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Abstract— We propose a decentralized, learning-based so-
lution to the challenging problem of unlabeled multi-agent
navigation among obstacles, where robots need to simultane-
ously tackle the problems of goal assignment, local collision
avoidance, and navigation. Our method has each robot infer
their desired action by communicating with each other as well
as a set of position-fixed routers. The inference is carried out
on a graph neural network (GNN) with both robot and router
nodes. We train our GNN using imitation learning on a small
group of robots, where we modify the centralized version of the
concurrent goal assignment and planning algorithm (CAPT) as
our expert. By sharing weights among all robots and routers,
our model can scale to unseen environments with any number of
possibly kinodynamic agents during test time. We have achieved
a success rate of 91.2% and 85.6% for point and car-like robots,
respectively. Source code will be publicly available upon the
publication of the work.

I. INTRODUCTION

Multiple ground and aerial robots can be deployed to
perform a row of tasks in unknown environments, including
surveillance, coverage, house cleaning, infection control,
search & rescue, and warehouse automation. The emerging
low-cost camera, lidar, sonar, and thermal sensors make these
robots more accessible and affordable, but coordinating the
robots can become a single point of failure, which is the
crucial limitation of centralized methods [1, 2]. Decentralized
algorithms [3, 4] are favorable in these settings, where
both robot communications and motions are asynchronous.
However, environments with rich obstacles, and the limited
capability of sensors, make the design of a satisfactory
decentralized method a great challenge to solve.

Navigation is a common (sub-)task in the above mentioned
application scenarios. Trajectories should be generated for
each robot to reach their goal positions through obstacle-
rich environments in a collision-free manner. In this work,
we consider the problem of unlabeled navigation where the
robot-to-goal assignment is one-to-one but the matching is
arbitrary. Unlabeled navigation meets the requirement of
most surveillance, coverage, search and rescue tasks. It has
been shown in [5, 6] that unlabeled navigation tasks are
theoretically easier to solve than their labeled counterparts,
which is intuitive due to the additional degrees of freedom
to assign robots to their nearest goals and such assignments
must be collision-free [7]. However, theoretical results for
unlabeled navigation are derived for centralized algorithms,
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Fig. 1: Our method routing two robots (solid red / blue circles)
along the solid line to target positions (hollow circles) in an
obstacle-rich environments (gray). Each robot can communicate
with nearby routers within its sensor range. Router-router com-
munication can only happen along designated edges. A possible
outcome could be the red and blue paths.

while few results are available for decentralized settings.
This is presumably due to the intricate coordination of
assigned goals among robots. The prior work Turpin et al.
[7] introduces two versions of CAPT, a centralized method,
C-CAPT, and a decentralized one, D-CAPT. However, D-
CAPT works by assuming no obstacles in environments.

Our work is inspired by prior efforts in applying machine
learning to solve labeled robot navigation problems [8, 9, 10,
11]. Methods in [8, 9] assume environments and robots are
discretized on a grid and centralized conflict-based search
algorithms [1, 2] are used to computed groundtruth data.
Methods in [10, 11] can be applied to environments of
irregular geometric shapes and they use groundtruth-free
deep reinforcement learning. However, they only tackle local
collision avoidance and do not handle obstacle-rich envi-
ronments. Independently, computer vision researchers have
recently applied GNNs to track or predict the trajectories of
social agents [12, 13, 14]. By allowing agents to commu-
nicate for multiple rounds, GNNs exhibit consistently better
results than their no-communication baselines. This strategy
has been used in [8] to solve labeled navigation tasks.

Main Result: We present the first learning-based approach
to solve the unlabeled and multi robot navigation problem
in obstacle-rich environments, as illustrated in Figure 1. Our
main idea is to use GNNs with two types of nodes: robots
and routers. Each node is equipped with an inference module
that processes hidden information. By communicating the
hidden information with neighboring robots or router nodes,
the goal assignment problem is approximately solved. The
placement and communication with routers also allow us



to handle obstacle-rich environments where local sensing
information or peer-to-peer communications are insufficient
for discovering hidden goal positions or traveling through
detours. We use an adapted C-CAPT [7] as the expert to
allow robots travel along router-graphs, while the inference
modules are trained using imitation learning. By sharing
weights among all routers and robots, our method can
further scale to unseen environments, arbitrary-sized groups
of robots, and different robot modalities during test time.

We have evaluated our method in maze-like environments
with point or car-like robots. After training on a desktop
machine for ∼ 100hr with a group of 5−15 robots and 7−18
routers, we achieve a success rate of 91.2% for point robots
and 85.6% for car-like robots.

II. RELATED WORK

Our work is closely related to prior research on
(de)centralized multi-agent navigation and learning-based
multi-agent navigation.

(De)centralized multi-agent navigation finds collision-
free agent paths to reach their goals, where the robot-to-
goal assignments are arbitrary in unlabeled problems and
fixed otherwise. Centralized navigation algorithms assume
that the planner has the complete information of agent and
obstacle positions, so that agents can be coordinated via
recursive graph search. For labeled problems, classical results
show that feasibility checks for some graph search algorithms
are polynomial-time solvable [15], while finding optimal
solutions are intractable in general [16]. Unlabeled problems
endow a larger solution space, for which finding distance
optimal solutions is tractable [17, 18] using centralized
algorithms. It is note-worthy that all these algorithms require
a discretization of environments into a graph. By comparison,
decentralized navigation algorithms assume robots make
(a)synchronous decisions based on information of their local
neighborhood. Some works [19] allow robots to communi-
cate with each other, while others [3, 4] solely rely on sensor
inputs. Monte Carlo Tree Search has also been used for a
multi-agent task allocation problem [20]. Turpin et al. [7]
proposed a decentralized and a centralized multi-agent navi-
gation algorithm respectively, where the decentralized one is
to solve the unlabeled problem by allowing nearby robots to
exchange their assigned goals. Decentralized algorithms have
superior flexibility and convenience for system integration
and can be applied to irregular-shaped environments. On the
downside, however, robots are not coordinated and can get
stuck in locking configurations, especially in obstacle-rich
environments. To side-step this problem, we introduce router
nodes to guide robots through obstacles.

Learning-based multi-agent navigation algorithms have
drawn significant attention thanks to the recent advances
in multi-agent reinforcement learning (MARL [21]) and
GNNs. MARL focuses on scalable, simultaneous learning
of many policies deployed on a large group of agents using
consensus optimization [22, 23]. The agents’ goals can be
cooperative [24], competitive, or mixed [25, 26]. These
algorithms have been applied to solve labeled multi-agent

TABLE I: Symbol Table.

Variable Definition

N #robots
M #routers
H horizon
H0 communication interval
E,Ef work/freespace
a, r, ti ith robot/router/target
x position
ck config at kth step
f discrete transition
ui,k, u

∗
i,k analytic/learned control

Iij goal assignment
dl communication range
ds sensing range
Ti ith triangle
L loss function
Gr =< Vr,Er > skeleton-graph
Ḡr =< V̄r, Ēr > router-graph
Gr,a,t =< Vr,a,t,Er,a,t > augmented router-graph
ek, ēk Euclidean/graph error
ēijk path on graph
M control modulator
N , θa,r,u,M neural-net/parameters
hk hidden state at kth step
∆x relative position
T one-hot entity type
Iireach robot/target reach indicator
β, γ mixing ratio/attenuation
D dataset
D,D0 #datum (supervised/imitation)
L LiDAR sensor data

navigation problems [10, 11, 27, 28] where all robots share
the same objective type of reaching their respective goal
positions, in which case a same policy can be shared among
all robots. This strategy significantly reduces the number of
learnable parameters and side-steps the scalability challenge
of MARL. It is note-worthy that all these methods learn
local controllers that can stuck in obstacle-rich environments,
so they are only evaluated in (nearly) obstacle-free settings.
Robots must learn to communicate in order to avoid locking
configurations, for which GNN has become a standardized
parametrize model [8, 29]. GNN extends the notion of con-
volution to unstructured settings via spatial [30] or spectral
[31] graph-convolution operators. In particular, the method
in [8] is very similar to our approach. By training GNNs
for robot coordination using imitation learning, Li et al.
[8] showed that robots can navigate through obstacles in
grid-discretized environments to reach labeled goals. Instead,
our method use two types of GNN nodes for robots and
routers to simultaneously solve goal-assignment and obstacle
avoidance problems, and our method does not rely on a grid-
based discretization.

III. UNLABELED ROBOT NAVIGATION PROBLEM

The problem we address in this work is the unlabeled
multi-agent navigation problem, with the assumption that
the number of robots and targets are equal. Our goal is to



compute a path for each robot to reach a target region without
any collisions in a decentralized manner. Specifically, we
assume a 2D workspace E with freespace Ef specified by
cluttered obstacles. Our goal is for a set of N robots a1,⋯,N

to reach another set of N target positions t1,⋯,N .
We denote the configuration of ai at the kth time instance

as ck(ai) and center-of-mass position as x(ck(ai)). In order
for routing the robots through obstacle-rich environments, we
use another set of M stationary routers denoted as r1,⋯,M

with positions of rj being x(rj). Note that the position
and number of routers are not provided but computed using
our algorithm. Following the setting of reciprocal velocity
obstacles (RVO) based navigation method [3, 10, 11], which
guarantees safe and oscillation-free motions of each agent
for real-time multi-agent navigation, we do not assume a
discrete environments so that ck(ai) and x(ri) can take any
continuous value within Ef . As compared with grid-based
routing algorithms [1, 8], continuous motions allow robot to
be easily deployed in real, cluttered environments and even
for kinodynamic robots. The robot dynamics are defined as
a discrete equation of motion ck+1(ai) = f(ck(ai), ui,k),
where ui,k is the control input and f is the discrete transition
function. The goal of unlabeled multi-agent navigation is
to find ui,k for i = 1,⋯,N and k = 1,⋯,H , where H is
the control horizon, such that the positioning error ek =

∑
N
i=1∑

N
j=1 Iij∥x(ck(ai)) − tj∥2 is zero when k = H + 1 and

robot motions are collision-free. Here Iij is the indicator
function for the ith robot to be assign to reach tj . Table I
summarizes all the symbols used in our paper.

Pivotal to long-distance navigation and target assignment
is our communication module between agents, routers, and
targets. We assume that robots are equipped with two ca-
pabilities: A long-range communication can be realized by
WiFi and used for exchanging information between robots
and routers for goal-assignment and waypoint routing; A
short-range sensing is realized by LiDAR and used for
local collision-avoidance. The distance limits for long-range
communication and short-range sensing, are denoted as dl
and ds, such that communication or sensing can happen if
and only if ∥xk(ai)−xk(aj)∥ ≤ dl,s. We further assume that
communications between routers can be established without
distance limits.

Our learning-based navigation algorithm consists of three
components. First, we propose a method to compute the
number and position of routers with the help of the medial
axis of Ef (Section IV). The router-graph is then constructed
by connecting routers along the medial axis. Second, we
propose a modified C-CAPT algorithm with graph-distance
to solve unlabeled robot navigation problems in a centralized
manner (Section V). Finally, a GNN is trained to imitate
the modified C-CAPT, achieving decentralized navigation
(Section VI).

IV. ROUTER-GRAPH CONSTRUCTION

Constructing the Euclidean, router-graph Gr =< Vr,Er >

is an essential step to guide local-communication robots
through obstacle-rich environments, where Vr is the vertices

of Gr corresponding to the router positions x(ri) and Er is
the set of edges and we require Er ⊂ Ef . We consider a
router-graph cost-efficient if the number of routers is kept
to a minimal level, and a router-graph is robust if any point
x ∈ Ef is visible from at least one routers on the graph.

Fig. 2: We illustrate the edge set
V̄r for skeleton graph (red), and edges
are inserted by constrained Delaunay
triangulation, segmenting the environ-
ment into triangles (blue). After sim-
plification, we derive the router-graph
in Figure 1.

We assume that the
2D environment bound-
aries are discretized using
piecewise linear elements.
Such discretization allows
robust algorithms to com-
pute a medial axis trans-
form [32] as well as a De-
launay triangulation [33].
The medial axis transform
returns a super-graph de-
noted as Ḡr =< V̄r, Ēr >

that represents the “skele-
ton” of Ef . We then com-
pute a constrained Delau-
nay triangulation that segment Ef into a set of R triangular
regions Ef = ⋃

R
i=1 Ti, such that each edge Ēr is an edge

of some Ti, as illustrated in Figure 2. We claim that Ti is
visible from x ∈ Vr if the convex hull of Ti and x belongs
to Ef . We then greedily simplify Ḡr. We remove x ∈ Ḡr if
all the visible triangles remain visible after the removal. If
no further simplification is possible, we set Vr ← V̄r. Next,
we connect all pairs of x,x′ ∈ Ḡr using shortest paths in Ḡr
to form Gr. This procedure is summarized in Algorithm 1.
We only allow router-to-router communication along Er.

Algorithm 1: Construct Router Graph

Input: Ef

Output: Gr
1: compute medial axis transform Ḡr
2: compute Delaunay transformation Ef = ⋃R

i=1 Ti

3: Vr ← V̄r , simplify←true
4: while simplify do
5: simplify←false
6: for x ∈ V̄r and simplify=false do
7: simplify←true
8: for i = 1,⋯,R do
9: if Ti invisible to V̄r/{x} then

10: simplify←false
11: if simplify then
12: Vr ← Vr/{x}
13: E ← ∅
14: for x,x′ ∈ Vr do
15: e←shortest-path-on-Ēr(x,x′)
16: if e ∩ V̄r/{x,x′} = ∅ then
17: E ← E ∩ {e}

V. CAPT WITH GRAPH-DISTANCE

C-CAPT is an efficient, centralized algorithm to solve
unlabeled navigation problems in environments without ob-
stacles. At any time step k, this algorithm first assign goals



to robots by solving:

Iij = argmin
Iij∈{0,1}

ek s.t.
N

∑
i=1

Iij =
N

∑
j=1

Iij = 1,

for Iij , and then use goal-directed control algorithms such as
[3, 4] to move ai to ∑N

j=1 tjIij . If no obstacle exists, Turpin
et al. [7] showed that the straight lines between x(ck(ai))
and ∑N

j=1 tjIij are intersection-free, which does not hold in
obstacle-rich cases. To side-step this problem, we propose to
use graph-distance instead of Euclidean distance. At time
step k, we first construct an augmented graph Gr,a,t by
inserting edges connecting all visible pairs of x(ck(ai)) and
x ∈ Gr, as well as all visible pairs of tj and x ∈ Gr, as
illustrated in Figure 1. Since every point in Ef is visible to
some x ∈ Vr, all robots are connected to all target points,
and we can compute the shortest path between ai and tj
restricted to Gr,a,t, the length of this path is denoted as ēijk.
We then define the error function under graph-distance as
ēk = ∑

N
i=1∑

N
j=1 Iij ēijk and solve:

Iij = argmin
Iij∈{0,1}

ēk s.t.
N

∑
i=1

Iij =
N

∑
j=1

Iij = 1, (1)

for Iij . We then use goal-directed control algorithms to
generate ui,k that moves ai to the next discrete position on
the shortest path, yielding ck+1(ai). Note that these shortest
paths can still intersect with each other and we need to mod-
ulating ui,k into M(ui,k) to avoid local collisions, which
can be done using reciprocal penalty functions [3, 4, 34].
And finally, robots’ configurations are updated as ck+1(ai) =
f(ck(ai),M(ui,k)). We summarize the modified C-CAPT
in Algorithm 2. As compared with grid-based algorithms [9,
1] and discrete graph search [2], our modified C-CAPT has
no completeness guarantee but it works reasonably well in
obstacle-rich environments with general geometric shapes.

Algorithm 2: CAPT with Graph-Distance (Graph-CAPT)

Input: Ef ,Gr, ck(a1,⋯,N), t1,⋯,N

Output: u1,k,⋯, uN,k

1: Gr,a,t ← Gr
2: for i = 1,⋯,N do
3: for v ∈ Vr do
4: if x(ck(ai)) visible from v then
5: Er,a,t ← Er,a,t∪ < x(ck(ai)), v >
6: if ti visible from v then
7: Er,a,t ← Er,a,t∪ < ti, v >
8: for i = 1,⋯,N do
9: for j = 1,⋯,N do

10: eijk ←shortest-path-on-Er,a,t(x(ck(ai)), tj)
11: solve Equation 1 for Iij
12: ui,k ← next position on path ∑N

i,j=1 Iijeijk

VI. GRAPH NEURAL NETWORK (GNN)

Our learning method consists of two stages. In the first
stage, the GNN learns to update hidden states h(ai), h(ri)
for each robot and router, respectively. We train the network
to approximate the solution of Graph-CAPT, i.e. ui,k. In

Algorithm 3: Training GNN

Input: E1,⋯,D+ID′
f

Output: θa, θr, θu
1: D← ∅, β ← 1
2: for r = 0,⋯, I do
3: for i = 1,⋯,DI(r = 0) +D′(1 − I(r = 0)) do
4: construct Gr for randomly sampled Er

5: randomly sample c1(ai)
6: for k = 2,⋯,H + 1 do
7: compute ui,k, ck(ai) by mixed policy
8: for k = 1,⋯, ⌊H/H0⌋ do
9: D← D ∪ {ck(ai), ui,kH0+1}

10: optimize ∑D+rD′
i=1 L(θa, θr, θu,Ei

f)
11: β ← βγ

the second stage, agents are routed along ui,k to reach
distinct goal positions. The modulation of ui,k to avoid
local collisions can be performed using analytical algorithms.
Learning-based second stage is also doable, for example,
using reinforcement learning [10, 11] or supervised learning
(Section VI-B), leading to an end-to-end learning-based
solution.

Our GNN is parameterized as two fully connected recur-
rent blocks Na(h,∆x,T, θa), Nr(h,∆x,T, θr) ∶ R∣h∣+5 ↦

R∣h∣, where ∣h∣ is the hidden state size. We assume Na

is deployed on robots and Nr is deployed on routers. We
further assume that each target position ti is equipped with
a processor with same communication capabilities as routers,
deployed with Nr. The weights of these two blocks, θa,r, are
shared among all robots, routers, and targets to enable scaling
to arbitrary robot swarm sizes and environment complexities
during test time. The two additional inputs to N are relative
position between communicating entities ∆x and one-hot
node type representation T. T can take five different values.
We let T = e1 if the entity is a robot and has reach some
target, and T = −e1 if the entity is a robot but has not reach
any target. T = e2 if the entity is a router. T = ±e3 if the
entity is a target (T = +e3 if the target has been reached by
a robot and −e3 otherwise). The communication has each
robot or router collect information from nearby entities. As
illustrated in Figure 4, if a robot, router, or target is located
at x, then the collected information h(x) is defined as:

hk+1(x) ≜ ∑

i∶∥ti−x∥<dl
(ti,x)∈Er,a,t

Nr(hk(ti), ti − x, e3(2Iireach − 1))+

∑

i∶∥x(ri)−x∥<dl
(x(ri),x)∈Er,a,t

Nr(hk(ri), x(ri) − x, e2)+

∑

i∶∥x(ck(ai))−x∥<dl
(x(ck(ai)),x)∈Er,a,t

Na(hk(ai), x(ck(ai)) − x, e1(2Iireach − 1)),

(2)

where Ireach is an indicator of whether ai has reached some
target. This is defined as Iireach = I( min

j=1,⋯,N
∥x(ck(ai))−tj∥ <

ds/8) where we assume the robot reaching a target when
the distance between a robot-target pair is smaller than one-
eighth the sensing range ds. Similarly, we use the following
indicator of whether a target tj has been occupied: Ijreach =
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Fig. 3: A simple case with two robot nodes and one
router node (top), and its corresponding GNN structure (right).
During each time step t, each node will calculate hsum, ∆x
and T. hsum is obtained by summarizing hidden states sent
from its neighbors in time step t − 1. ∆x is the relative
position between the node itself and the neighbor it will send
information to. T is a one-hot vector which represents the
node’s state and type. Each node encodes hsum, ∆x and T
into the hidden state for communication of time step t + 1. If
the node represents a robot, it will input hsum into a fully
connected neural network to obtain its action for the current
time step.
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Fig. 4: We illustrate the communication by plotting the informa-
tion collected by a router from two robots (solid red), one other
router, and one target (hollow red). One of the robot is of type 1
as it is close enough to a target.

I( min
i=1,⋯,N

∥x(ck(ai)) − tj∥ < ds/8). Empirically, we found

that using Ireach to explicitly notify that a target has been
occupied could avoid competing over goals when agents are
close. Figure 3 gives an illustration of our GNN structure.

A. Training GNN

Our training procedure follows the framework of data
aggregation [35]. We collect a dataset of D environments.
For each environment, we randomly sample robots’ initial
collision-free configurations c1(ai). We then run Graph-
CAPT and velocity modulation algorithm (i.e. [3] for point
robots and [4] for kinodynamic robots) for H timesteps to
generate ck(ai) and ui,k with k = 1,⋯,H+1 and i = 1,⋯,N .
The communication is mainly used for goal-assignments and
waypoint routing, where the solutions to these problems do
not change frequently. Therefore, we down-sample the data
ck(ai), ui,k temporally with a sample interval of H0 and
assume that communication can happen every H0 iterations.
Note that the down-sampled data is control signal generated
by Graph-CAPT without modulation. This is because the
modulation is used to handle local collision avoidance, which
can undergo frequent changes. On the down-sampled data,
we can emulate ⌊H/H0⌋ rounds of communications using
recurrent relationship Equation 2 and we use a single-term
loss function:

L(θa, θr, θu,E
i
f) ≜

N

∑
i=1

⌊H/H0⌋

∑
k=1

∥u∗i,kH0+1 − ui,kH0+1∥
2

u∗i,kH0+1 ≜Nu(hkH0+1(x(ai)), θu),

(3)

where we have introduce a last neural network Nu that is
deployed only on robots, converting hidden states to control
signals. We include Ei

f as a last parameter of L to indicate
datum. After pre-training in a supervised manner using D
randomized environments, we perform imitation learning via
I rounds of data-aggregation (DAgger) [35]. During the rth
round, we sample an additional set of D′ environments, on
which we execute mixed control policy M((1 − β)u∗i,k +
βui,k) to derive the aggregated training data, where β is
the mixing parameter that is progressively attenuated at a
rate of γ. The complete learning pipeline is summarized in
Algorithm 3.

B. Local Collision Avoidance

In addition to globally routing robots through environ-
ments, local collisions need to be handled. These local colli-
sions can be handled using either learning-based methods or
analytic methods (M) such as [3] for point robots and [4]
for kinodynamic robots. With a learning-based local collision
handler, our method becomes an end-to-end learning-based
solution. Specifically, we can replaceM with another neural
network NM(ui,k,L, θM) ↦ u∗i,k, where L is the LiDAR
sensor data with sensing range being ds. Fan et al. [10]
proposed to train θM using on-policy reinforcement learning.
Instead, we find that supervised learning exhibits more stable
performance. We sample a large number of randomized robot
configurations and target velocities, and then use L2-loss for
training NM to mimic the groundtruth M.

VII. EXPERIMENTS

In this Section, we describe the detailed experimental
setup, metrics, and quantitative results to demonstrate the
effectiveness and generality of our approach. All our exper-
iments are performed on a machine with 48-core, 2.50Ghz
Xeon E5-2678 CPU, and an Nvidia TITAN Xp GPU with
12GB of memory and we implement the algorithm using
Python and PyTorch. By default, we choose γ = 0.94,
dl = 700, ds = 80, D = 500, D′ = 10, I = 100, H = 500,
H0 = 20, unless otherwise specified. We train the neural
networks for 5 epochs in each DAgger [35] iteration, and all
neural networks are optimized with a learning rate of 0.001.

We create a dataset of 1000 grid-like scenes of size 700×
700, where 500 are used for training and 500 for testing. For



Fig. 5: Three different test
cases, from left to right: disk-
shaped robots with axis-aligned
obstacles (black), disk-shaped
robots (solid circles) with ir-
regular obstacles, and car-like
robots (rectangles) with regular
obstacles. The small red squares
are target locations.

each scene, we randomly generate axis-aligned obstacles for
training, but we also test irregular obstacle shapes during
testing. The robots we tested could have two different types:
holonomic disk-shaped robots and non-holonomic car-like
robots. We illustrate three exemplary settings in Figure 5.

Three metrics are employed to quantitatively evaluate
our method. We define Success-Rate (SR) as the number
of times where all robots successfully reach some target
(according to the definition of Iireach) within the control
horizon (H = 500 during training and H = 600 during test
time), averaged over all test cases. We define Reach-Rate
(RR) as the fraction of robots that have reached some target,
averaged over all collision-free test cases. Finally, we define
Trajectory-Optimality (TO) as the average trajectory length
generated by the neural network divided by the average tra-
jectory length generated by the expert Algorithm 2, averaged
over all successful test cases.

#Robot 3 5 7 9 11 13 15

SR end-to-end 0.856 0.815 0.764 0.678 0.676 0.801 0.721
RR end-to-end 0.970 0.978 0.977 0.973 0.982 0.992 0.993

SR partial-analytic 0.908 0.912 0.873 0.759 0.840 0.908 0.922
RR partial-analytic 0.965 0.979 0.978 0.965 0.983 0.990 0.993

TABLE II: Performance comparisons of the two modes of our
approach tested using different robot swarm sizes, with axis-aligned
obstacles.

#Robot 3 5 7 9 11 13 15

SR 0.912 0.912 0.905 0.883 0.864 0.815 0.773
RR 0.965 0.979 0.982 0.983 0.983 0.978 0.969
TO 1.149 1.250 1.334 1.441 1.543 1.690 1.843

TABLE III: We use 5 robots during training in regular envi-
ronments. We then use regular, seen environments for testing.
We profile the Success-Rate, Reach-Rate and Trajectory-Optimality
when generalizing to different robot swarm sizes.

#Robot 3 5 7 9 11 13 15

SR 0.894 0.888 0.889 0.892 0.871 0.803 0.753
RR 0.958 0.974 0.980 0.983 0.982 0.974 0.963
TO 1.183 1.298 1.425 1.516 1.641 1.775 1.973

TABLE IV: Same as Table III but using regular, unseen environ-
ments for testing.

#Robot 3 5 7 9 11 13 15

SR 0.838 0.830 0.832 0.831 0.791 0.752 0.642
RR 0.938 0.956 0.967 0.974 0.970 0.964 0.948
TO 1.190 1.314 1.443 1.559 1.712 1.836 2.118

TABLE V: Same as Table III but using irregular, unseen envi-
ronments for testing.
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Fig. 6: Influence of sensing ranges on the performances.
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Fig. 7: Performances with car-like robots.

A. End-to-End Versus Partial-Analytic Learning

As described in Section VI, the neural-network can be
trained in partial-analytic mode or end-to-end mode. In
partial-analytic mode, the neural-network is only responsible
for routing, while local collision avoidance is performed
using [3] or [4]. In end-to-end mode, a learning-based local
collision handler implemented by supervised learning is
concatenated to the router network. In partial-analytic mode,
the ground-truth ui,kH0+1 is the output of Algorithm 2. In
end-to-end mode, the ground-truth is generated by [3] or
[4] with the output of Algorithm 2 used as target velocities.
The velocity modulator NM is trained during the first phase
using a dataset of 1.5M randomized robot poses and ground-
truth modulated velocities. The graph networkNa,Nr is then
trained during the second phase. We compare the Success-
Rate and Reach-Rate of two modes in Table II over the 1000
test cases, where we use same number of robots and axis-
aligned obstacles for training and testing. As expected, the
analytical collision avoidance component helps to improve
the performance of our approach. But end-to-end mode only
suffers from a loss of 11.6% in terms of Success-Rate and
1% in terms Reach-Rate.



B. Effect of Sensing Range

The sensing range of WiFi, i.e. dl, plays an important role
in our approach. We investigated the effects of dl on the
performance of our approach using the same experimental
setup as Section VII-A, where the number of robots being 5.
By increasing the value of dl, we compare the changes of the
performance of our approach in Figure 6. While increasing dl
does positively affect SR and RR, which demonstrates the
necessity of communications during routing, our approach
is robust to sensing range changes when dl is larger than
half the bounding box size of the environment, where we
observe both the Success-Rate and Reach-Rate being larger
than 80%.

C. Generalization to Unseen Scenarios

Being decentralized, our GNN can inherently generalize to
different robot swarm sizes and irregular obstacles. Table III,
Table IV, and Table V summarize the performances of
our method in different scenarios where the number of
robots during testing is larger than that during training.
Our method performs consistently well in terms of Reach-
Rate. The Success-Rate in both seen and unseen, regular
environments are almost identical. But the Success-Rate
in irregular environments can drop by at most 11%. We
expect that such drop can be mitigated by adding irregular
environments to the training data. However, the Trajectory-
Optimality can deteriorate with more robots. This can be
explained by the need for more communications before move
towards the targets. The worst performance is around TO=2.1
in unseen, irregular environments, i.e. a travel distance twice
as long as the expert solution.

D. Performance Using Car-Like Robots

Our algorithm works for robots with different kinematics
and we experimented with both point-robot and car-like
robot, where we use the same governing equation as [36]
for the car-like robot. Figure 7 shows the performance when
training and testing our GNN with the same number of car-
like robots in regular environments. Note that, the higher
value of SR the better, while an as low as possible TO value
is preferred. Interestingly, there is only marginal performance
differences between disk and car robots, which demonstrates
that our pipeline is universally effective.

E. Real-world Experiments

To demonstrate the practical usage of our method, we built
a real-world multi-robot system to verify the effectiveness
of the trained network. As shown in Figure 8, we used
5 NanoRobot-ROS model with combined IMU and UWB
position sensing. To simplify the internet communication, we
simulate the decentralization process on a master computer.
The master computer sends movement commands to each
individual robots, receives positions from the positioning
systems, and recomputes new commands for robots on-the-
fly. See the attached video for more details.

VIII. CONCLUSION & DISCUSSION

We present a learning-based, unlabeled robot navigation
method in obstacle-rich environments. Our major innovation
is a GNN with two types of nodes: robots and routers. By
sharing neural network weights among robots and routers,
our GNN inherits the desirable property of scaling to ar-
bitrary robot swarm sizes and number of routers, as prior
learning-based navigation algorithms [10, 8]. Our algorithm
resembles [10] in the use of continuous configuration spaces
without grid-based discretization. As a result, arbitrary robot
dynamic models can be used. We have evaluated our algo-
rithms on various settings, such as changing robot swarm
sizes, environment sizes, robot dynamic models, and com-
munication/sensing ranges.

A major limitation of learning-based solution is the lack
of completeness guarantee. Indeed, we have only used
plain, fully-connected neural network architectures as GNN
building blocks and we expect GNN performance to be
further improved by using memory units or attention modules
over targets. We have also experimented with multi-agent
reinforcement learning at an early stage of this research,
but we found that the performance of learned GNN is
highly sensitive to the parameters for action exploration,
which requires case-by-case tuning. An additional limitation
lies in our analytical method to compute the router-graph.
Some applications require the robot swarm to adapt to an
arbitrary, pre-defined network of routers. The number of
routers computed using our method can be far from optimal
and more aggressive router placement optimizers might be
considered [37].
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