extend our formulation to handle multiple UAV
trajectories represented using composite Bézier curves with
N pieces of order M . In this case, the decision variable x
is a set of N(M − 2) + 3 control points or x ∈ R3(N(M−2)+3)

(note that the two neighboring curves share 3 control points to
ensure second order continuity and we refer readers to [9] for
more details). For the ith piece of Bézier curve, the velocity
and acceleration are defined as:

Xi ≜
⎛
⎜
⎝

xi(M−2)−M+3

⋮

xi(M−2)+3

⎞
⎟
⎠

Vi(s) ≜ İ(s)Xi Ai(s) ≜ Ï(s)Xi,

where Xi are the M + 1 control points of the ith Bézier
curve piece, and I(s), İ(s) and Ï(s) are the Bézier curve’s
interpolation stencil for position, velocity and acceleration,
respectively, with s ∈ [0,1] being the natural parameter. It can
be shown that Vi(s),Ai(s) are also Bézier curves of orders
M − 1 and M − 2, respectively. The velocity and acceleration
limits must hold for every s ∈ [0,1], for which a finite-
dimensional, conservative approximation is to require all the
control points of İ(s) and Ï(s) are bounded by vmax and
amax. With a slight abuse of notation, we reuse I, İ, Ï without
parameter s to denote the matrices extracting the control points
of I(s)Xi, İ(s)Xi, Ï(s)Xi, respectively. In other words, we
define the vectors Vi ≜ İXi and Ai ≜ ÏXi as the control

points of the ith Bézier curve, then the form of velocity and
acceleration limits are identical to Equation 2.

For multiple UAVs, however, we need to consider the
additional collision constraints between different trajectories.
To further unify the notations, we concatenate the control
points of different UAVs into a single vector x, i.e., two
Bézier curve pieces might correspond to different UAVs, and
we introduce collision constraints between different UAVs:

d(hull(Xi),hull(Xj)) ≥ 0 ∀i, j ∈ different UAV.

Our final formulation of time-optimal multi-UAV trajectory
optimization takes the following form:

argmin
x,∆t

∑
i

O(Xi,∆t) (3)

s.t. d(hull(Xi), hull(Z)) ≥ 0 ∀i = 1,⋯,N − 1

d(hull(Xi), hull(Xj)) ≥ 0 ∀i, j ∈ different UAV
∥Vi∥ ≤ vmax∆t ∀i = 1,⋯,N − 1

∥Ai∥ ≤ amax∆t
2

∀i = 1,⋯,N − 2,

where we generalize the objective function with smoothness
and time optimality to take an arbitrary, possibly non-convex
form, O(Xi,∆t), which is a function of a single piece of sub-
trajectory Xi. Almost all the objective functions in trajectory
optimization applications can be written in this form. For
example, smoothness can be written as the sum of total
curvature, snap, or jerk of each piece, and the end-point cost
is only related to the last piece.

B. Goal-Reaching of Articulated Robot Arms

The position of UAV at any instance s on the ith Bézier
curve is I(s)Xi, which is a linear function of decision variable
Xi and thus x. However, more general problem settings
require non-linear relationships, of which a typical case is
articulated robot arms as illustrated in Figure 2. Consider the
problem of multiple interacting robot arms in a shared 3D
workspace. Each arm’s Cartesian-space configuration at the
ith time instance is represented by a triangle mesh with a
set of vertices concatenated into the vector xi. However, we
need to maintain the corresponding configuration θi, where ∣θi∣
is the degrees of freedom of each arm (DOF). Our decision
variable is θ ∈ RDOF×N , each xi is a derived variable of
θi via the forward kinematics function xi ≜ FK(θi), and
a linear interpolated Cartesian-space trajectory is: Xi(θ) =
{xi, xi+1} = {FK(θi), FK(θi+1)}. We further define the
velocity and acceleration in configuration space as:

Vi(θ) ≜ θi+1 − θi Ai(θ) ≜ θi+2 − 2θi+1 + θi.
In summary, the multi-arm goal-reaching problem can be
formulated as:

argmin
θ,∆t

∑
i

O(Xi(θ),∆t) (4)

s.t. d(hull(Xi(θ)), hull(Z)) ≥ 0 ∀i = 1,⋯,N − 1

d(hull(Xi(θ)), hull(Xj(θ))) ≥ 0 ∀i, j ∈ different arm
∥Vi(θ)∥ ≤ vmax∆t ∀i = 1,⋯,N − 1

∥Ai(θ)∥ ≤ amax∆t
2

∀i = 1,⋯,N − 2.

Equation 4 takes a more general form than all the previous
problems, and we would propose our variant of ADMM
algorithm assuming this formulation. If our method is applied
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to UAV trajectory optimization, we can plug in the degenerate
relationship FK(θi) = θi.

Remark 3.1: By using separating planes to formulate col-
lision constraints, we assume each robot link is convex. This
treatment allows us to use only one separating plane between
a pair of robot links. If concave features of robot links
must be modeled accurately, then robot link must be further
decomposed into convex parts, and a separating plane must be
used between each pair of parts, leading to more separating
planes and iterations.

IV. ADMM-TYPE TRAJECTORY OPTIMIZATION

ADMM is a variant of the Augmented Lagrangian Method
(ALM) that does not update the penalty parameter. The main
advantage of ADMM is that, by introducing slack variables,
each substep consists of either a small problem involving the
non-stiff part of the objective function or a large problem
involving the stiff part of the objective function or constraints.
As a result, the ADMM solver allows larger timestep sizes to
be taken for the non-stiff part, leading to faster convergence.
Although ADMM has only first-order convergence rate, it can
quickly approximate a locally optimal solution with moderate
accuracy, which is sufficiently for trajectory optimization.

X0X1

X2

X3

X4

X̄0

X̄1

X̄2

X̄3

X̄4

Fig. 3: ADMM main-
tain two sets of vari-
ables Xi and X̄i. Xi
satisfies all constraints
throughout optimization,
while X̄i can violate con-
straints during intermedi-
ary iterations. On conver-
gence, however, both Xi
and X̄i satisfy all con-
straints.

ADMM handles inequality con-
straints by reformulating them as
indicator functions, but we are
handling possibly non-convex con-
straints for which projection opera-
tors, which is associated with indi-
cator functions, do not have closed-
form solutions. Instead, we follow
our prior work [9] and rely on a
log-barrier relaxations with non-zero
duality gap. For example, if we
have a hard constraint g(x) ≥ 0
where g is some differentiable func-
tion, then the feasible domain can
be identified with the finite sub-
level set of the log-barrier function:
−log(g(x)). We apply this tech-
nique to the velocity and accelera-
tion limits. A similar technique can
be used for collision constraints with
the help of a separating plane, which
is illustrated in Figure 1 as nT ●+d = 0 (n is the plane normal,
d is the position, and ● is the arbitrary point on the plane).
Since we only consider distance between convex hulls, two
convex hulls are non-overlapping if and only if there is a
separating plane such that the two hulls are on different sides.
We propose to optimize the parameters of the separating plane
(n, d) as additional slack variables. As a result, the collision
constraints become convex when fixing n, d and optimizing the
trajectory alone. Applying this idea to all the constraints and
we can transform Equation 4 into the following unconstrained
optimization:

argmin
θ,∆t,di,dij
∥ni∥,∥nij∥=1

L(θ,∆t, ni, di, nij , dij) ≜∑
i

O(Xi(θ),∆t)−

γ∑
i

log(vmax∆t − ∥Vi∥) − γ∑
i

log(amax∆t
2
− ∥Ai∥)−

γ∑
i

⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈Xi

log(nix(θ) + di) + ∑
z∈Z

log(−niz − di)

⎤
⎥
⎥
⎥
⎥
⎦

−

γ∑
ij

⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈Xi

log(nijx(θ) + dij) + ∑
x∈Xj

log(−nijx(θ) − dij)

⎤
⎥
⎥
⎥
⎥
⎦

, (5)

where γ is the weight of log-barrier function that can be tuned
for each problem to control the exactness of constraint satis-
faction. We use the same subscript convention as Section III.
Specifically, for ith trajectory piece Xi and the obstacle Z, we
introduce a separating plane nTi ● +di = 0. For the pair of ith
and jth trajectories pieces that might collide, we introduce a
separating plane nTij ● +dij = 0.

Equation 5 is a strongly coupled problem with six sets
of decision variables, where the constraints (or log-barrier
functions) and the objective O are added up. However, these
two kinds of functions have very different properties. The log-
barrier functions are “stiff” and do not have a Lipschitz con-
stant, which could generate arbitrarily large blocking gradients
near the constraint boundaries, but the objective O is well-
conditioned, oftentimes having a finite Lipschitz constant. Our
main idea is to handle these functions in separate subproblems.

Algorithm 1: AM

Input: θ0,∆t0, (ni, di )
0
, (nij , dij )

0

1: for k = 0,1,⋯ do ▷ Update θ,∆t
2: θk+1,∆tk+1

≈ argmin
θ,∆t

L(θ,∆t, nki , d
k
i , n

k
ij , d

k
ij)

3: for collision constraint between ith piece of trajectory and
environment do ▷ Optimize separating plane

4: (ni, di )
k+1

≈ argmin
∥ni∥=1,di

L(θk+1,∆tk+1, ni, di, n
k
ij , d

k
ij)

5: for collision constraint between ith and jth piece of trajectory
do

6: (nij , dij )
k+1

≈ argmin
∥nij∥=1,dij

7: L(θk+1,∆tk+1, nk+1
i , dk+1

i , nij , dij)

A. Alternating Minimization (AM)

Before we describe our ADMM-type method, we review
the basic alternating minimization scheme. AM has been used
in trajectory optimization to handle time-optimality [38] and
collision constraints [39]. A similar method can be applied
to minimize Equation 5 that alternates between updating the
separating plane ni, di, nij , dij and the robot configurations θ
as outlined in AM 1. AM can be used along with ADMM
while being easier to analyze. Prior work [39] did not provide
a convergence analysis and Wang et al. [38] setup the first
order convergence for a specific, strictly convex objective
function where each minimization subproblem is a single-
valued map. In the appendices of our arxiv version [40], we
establish the convergence of AM 1 for twice-differentiable
objective functions with plane normals ni, nij constrained to
the unit circle/sphere. In the next section, we will combine
AM and ADMM, specifically we update robot configurations
θ using ADMM and update separating planes ni, di, nij , dij
using AM.
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Algorithm 2: ADMM with Stiffness Decoupling

Input: θ0,∆t0,∆t̄0i , X̄
0
i , λ

0
i , (ni, di )

0
, (nij , dij )

0

1: for k = 0,1,⋯ do ▷ Update θ,∆t, X̄i, λi
2: θk+1,∆tk+1

≈ argmin
θ,∆t

L(θ,∆t,∆t̄i, X̄
k
i , λ

k
i , n

k
i , d

k
i , n

k
ij , d

k
ij)

3: for ith piece of trajectory do
4: ∆t̄k+1

i , X̄k+1
i ≈ argmin

∆t̄i,X̄i

5: L(θk+1,∆tk+1,∆t̄i, X̄i, λ
k
i , n

k
i , d

k
i , n

k
ij , d

k
ij)+

6: %
2
∥X̄i − X̄

k
i ∥

2

7: λk+1
i ← λki + %(Xi(θ

k+1
) − X̄k+1

i )

8: Λk+1
i ← Λki + %(∆t

k+1
−∆t̄k+1

i )

9: for collision-free constraint between ith piece of trajectory
and environment do ▷ Optimize separating plane

10: (ni, di )
k+1

≈ argmin
∥ni∥=1,di

11: L(θk+1,∆tk+1,∆t̄k+1
i , X̄k+1

i , λk+1
i , ni, di, n

k
ij , d

k
ij)

12: for collision-free constraint between ith and jth piece of
trajectory do

13: (nij , dij )
k+1

≈ argmin
∥nij∥=1,dij

14: L(θk+1,∆tk+1,∆t̄k+1
i , X̄k+1

i , λk+1
i , nk+1

i , dk+1
i , nij , dij)

B. ADMM with Stiffness Decoupling

The key idea behind ADMM is to treat stiff and non-stiff
functions separately by introducing slack variables. Specifi-
cally, we introduce slack variables X̄i for each i = 1,⋯,N
and transforms Equation 5 into the following equivalent form:

argmin
θ,∆t,∆t̄i,X̄i

di,dij ,∥ni∥,∥nij∥=1

∑
i

[O(X̄i,∆t̄i)]− (6)

γ∑
i

log(vmax∆t − ∥Vi∥) −∑
i

γ log(amax∆t
2
− ∥Ai∥)−

γ∑
i

⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈Xi

log(nix(θ) + di) + ∑
z∈Z

log(−niz − di)

⎤
⎥
⎥
⎥
⎥
⎦

−

γ∑
ij

⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈Xi

log(nijx(θ) + dij) + ∑
x∈Xj

log(−nijx(θ) − dij)

⎤
⎥
⎥
⎥
⎥
⎦

s.t. Xi(θ) = X̄i ∧∆t = ∆t̄i.

By convention, we use a bar to indicate slack variables, i.e.
V̄i(s) = Ȧ(s)X̄i and Āi(s) = Ä(s)X̄i.

Remark 4.1: We choose to have all slack variables reside in
Cartesian space. As a result, if non-linear forward kinematics
functions are used, ADMM must handle nonlinear constraint
Xi(θ) = X̄i.
ADMM proceeds by transforming the equality constraints in
Equation 6 into augmented Lagrangian terms. We arrive at the
following augmented Lagrangian function:

L(θ,∆t,∆t̄i, X̄i, λi, ni, di, nij , dij) ≜∑
i

O(X̄i,∆t̄i)−

γ∑
i

log(vmax∆t − ∥Vi∥) − γ∑
i

log(amax∆t2 − ∥Ai∥)−

γ∑
i

⎡
⎢
⎢
⎢
⎢
⎣

∑

x∈Xi

log(nix(θ) + di) + ∑
z∈Z

log(−niz − di)

⎤
⎥
⎥
⎥
⎥
⎦

−

γ∑
ij

⎡
⎢
⎢
⎢
⎢
⎣

∑

x∈Xi

log(nijx(θ) + dij) + ∑
x∈Xj

log(−nijx(θ) − dij)

⎤
⎥
⎥
⎥
⎥
⎦

+

∑

i

%

2
∥Xi(θ) − X̄i∥

2
+ λTi (Xi(θ) − X̄i)+

∑

i

%

2
∥∆t −∆t̄i∥

2
+ΛTi (∆t −∆t̄i), (7)

where % is the penalty parameter, λi is the augmented La-
grangian multiplier for X̄i. We can now present our ADMM
algorithm seeking stationary points of Equation 7. Each itera-
tion of our ADMM 2 is a five-way update that alternates be-
tween {θ,∆t},{∆t̄i, X̄i},{λi,Λi}, (ni, di ) , (nij , dij ). Note
that our objective function only appears in the {∆t̄i, X̄i}-
subproblem, which does not involve any stiff, log-barrier
functions. Therefore, ADMM 2 achieves stiffness decoupling.

Remark 4.2: For each optimization subproblem of ADMM
2, we assume that the decision variable is initialized from
last iteration. In the appendices of our arxiv version [40],
we show that subproblems in AM 1 and ADMM 2 only
need to be solved approximately. Specifically, we update
θ,∆t, ni, di, nij , dij using a single (Riemannian) line search
step, and we update ∆t̄, X̄ using a linearized function L.
For brevity, we denote these approximate oracles using an ≈
symbol.

Remark 4.3: ADMM always maintains two representations
of the trajectory, Xi and X̄i, where Xi is used to satisfy the
collision constraints and X̄i (the slack variable) focuses on
minimizing the objective function O at the risk of violating
the collision constraints, as illustrated in Figure 3. It is know
that using slack variables can loosen constraint satisfaction. As
a result, we choose to formulate collision constraints and other
hard constraints on Xi instead of X̄i, so that all the constraints
can be satisfied using a line-search step on Xi variables.
For collision constraints in particular, we inherit the line-step
technique from [9] that is safe-guarded by CCD. The CCD
procedure ensures that there always exists a separating plane to
split each pair of convex objects and the Lagrangian function
L always takes a finite value. On convergence, however, the
two representations coincide and both collision-free and local
optimal conditions hold.

Remark 4.4: When updating the separating plane, the
normal vector must be constrained to have unit length. These
constraints can be reparameterized as an optimization on
SO(3). Specifically, given the current solution denoted as
ncurrij with ∥ncurrij ∥ = 1, we reparameterize nij by pre-
multiplying a rotation matrix R = exp(r) by ncurrij , where we
use the Rodriguez formula to parameterize a rotation matrix as
the exponential of an arbitrary 3-dimensional vector r. Instead
of using nij as decision variables, we let nij = exp(r)ncurrij

and use r as our decision variables. Whichever value r takes,
we can ensure ∥nij∥ = 1 (we refer reads to [42] for more
details).

V. EVALUATIONS

Our implementation uses C++11. Experiments are per-
formed on a workstation with a 3.5 GHz Intel Core i9
processor. For experiments, we choose a unified set of pa-
rameters vmax = 2m/s, amax = 2m/s2 for UAVs (resp.
vmax = 0.1m/s, amax = 0.1m/s2 for articulated bodies),
w = 108, % = 0.1 unless otherwise stated. We use the same
weight, γ = 10, for all the log-barrier functions. Although
fine-tuning γ separately for each log-barrier function can lead
to better results, we find the same γ = 10 achieves reasonably



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH 10, 2022

102 103 1040

50

100

150

200 ADMM
Safe-Corridor
P-IPM

Computational Time(ms)

#T
ra

je
ct

or
y

(a) (c) (f)

(b) (d)

(e)

(g)

Fig. 4: Examples of trajectories generated by Safe-Corridor [41] (blue) and ADMM 2 (red) for a single UAV in complex environments:
indoor flight (a-c), outdoor flight (a-f). (g): The distributions of computational time of ADMM 2, P-IPM [9], and Safe-Corridor [41] over
600 trajectories computed for a synthetic environment in which we compute 600 random initial trajectories using RRT-connect.
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Fig. 5: Convergence history of various algorithms for the example
in Figure 4 (f), comparing AM, ADMM, and Newton-type method
(P-IPM) in terms of wall-time (a) and #Iterations (b).

good results over all examples. We use a locally supported
log-barrier function as done in our prior work [9], which is
active only when the distance between two objects is less than
0.1m for UAVs (resp. 0.04m for articulated bodies). Further,
we set our clearance distance to be 0.1m for UAVs (resp.
10−3m for articulated bodies), which can be plugged into CCD
used by our line-search algorithm. Our algorithm terminates
when ∥∇θk+1L∥∞ < ε and we choose ε = 10−2 for UAVs
(resp. ε = 10−1 for articulated bodies). By comparing with
our prior work [9], we demonstrate the ability of ADMM
in terms of resolving stiff-coupling issues and boosting the
overall perform. We further compare with prior works [8, 41]
to highlight the robustness of our approach.

Fast Separating Plane Update: We found that iterative
separating plane updates is a major computational bottleneck.
Fortunately, mature collision detection algorithms such as the
Gilbert–Johnson–Keerthi (GJK) algorithm [43] can quickly
return the optimal separating direction. We emphasize that
our separating planes minimizing the soft log-barrier penalties
do not match the separating directions returned by GJK in
general. However, we found that the separating plane return
by GJK oftentimes leads to a reduction in the Lagrangian
function, while being orders of magnitude faster to compute
due to their highly optimized implementation. Therefore, we
propose to use the GJK algorithm for updating the separating
planes. After each iteration of of either AM 1 or ADMM 2, we
check whether the Lagrangian function L is decreasing. If L
increases, we fallback to our standard log-barrier functions so
the overall algorithm conforms to our convergence guarantee.

Trajectory Length(m) / Flying Time(s)
Example AM ADMM P-IPM [9] Safe-Corridor [41]

(a) 16.0/9.6 16.0/9.6 16.1/9.7 18.0/14.0
(b) 17.9/10.4 17.9/10.4 18.1/10.6 19.0/11.3
(c) 13.2/8.9 13.2/9.0 13.8/9.1 14.6/11.7
(d) 39.1/21.8 39.2/21.9 39.2/21.8 47.2/25.1
(e) 66.8/44.7 66.5/44.6 68.1/45.5 71.2/57.9
(f) 67.3/62.8 67.2/62.8 70.1/65.3 74.6/74.1

Computational Cost(ms)
Example AM ADMM P-IPM [9] Safe-Corridor [41]

(a) 388 45 1.0K 41
(b) 133 34 2.8K 50
(c) 313 123 7.8K 79
(d) 8.7K 938 34.3K 51
(e) 39.0K 6.4K 175.0K 864
(f) 92.9K 18.9K 420.1K 5.6K

TABLE I: The quality of results in terms of trajectory length/flying
time and computational cost of the three methods (ours, P-IPM [9],
and Safe-Corridor [41]) for the six examples of Figure 4.

Single-UAV: We first show six examples of trajectory
optimization for a single UAV in complex environments as
illustrated in Figure 4. For each example, we compare our
method against two baselines [9, 41]. We initialize all three
methods using the same feasible trajectory that is manually
designed. Our AM 1 takes from 133 to 93K(ms) to con-
vergence and our ADMM 2 takes 34 to 18.9K(ms), as
compared with our prior work [9] taking 1K to 420K(ms).
The convergence history for three of the algorithms are
summarized in Figure 5. Although the convergence speed is
comparable to P-IPM in terms of number of iterations, our
two methods (AM and ADMM) clearly outperform in terms
of computational time. By not restricting the trajectory to
precomputed corridors as done in [28, 44, 45, 41, 46], our
method allows a larger solution space and returns a shorter
trajectory. We summarize the quality of trajectory as computed
by three methods in Table I. Finally, we conduct large-scale
experiments using a synthetic problem illustrated in Figure 4g,
where we randomly compute feasible initial trajectories using
RRT-connect for 600 times and compare the computational
speed of ADMM 2 and [9, 41]. The resulting plot Figure 4g
shows more than an order of magnitude’s speedup over P-IPM
using stiffness decoupling, with our trajectories having similar
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Fig. 6: Multiple UAV in complex environments, both with two groups of UAVs switching positions without (a) and with (b) obstacles. (c):
The distributions of computational time of ADMM 2 and Penalty-Method [8] over 600 trajectories computed for a synthetic environment in
which we randomly generate initial trajectories for the 4 UAVs in different homotopy classes.

quality (mean/variance trajectory length 14.7/2 × 10−2 using
ADMM versus 15.0/4 × 10−2 using P-IPM, and mean/varance
flying time 12.7/2 × 10−5 using ADMM versus 12.8/4 × 10−5

using P-IPM). Although the computational speed of Safe-
Corridor [41] is slightly faster, our results give shorter tra-
jectories (mean/variance trajectory length 15.9/8 × 10−2 and
mean/variance flying time 14.8/3 × 10−2 using [41]).

Multi-UAV: We assume the trajectory of each UAV is
represented by composite Bézier curves with degree M = 5.
We use a bounding-volume hierarchy and only add collision
constraints when the distance between two convex hulls are
less than the activation distance of log-barrier function (0.1m).
Note that this abrupt change in number of collision constraints
will not hinder the convergence of ADMM because it can hap-
pen at most finitely many times. We compute initial trajectories
using RRT connect. Our ADMM algorithm minimizes the jerk
of each trajectory with time optimality as our objective func-
tion O(X̄i,∆t̄i). Figure 6 shows two challenging problems.
We compare our method with penalty method [8], which uses
soft penalty terms to push trajectories out of the obstacles.
This work is complementary to our method, which allows
initial guesses to penetrate obstacles but cannot ensure final
result to be collision-free. Instead, our method must start from
a collision-free initial guess and maintain the collision-free
guarantee throughout the optimization. In Table II, we compare
the quality of solutions and computational cost of these two
methods. We have also conducted a large-scale comparison
with penalty method [8] as illustrated in Figure 6c, where we
randomly generate 600 initial trajectories that cover different
homotopy classes. As summarized in Figure 6c, our method
generates trajectories with faster computing time and a 100%
success rate, while [8] can only achieve a success rate of 53%.
Our results have higher quality than [8], e.g. the mean/variance
of trajectory length 77.8/17.8 (ours) vs 80.1/21.3 ([8]) and
flying time 11.3/0.4 (ours) vs 20.6/8.0 ([8]).

Trajectory Length(m) / Flying Time(s) / Computational Cost(ms)
Example ADMM Penalty-Method [8]

(a) 152.68/7.84/515 169.34/14.48/844.49
(b) 71.33/14.57/2527 89.82/20.73/584.89

TABLE II: The quality of results in terms of trajectory length/flying
time and computational cost, comparing our method and Penalty-
Method [8].

Articulated Robot Arm: We highlight the performance
of our method via an example involving two arms. We
approximate each robot link as a single convex object to reduce
the number of separating planes. Our example is inspired by
prior work [47], as illustrated in Figure 7, where we have two
KUKA LWR robot arms (each with 8 links) switch positions
of their end-effectors. From an initial trajectory computed with
the length 6.38m using RRT-connect, our stiffness-decoupled
ADMM method can easily minimize acceleration of end-
effects obtaining a trajectory with the length 1.63m in 16s.
The convergence history is shown in Figure 8.

(a) (b)

Fig. 7: Trajectory optimization for two KUKA LWR robot arms
switching end-effector positions. (a): initial trajectory via RRT-
connect; (b): optimized trajectory.
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Fig. 8: Convergence history for the example in Figure 7, comparing
AM and stiffness-decoupled ADMM in terms of wall-time (a) and
#Iterations (b).

VI. CONCLUSION & LIMITATION

We propose a variant of ADMM-type solver for trajectory
optimization. We observe that the limited efficacy of our prior
work [9] is mainly due to the stiff log-barrier functions corre-
sponding to various hard constraints. Therefore, we propose to
decompose stiff and non-stiff objective function terms using
slack variables, while using additional constraints to ensure
their consistency. ADMM was originally applied to convex
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optimizations and we establish its convergence guarantee un-
der non-convex objectives and constraints that arise from UAV
and articulated robot kinematics. Our experiments confirm
that ADMM successfully resolves stiff-coupling issues and
achieves tens of times’ speedup over Newton-type algorithms.
The major limitation of our method is the requirement of a
strictly feasible initial trajectory and our convergence rate can
also be dependent on the initial guess. As a result, our method
cannot be used for receding-horizon settings. If the horizons
are truncated, then there can be unforeseen obstacles, with
which collisions are ignored, resulting in infeasible trajectories
in future horizons. Finally, the convergence of ADMM-type
solvers for general control of nonlinear dynamic systems [32]
remains an open question.
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