
Computational Object-Wrapping Rope Nets

JIAN LIU, Shandong University
SHIQING XIN∗, Shandong University
XIFENG GAO, Florida State University and Tencent America
KAIHANG GAO, Shandong University
KAI XU, National University of Defense Technology
BAOQUAN CHEN, Peking University
CHANGHE TU∗, Shandong University

Fig. 1. Example object-wrapping rope nets generated from input 3D surfaces using our fully automatic pipeline.

Wrapping objects using ropes is a common practice in our daily life. However,
it is difficult to design and tie ropes on a 3D object with complex topology
and geometry features while ensuring wrapping security and easy operation.
In this paper, we propose to compute a rope net that can tightly wrap around
various 3D shapes. Our computed rope net can not only immobilize the
object but also maintain the load balance during lifting. Based on the key
observation that, if every knot of the net has four adjacent curve edges then
only a single rope is needed to construct the entire net. We reformulate the
rope net computation problem into a constrained curve network optimiza-
tion. We propose a discrete-continuous optimization approach, where the
topological constraints are satisfied in the discrete phase and the geometrical

∗Co-corresponding authors: Shiqing Xin (xinshiqing@sdu.edu.cn) and Changhe Tu
(chtu@sdu.edu.cn)

Authors’ addresses: Jian Liu, Shandong University, jianliu2006@gmail.com; Shiqing Xin,
Shandong University, xinshiqing@sdu.edu.cn; Xifeng Gao, Florida State University, Ten-
cent America, gao@cs.fsu.edu; Kaihang Gao, Shandong University, zhanfangkuaile@
gmail.com; Kai Xu, National University of Defense Technology, kevin.kai.xu@gmail.
com; Baoquan Chen, Peking University, baoquan@pku.edu.cn; Changhe Tu, Shandong
University, chtu@sdu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/8-ART6 $15.00
https://doi.org/10.1145/3476829

goals are achieved in the continuous stage. We also develop a hoist plan-
ning to pick anchor points so that the rope net equally distributes the load
during hoisting. Furthermore, we simulate the wrapping process and use
it to guide the physical rope net construction process. We demonstrate the
effectiveness of our method on 3D objects with varying geometric and topo-
logical complexity. Also, we conduct physical experiments to demonstrate
the practicability of our method.

CCS Concepts: • Computing methodologies → Shape analysis.

Additional Key Words and Phrases: Euler Tour Theorem, Rope Net,
Hoisting

ACM Reference Format:
Jian Liu, Shiqing Xin, Xifeng Gao, Kaihang Gao, Kai Xu, Baoquan Chen,
and Changhe Tu. 2021. Computational Object-Wrapping Rope Nets. ACM
Trans. Graph. 41, 1, Article 6 (August 2021), 16 pages. https://doi.org/10.1145/
3476829

1 INTRODUCTION
Wrapping objects with rope nets finds many applications such as
packing, hoisting, transportation, among others. For example, when
hoisting and carrying a sculpture, tying it up with ropes and then
lifting up the ropes is historically a common practice and remains to
be an economic, safe and widely adopted solution in nowadays [Fu
et al. 2017; Nets4you 2019; Sageman-Furnas et al. 2019; Usnet 2019;
Wan et al. 2020]. Figure 2 shows a few real-world examples of tightly
wrapped rope nets. However, planning and tying up such object-
wrapping rope nets, with the requirements of tightness, load balance

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

https://doi.org/10.1145/3476829
https://doi.org/10.1145/3476829
https://doi.org/10.1145/3476829

6:2 • J. Liu et al

Fig. 2. Examples of the object-wrapping rope net applications: Lifting the
furniture (left, obtained from internet public domain) and wrapping the
statue (right, courtesy of Shunk-Kender).

and simplicity, is by no means an easy exercise. It heavily relies on
human experience and can quickly frustrate a novice practitioner.

In this work, we study the problem of object-wrapping rope nets
from both geometric and physical modeling points of views. We
propose a computational method for designing rope nets satisfying
a few practical requirements. The main factor to be considered is
safeness. We require that the rope net tightly wraps the object and
evenly distributes load for safety under the hoisting scheme. While
tight wrapping confines the object movement within the rope net
as much as possible, load balancing prevents the object and the rope
from breaking. We also hope that the rope net can be composed by a
single rope and the knotting is as easy as possible. The last aspect is
economy. We stipulate that the total length of the rope is minimized.

Given a 3D object represented by a surface mesh, we introduce a
simple and robust approach to generate an object-wrapping rope
net satisfying the above requirements. A rope net is composed
of knots and curve edges wired over the surface. Our method is
based on two key design principles. First, the rope should sling over
prominent geometric or topological features of the object surface,
such as concave geometric features, forks, branches, etc., to ensure
a safe and reliable tying [Johnson 2016]. Second, we hope the rope
net could be composed with a single rope.

To make the rope net construction aware of geometric and topo-
logical features, we opt to start with a set of key loops induced by
the segmentation boundaries of Shape Diameter Function (SDF)
of the object [Shapira et al. 2007]. SDF is proven to capture well
the prominent geometric and topological features of a 3D shape.
In achieving single-rope composition, our key observation is that
a rope net can be composed with a single rope if each node has a
degree of four (e.g. has four incident curve edges). This observa-
tion has a rigorous theoretical guarantee based on the Euler Tour
Theorem [Bondy and Murty 1976].

To form an evenly distributed rope net over the surface, the sparse
key loops are connected with assistant curves while satisfying the
4-degree principle. To this end, we build a cross field constrained by
the key loop directions. The assistant curves are then constructed
from the field directions perpendicular to the key loops.

The above process amounts to a discrete-continuous optimization
of both the topology and the geometry of the curve network. While

(a) Rope net structure (b) Visual guidance
Fig. 3. (a) Our proposed new style (top-right) can provide stronger force
support for fastening the rope net on the object, while still remain to be
simple. (b) An illustration tool is provided to guide the physical rope net
construction. The pins (colored by red) are needed to perform the assembly
in practice.

the discrete phase improves the topology of the curve network by
selecting proper assistant curves, the continuous stage optimizes the
curve geometry via altering the node positions and curve shapes.

In particular, in the discrete step, we design a dedicated algorithm
to compute a sparsely distributed, coarse 4-degree initial curve net-
work over the 3D surface through solving a mixed-integer program-
ming problem. Starting with this initial curve network, we conduct
an alternating optimization of all node positions to tightly fasten ev-
ery curve edge by minimizing the length of all curve edges. During
this process, a curve edge may leave the surface but is constrained
to never penetrate the surface.
In realizing hoisting, we compute anchor points over the curve

network so that the rope net is load balanced when being lifted. We
develop a hoist planning method which chooses suitable anchors
from a set of candidates to meet safety requirements [Johnson 2016].
It minimizes the stretching stress of all curve edges subject to the
constraint of the yielding tolerance of rope. Furthermore, when the
rope net is too sparse to come up with a suitable hoisting plan, we
opt to re-optimize the curve network to add some reinforcement
loops by tracing through the regions where the stress violates the
yielding tolerance. Hence, Our method alternates between curve
network generation and anchor point selection, until a valid hoisting
plan is found.

For rope tying, we adopt twisting knot, a simple and effective knot
type for rope net composition (top-right of Figure 3a). Twisting knot
is physically firm while being easy to tie and material saving [Patil
et al. 2020]. Note that, the one-rope composition property still holds
for this twisting knot type based on rope-able Euler cycle (see Sec-
tion 5.3 for the proof). In addition, we provide an illustration tool to
demonstrate how to compose the rope net intuitively; see Figure 3b.
We demonstrate the efficacy of our method through computing

rope nets for a variety of 3D objects with complex shapes and
topology, and quantitatively evaluating themwith a series of metrics.
We also conduct physical experiments and present a prototype
application in flexible hoisting to show the practical usage of our
rope net generation. To sum up, the contributions of our work
include:

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

Computational Object-Wrapping Rope Nets • 6:3

• We solve a new problem of computational object-wrapping
rope nets with a series of practical constraints such as safeness
and economy.

• We propose a formulation of the rope net problem based on
curve network optimization.

• We devise a discrete-continuous optimization process which
optimizes both the topology and the geometry of the curve
network.

• We provide an illustration tool to guide users for rope net
composition and conduct extensive evaluations with not only
simulation but also physical experiments.

2 RELATED WORK
We first review the caging literature, which is highly related to our
rope net wrapping. Then, we review state-of-the-art quad-meshing
approaches since the layout of a quad mesh shares similarities with
our rope net structure.

3D Caging. Caging is to restrict the moving space of a target so
that it will not escape [Diankov et al. 2008]. It has been an impor-
tant topic in robotic research and is often addressed together with
grasping [Diankov et al. 2008; Rodriguez et al. 2011; Wan et al. 2012,
2013]. Caging and grasping of a 2D object have been thoroughly
studied, and we refer an interested reader to [Makita and Wan 2017]
for a complete survey.
Unlike the 2D caging, the 3D caging problem has no complete

analysis. The main reason is that it is challenging the high dimen-
sionality without considering mechanical implementation. Several
works attempt to tackle the problem using shape analysis and ge-
ometry processing methods. Through the usage of the topological
characteristics of loops of both the objects and the robotic hands,
approaches presented in [Dey et al. 2010; Pokorny et al. 2013; Stork
et al. 2013] plan to cage and grasp on objects with holes. The method
in [Zarubin et al. 2013] employs geodesic balls computed on the
target surface to determine the caging regions. They propose circle
caging and sphere caging. While circle caging allows robot hands to
grasp the thin part of an object by computing closed curves wrap-
ping around the object, sphere caging lets the robot hand wrap a
solid part of the object. However, they do not consider the topologi-
cal structure of the target. In contrast, [Kwok et al. 2016] compute a
topological Reeb graph over the 3D surface and extract iso-value
rings based on the geodesic field for the object rope caging. To deal
with the common issue of these methods that the designed caging is
oblivious to the relative size between the target object and the grip-
per, [Liu et al. 2018] present a method to compute feasible caging
grasp that can form relative-scale-aware caging loops encompassing
multiple handles.

In our work, we propose to immobilize a 3D target by computing
a tight rope net wrapping over the surface. Unlike caging that allows
object moving and reorienting inside the caging space, our rope net
is tightly fastened on the surface, ensuring the safety and effortless
operation during hoisting big and heavy objects.

Quad Layout. Quad meshing has been researched for more than
two decades [Bommes et al. 2013b], and many approaches have
been proposed. Among the many goals of quad-mesh generation

and processing methods, generating a quad-mesh with a coarse and
feature-aligned quad layout is one of the most desired ones [Tarini
et al. 2011a]. Quad-meshes can be created either through user in-
teractions [Bommes et al. 2008; Campen and Kobbelt 2014; Marcias
et al. 2015; Takayama et al. 2013], semi-automatic methods [Ji et al.
2010; Tierny et al. 2012; Tong et al. 2006], or fully automatic ap-
proaches [Bommes et al. 2011; Campen et al. 2012; Razafindrazaka
et al. 2015; Tarini et al. 2011a; Zhang et al. 2015]. By tracing edge
flows from irregular vertices of a quad-mesh, a coarser quad layout
than the quad-mesh can be constructed. The dual graph of this quad
layout could be embedded into our pipeline for initializing our rope
net since it satisfies our topology requirement of every node has a
valence of four. However, the layouts extracted from quad-meshes
generated from existing approaches either are overly dense that is
impractical for physically composing the rope net, or require user
interactions and limit to specific types of shapes. Moreover, all quad-
meshing methods optimize the singularities of a quad-mesh that
greatly affect its layout structure to be in high curvature regions.
However, the dual graph of the layout may not capture the features
well. It may lead to an unstable rope net. In our work, we propose
a simple and effective initial rope net generation approach that di-
rectly addresses our object-wrapping goal, sidestepping the usually
enforced complex geometrical constraints and misalignment issues
during the typical quad-meshing. Figures 24 and 25 demonstrate
the advantages of generating rope nets initialized by our method
over representative quad-meshing approaches.

3 OVERVIEW
We first introduce the basic definitions of the rope net, then state
our objectives, and finally give a high-level overview of our method.

Rope net. A rope net R = (V, E) wrapping around a 3D surface
modelM is consisting of a set of nodes,V , and a set of curve edges,
E; see Figure 3.

Objectives. Our input includes a 3D surface model M, the center
of gravity and weight of the model, and a rope with the maximum
stretching stress 𝜆. Our method aims to generate an object-wrapping
rope net used for hoisting by satisfying the following objectives:

• Simplicity. The rope net should be cost-effective, e.g. short to-
tal length and small number of nodes and could be composed
with a single rope.

• Tightness. The rope net should be tight enough to both im-
mobilize the object and not slide when lifted from any place
of the rope net; see Figure 5.

• Load balance. To reduce bearing pressure, the rope net should
equally distribute the load during lifting.

To generate a rope net that can be used for hoisting while sat-
isfying the above goals, we design our approach by obeying the
principle that tackles one goal at a time and once a goal is solved,
the problem will not appear again. For example, we first ensure the
simplicity of the to-be-generated rope net by generating an initial
rope net that can be composed using a single rope (Section 4), then
achieve the tightness of the rope net on the object by simulating
the tightening process via a geometric optimization (Section 5), and
finally guarantee the load balance of the rope net through stress

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

6:4 • J. Liu et al

(a)

Rope net generation

(b)

(c) (d)

(e) Stress
constraint

(f)
Tightening

Loop-reinforcement

(g)

(h)

Fig. 4. Overview of our algorithm. Given an input model (a), we generate a rope net step by step. We first capture some key loops (b) that induce a cross field
(c). Then, we construct a sufficiently large candidate curve set (d) and take a suitable curve subset as the initialization (e). After that, we refine it to a tight rope
net (f) and reinforce the net when necessary (g). The final physically composed result is shown in (h).

(a) (b)
Fig. 5. A tight rope net we target that is able to tightly secure the object
without slipping during lifting. The geodesic loop (a) is unstable (easy to
slip) though it can be used to cage the object. A stable loop (b) that wraps
tightly around the object and does not slide during lifting.

analysis and reinforcing weak regions of the rope net. In our work,
we make the following assumptions to allow the solving of the rope
net generation problem to be tractable: (i) materials are uniformly
distributed throughout the object and the rope, and (ii) the object
to be hoisted is strong enough to support forces from the rope net.

Pipeline. Starting from the input object (Figure 4a), our approach
firstly relies on a mixed-integer programming to generate an initial
rope net that topologically satisfies the one rope construction prop-
erty and geometrically captures critical regions to immobilize the
object (Figure 4b-d, Section 4). After that, we perform a tightening
step of the rope net to achieve the tightness objective while avoid-
ing any penetrations (Figure 4f, Section 5), which is followed by a
hoisting planning step (Figure 4g, Section 5.2). We look for a suitable
hoisting plan if 1) there are anchor points satisfying safety standards
in lifting operation [Johnson 2016] and 2) the stress limit of the rope
net is not violated when performing the mechanics analysis of the
rope net under the specific hoisting configuration. If no such plan
exists, we locate the weakest curve edges that violate the stretch
stress limit, and add reinforcement loops through them as key loops,
and iterate the aforementioned steps, until a suitable hoisting plan
is found. We provide an intuitive user-interface (Section 5.3, the

attached video) to guide the assembly process of the resulting rope
net in practice (Figure 4h).

4 ROPE NET GENERATION
In this section, we generate an initial rope net that satisfies the
topology constraint, i.e. can be composed by one rope, while wrap-
ping key regions of the object that provides a good starting position
for achieving both simplicity and load balancing for further steps.
Our rope net is computed by solving a mixed-integer optimization
on a curve network. Intuitively, the curve network is composed of
two types of curves: key loops that are critical to immobilize the
3D object, and assistant curves that connect key loops to ensure
the correct topology of the rope net. Given a surface model, from
a view of shape analysis, we first compute key loops (Figure 4b)
that form a subset of curves of the to-be-constructed rope net, and
then we connect these key loops by inserting directional field (Fig-
ure 4c) guided assistant curves that are possibly redundant (Figure
4d), and finally we construct the rope net (Figure 4e) by solving a
mixed-integer optimization to remove redundant assistant curves.

4.1 Key Loops
As discussed above, our rope net aims to immobilize the object so
that it does not slip during lifting. From the viewpoint of hoisting
in practice [Johnson 2016], it suggests that the ropes should be tied
to the critical wrapping regions (e.g., concave geometric features,
forks, branches, etc.) on the surface of an object, which can help
to secure the object tightly. Motivated by this finding, we consider
wrapping these regions with key loops as critical components of
the rope net.

To efficiently compute the key loop wrapping the critical regions
described above, we use the SDF-guidedmesh partitionmethod [Shapira
et al. 2007]. This is because 1) the shape diameter function (SDF)
is defined on facets of the mesh that measures the local object di-
ameter. It is used to intrinsically distinguish thin and thick object
parts. Thus, it can generate key loops lying at regions with concave

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

Computational Object-Wrapping Rope Nets • 6:5

geometric features, forks or branches that aligns well to the goal
of identifying critical wrapping regions, and 2) this method is also
proposed to extract the skeleton of a 3D object, of which any seg-
mentation can infer a branch of the object. Hence, it can help to
generate key loops at the critical wrapping regions described above.

(a) (b)

Fig. 6. An example of the SDF-
guided mesh partition.

To obtain the SDF-based
key loops, we followed the
partitioning algorithm de-
scribed in [Shapira et al.
2007]. For each face of the
mesh, the approach first cal-
culates its SDF value to be
the weighted average of the
penetration depths of all
rays contained inside an in-
ward cone (see Figure 6a).
The weight for a ray is the inverse of the angle between the ray
and the center of the cone. Next, the partitioning approach fits 𝑘
Gaussian distributions to the distribution of the SDF values of the
facets, and finally, finds the actual partitioning into𝑚 clusters us-
ing alpha-expansion graph cut algorithm [Boykov et al. 2001] by
considering local mesh geometric properties. Note that 𝑘 represents
the number of levels of a segmentation, which is different from𝑚.
A large value of 𝑘 can result in many small segments of the mesh.
In our implementation, the default value 𝑘 = 5 is used.

After running the mesh partition algorithm, the boundary edges
of the segmentation form polyline loops. For a polyline loop, it is
considered as a key loop if it does not share edges with all the other
polyline loops. Otherwise, we choose the minimal loop (the one
with the shortest length) from those polyline loops that share with
edges as the key loop. Thus, the selected polyline loops are denoted
as the key loop set L (see Figure 6b). Note that small loops may
occur due to noises or thin shape features. Since small loops are
not helpful to the rope net design, we filter out these loops from
L if their lengths are shorter than 0.005 (the input model is scaled
uniformly into a 1 × 1 × 1 box).

4.2 Assistant Curves
After extracting the key loops L, we now generate another set of
curves S, which are referred to as assistant curves, to connect the
key loops. Our to-be-constructed rope net will be composed of all
the key loops and some selected assistant curves.

According to the hoisting operation [Johnson 2016], large contact
areas between the rope net and the object can greatly reduce the
stresses on the rope net during hoisting. Based on the empirical
observation, the orthogonal rope net is commonly used in daily life.
The rational behind is that the orthogonal rope net can help distrib-
ute the force evenly, which is very useful for hoisting. Therefore,
our assistant curves are trajectories traced on the surface of the
object. We employ an optimized cross field that aligns directions of
geometric features on the surface to guide the curve tracing. The
efficient Instant Meshes algorithm [Jakob et al. 2015] is used to
generate the directional field. To adapt to the above requirement,
i.e., generating assistant curves that are perpendicular to key loop
directions so that contact areas between the rope net and the object

(a) (b) (c) (d)

Fig. 7. The workflow of the rope net generation. (a) The cross-field aligned
with the directions of the key loops (plotted by green circles). (b) The field-
guided geodesic curves (plotted by various colors) traced from both two
sides of the key loops (colored the same as their curves). (c) We obtain the
nodes (red dots) and the curve edges (colored by various colors) between
them to compose the rope net by solving a mixed-integer optimization.
(d) To guarantee 4-degree connectivity for the nodes on the ending loops,
we use a simple linking operation to connect them with random sampling
points through Dijkstra shortest paths on the surface model. The obtained
curves and the nodes compose the rope net.

can be increased and forces imposed on the rope net can be dis-
tributed over different directions [Johnson 2016], we generate a key
loop direction constrained cross field (Figure 7a). Specifically, for
each vertex 𝑝 , we use a key-loop dependent weight instead of their
original one:𝑤 (𝑝) = 𝑒𝑥𝑝

(
−𝑑2/2

)
, where 𝑑 is the geodesic distance

between 𝑝 and its nearest key loop. This weight encourages 𝑝 to
get its direction from its most relevant key loop.
After computing the direction field, we can now trace assistant

curves. We start tracing from seed points uniformly sampled on
the key loops. Note that to provide an enough amount of candidate
assistant curves for the rope net generation, the sampling should
be dense. In our experiments, we use the average edge length of
the surface mesh as the step size for the seed point sampling. For
each seed point at each key loop 𝑙 , we use the field-guided tracing
approach [Pietroni et al. 2016] to trace two curves with opposite
directions (colored the same as their key loop) that are both perpen-
dicular to 𝑙 (Figure 7b). Therefore, we have two sets of curves 𝑙+
and 𝑙−, one for each side of 𝑙 . We filter out traced curves that are
not ended at any key loop or intersect themselves during tracing, or
both, and denote all the remaining ones as the assistant curve set S.
So far, the curve network formed by the key loops and the as-

sistant curves is not necessarily simple and neither satisfies the
topology constraints of the desired rope net. By taking the curve
network as the initialization, we next present a mixed-integer pro-
gramming approach to generate the rope net.

4.3 Mixed-integer Optimization
As the 2D illustration in Figure 8, the initial node set V consists
of the intersection points (blue dots) between the assistant curves
and the intersection points (orange dots) on the key loops. The
initial curve edge set E consists of the curve segments between
these intersections.

For each curve segment, we define an indicator function (𝑣𝑖 , 𝑒 𝑗) :
V×E → {0, 1} to represent its existence in the rope net. (𝑣𝑖 , 𝑒 𝑗) = 1
indicates that the curve segment 𝑒 𝑗 , of which one endpoint is 𝑣𝑖 ,

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

6:6 • J. Liu et al

Intersection of key loop with assistant curve

Intersection between assistant curves

Curve segments between intersections:

Key loop

Assistant curve connecting key loops

Cross-field vectors of point in key loop

Fig. 8. Illustration of initialization of the curve edges and the nodes. The
nodes are initialized with the intersections (blue dots) between the assistant
curves (yellow curves) connecting with the key loops (gray circles) and
the intersections (orange dots) of the key loops with the assistant curves.
The curve edges are initialized with the curve segments between these
intersections.

is used to compose the rope net. If (𝑣𝑖 , 𝑒 𝑗) = 0, that means we
do not compose the rope net with 𝑒 𝑗 . Thus, we turn the rope net
generation into the problem of removing curve segments from the
curve network, which can be formulated as:

max
𝑣𝑖 ,𝑒 𝑗

𝐸 (𝑣𝑖 , 𝑒 𝑗)

s.t. 𝑣𝑖 , 𝑒 𝑗 satisfies the constraints of rope net (3 − 9) .
(1)

Intuitively, we prefer to select long curve segments to reduce the
rope net complexity since the longer each segment is, the fewer
nodes or knot operations needed to construct the rope net. Hence,
the objective function will be formulated as linear energy with
variable (𝑣𝑖 , 𝑒 𝑗):

𝐸 (𝑣𝑖 , 𝑒 𝑗) =
∑
𝑖, 𝑗 (𝑣𝑖 , 𝑒 𝑗) · ∥𝑒 𝑗 ∥, (2)

where ∥𝑒 𝑗 ∥ denotes the length of the curve segment 𝑒 𝑗 . Next, we
introduce the topology constraints and the sparsity constraints to
ensure the reliability of the rope net.

Topology constraint - I. The rope net should be a connected graph
in order to be possibly constructed by a single rope; see Figure 9.
Hence, for an assistant curve 𝑠 , two consecutive curve segments
𝑒𝑖 , 𝑒 𝑗 ⊂ 𝑠 that share one of their endpoints have the constraint
(𝑣𝑖 , 𝑒𝑖) = (𝑣𝑖 , 𝑒 𝑗), where 𝑣𝑖 denotes their shared endpoint. For the
two endpoints 𝑣𝑖 and 𝑣 𝑗 of a curve segment 𝑒 𝑗 ∈ E,

Fig. 9. Two adjacent nodes need to be
consecutive in geometry.

we have a constraint
(𝑣𝑖 , 𝑒 𝑗) = (𝑣 𝑗 , 𝑒 𝑗). On the
other hand, every curve
segment 𝑒 𝑗 on the key
loop 𝑙 ∈ L has (𝑣𝑖 , 𝑒 𝑗) =
1 since all key loops need
to be present in the rope
net. To sum up, we have the connectivity constraints as follows:

(𝑣𝑖 , 𝑒 𝑗) = (𝑣𝑗 , 𝑒 𝑗), ∀ 𝑒 𝑗 ∈ E, where 𝑣𝑖 and 𝑣𝑗 are endpoints of 𝑒 𝑗 ;
(𝑣𝑖 , 𝑒𝑖) = (𝑣𝑖 , 𝑒 𝑗), ∀ 𝑒𝑖 , 𝑒 𝑗 ⊂ 𝑠 ∈ S, where 𝑣𝑖 = 𝑒𝑖 ∩ 𝑒 𝑗 ;
(𝑣𝑖 , 𝑒 𝑗) = 1, where 𝑒 𝑗 is on the key loop 𝑙, ∀ 𝑙 ∈ L.

(3)

Topology constraint - II. A node of the curve network may have an
arbitrary valence, i.e., the number of adjacent segments, especially
at the ending region of the branches. Since the assistant curves
are generated based on the direction field, they often converge at

the same intersection point. It is difficult to precisely achieve the 4-
degree property for each node during optimization with a consistent
topology constraint for all of them. Therefore, we divide the nodes
into three cases and impose different constraints for all of them. The
constraints are to ensure that the optimized rope net can be easily
post-processed to meet the 4-degree requirement.

Case 1. For any node 𝑣𝑖 on an assistant curve, we set the constraint:

0 ≤ ∑
𝑗 (𝑣𝑖 , 𝑒 𝑗) ≤ 4, if 𝑣𝑖 is on an assistant curve. (4)

After optimization, its valence will be either 0 (not selected), 2 (to
be removed by merging its two adjacent curve segments), or 4 (to
be preserved as a 4-degree node), due to both constraints Eq. 4 and
Eq. 3.
Case 2. A key loop is called "non-ending loop" if all connected

assistant curves have the two endpoints on different key loops. For
a node 𝑣𝑖 on a non-ending loop, it should have the same number of
curves from each side and at most one from each side; see Figure 10.
Thus, we set the constraint:

0 ⩽
∑
𝑒 𝑗 ∈𝑙−𝑣𝑖 (𝑣𝑖 , 𝑒 𝑗) =

∑
𝑒 𝑗 ∈𝑙+𝑣𝑖 (𝑣𝑖 , 𝑒 𝑗) ⩽ 1,

if 𝑣𝑖 is on a non − ending loop 𝑙,
(5)

Non-ending loop Non-ending loop

Fig. 10. The constraint of a node on the
non-ending loop.

where 𝑙−𝑣𝑖 and 𝑙+𝑣𝑖 denote
the sets of curve seg-
ments connecting 𝑣𝑖 lo-
cated at the left and right
sides of 𝑙 respectively.
After optimization, the
nodes on the non-ending
loopswill have the degree
being either 2 (to be re-
moved by merging its two adjacent curve segments) or 4 (preserved
as a 4-degree node).

Ending loop

Fig. 11. Illustration of the ending loop. Left: We call a key loop is ending loop
if all assistant curves on one side of it have endpoints both on the same key
loop. Since the assistant curves are generated based on the direction field,
they often converge at same intersection point at the ending regions of the
branches. Right: For easily post-processed to meet the 4-degree requirement,
we remove these curves and connect their nodes back in the post-processing
step.

Case 3. For a node 𝑣𝑖 on an ending loop, some of the connected
curves will have both endpoints on the same key loop (Figure 11
left). Therefore, we remove these curves from S before optimiza-
tion and reconnect their nodes in the post-processing step. During
optimization, we formulate the constraint as:

2 ⩽
∑

𝑗 (𝑣𝑖 , 𝑒 𝑗) ⩽ 3,
if 𝑣𝑖 is on an ending loop. (6)

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

Computational Object-Wrapping Rope Nets • 6:7

After optimization, the nodes on the ending loops will have degrees
either 2 (to be removed by merging its two adjacent curve segments)
or 3 (to be preserved as a 4-degree node with the connected-back
assistant curves).

Sparsity constraint - I. To make the rope net as simple as possible,
we need to limit the number of assistant curves passing through an
ending loop by the constraint:∑

𝑣𝑖 ∈𝑙,𝑒 𝑗 ⊆𝑠 (𝑣𝑖 , 𝑒 𝑗) = 2𝑘∗, 𝑘1 ⩽ 𝑘∗ ⩽ 𝑘2, if 𝑙 is ending loop,
∀ 𝑠 ∈ 𝑙+ ∪ 𝑙− (𝑙+ 𝑜𝑟 𝑙− = ∅), 𝑘1 ⩽ 𝑘2 ∈ N,

(7)
where the parameter 𝑘1 and 𝑘2 indicate the minimum and maxi-
mum number of assistant curves allowed for one curve set 𝑙+ or 𝑙−,
respectively. In our implementation, we set 𝑘1 = 2 and 𝑘2 = 3. Thus,
the number of nodes on an ending loop is either four or six.

∠ ,

Fig. 12. The angle con-
straint of the node.

Sparsity constraint - II. The nodes of
the rope net should be cross-like so that
the curve edges of the rope net are not
too close together after tightening the
rope net. Hence, if the angle between
two assistant curves 𝑠𝑖 and 𝑠 𝑗 at 𝑣𝑖 (Fig-
ure 12) is smaller than a threshold 𝜃

(𝑝𝑖/3 is used in the implementation), we
restrict the curve segments that are either on 𝑠𝑖 or 𝑠 𝑗 as follow:

0 ⩽
∑

𝑗 (𝑣𝑖 , 𝑒 𝑗) ⩽ 2, ∀ 𝑒 𝑗 ⊂ 𝑠𝑖 ∪ 𝑠 𝑗 ,

if ∠(𝑠𝑖 , 𝑠 𝑗) < 𝜃 .
(8)

Fig. 13. Similar assis-
tant curves (denoted by
same color).

Sparsity constraint - III. Nearby assis-
tant curves with similar shapes should
be clustered as one. Note that to im-
prove efficiency, we cluster nearby as-
sistant curves that connect to the same
key loop and lie on the same side of
that loop into one group; see Figure 13.
At most one assistant curve from each
group can be used in the rope net. This
results in the following restriction:

0 ⩽
∑

𝑣𝑖 ∈𝑙,𝑒 𝑗 ⊆𝑠
(𝑣𝑖 , 𝑒 𝑗) ⩽ 1, ∀ 𝑠 ∈ 𝑙similar . (9)

To cluster the similar assistant curves, we use the K-Means method.
In the implementation, all the assistant curves are converted
into 2-dimensional embedding by the classical multidimensional
scaling (CMDS) algorithm [Kong et al. 2019]. The distance be-
tween the assistant curves is calculated based on the discrete
Frechet distance metric [Eiter and Mannila 1994]: 𝑑𝐹𝑟𝑒𝑐ℎ𝑒𝑡 (𝑒𝑖 , 𝑒 𝑗) =
min{∥Γ∥ | Γ is a coupling between the curve 𝑒𝑖 and curve 𝑒 𝑗 }. The
K-Means method takes the distance measure and the 2D points as
inputs, and outputs the clustering results of assistant curves. To
determine the optimal number of clusters of the K-Means method,
we also use the Elbow method [Ketchen and Shook 1996], which is
a fundamental step in cluster analysis.
Up to now, we have the necessary topology and sparsity con-

straints for our optimization. We compute the curve segments that
compose the rope net by solving the constrained integer linear pro-
gramming (CILP) problem using [Achterberg 2009]. After merging

the adjacent selected curve segments of the 2-degree nodes, the rope
net then has the remaining nodes with degree 3 or 4; see Figure 7c.

Post-processing. To further obtain the 4-degree rope net (Fig-
ure 7d), we add back the curves with endpoints on the same ending
loop. According to Eq 7, the number of nodes on the ending loop
𝑙 is either four or six. If 𝑙 has four nodes (Figure 14a), we connect
them (orange dots) with one sampling point (blue dot) by Dijkstra’s
shortest paths (green curves) on the surface. When six nodes are
selected on 𝑙 (Figure 14b), we sample two different points to con-
nect them by geodesic paths as well. Each sampling point connects
with three nodes along the clockwise direction of the ending loop.
Then we connect the two sampling points with a geodesic path.
Figure 7d shows the result after the post-processing step. Thus, all
the 4-degree nodes and the obtained curves connected to them form
the rope net.

a b

Fig. 14. Post processing of the ending loop.

Discussion. The optimization may fail in extreme cases when the
assistant curves are very sparse. For example, if only a few assistant
curves cross through a key loop placed at the region like a handle,
the sparsity constraints of Eq 9will conflict with feasibility. However,
our algorithm works well for most of our test examples because we
sample a dense curve network before optimization.

5 ROPE NET CONSOLIDATION
Given the rope net generated in the previous section, the rope net
needs to wrap tightly around the object so that it can confine the
object movement within it as much as possible. We also need to find
a suitable hoisting plan for the rope net that prevents overloading
of the rope net and satisfies safety under the hoisting scheme [John-
son 2016]. Moreover, for rope tying in practical usage, we need to
assemble the rope net and tie the rope into a knot at each node as
well so that it can provide a strong force while being easy to tie and
material saving [Patil et al. 2020].

Thus, in this section, we propose a rope net consolidation method
to achieve the above requirements. Firstly, to tighten the rope net,
we minimize the length of the rope net while avoiding any penetra-
tions. Secondly, to find a suitable hoisting plan, we look for anchor
points that satisfy safety in hoisting operation. From them, we find
a suitable hoisting plan by minimizing the stresses on the rope net,
while considering the physical properties of the rope. If no suitable
plan is available, we locate the weak curve edges that violate the
stretch stress limit, add reinforcement loops through them as key
loops, and recompute the rope net unit to find a suitable hoisting
plan. Since our rope net can be viewed as a graph where each node
has exactly a degree of 4, we can use a single rope to construct the

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

6:8 • J. Liu et al

rope net according to the theorem of the Eulerian circuit [Bondy
and Murty 1976]. For rope tying, we adopt twisting knot, which
is a simple and effective knot type for rope net composition. To
assemble the rope net for practical usage, we present a rope-able
Euler cycle to guide the assembly process of the resulting rope net
in practice, which guarantees that the rope net can be constructed
by a single rope and each node is tied into a twisting knot.

5.1 Rope Net Tightening
To tighten the rope net, we minimize the total length of the rope
net:

min
V

∑
𝑒𝑖 𝑗 ∈E

∥𝑒𝑖 𝑗 ∥, (10)

where 𝑒𝑖 𝑗 denotes the curve edge between adjacent nodes 𝑣𝑖 and 𝑣 𝑗 .
By taking the node set V as the variables, our optimization alter-
natively moves the nodes with the L-BFGS solver and shrinks the
curve edges 𝑒𝑖 𝑗 ∈ E between adjacent nodes. Every curve edge 𝑒𝑖 𝑗
is updated in each iteration as the shortest collision-free path be-
tween adjacent nodes. The pseudo-code is available in Algorithm 1.
Note that during the optimization, both the nodes and the curve
edges are allowed to leave the surface model rather than strictly
constrained on the surface, but are prohibited to penetrate into the
surface model (collision between rope net and surface model).

Fig. 15. 4-fork structure
at the node.

Node movement. For a node, the L-
BFGS solver moves it from its initial
position to a locally stable position by
the gradient vectors of the object func-
tion (Eq 10). Suppose every node 𝑣

is adjacent to four neighboring points
𝑝1, 𝑝2, 𝑝3, 𝑝4. We use

−→
dir𝑖 =

𝑣−𝑝𝑖
∥𝑣−𝑝𝑖 ∥ , 𝑖 =

1, 2, 3, 4, to represent four unit vectors
at the node 𝑣 of the rope net; see Fig-
ure 15. Thus, the gradient of each node
𝑣 is computed as follow:

𝜕
∑

𝑒𝑖 𝑗 ∈E ∥𝑒𝑖 𝑗 ∥
𝜕𝑣 =

∑
𝑒𝑖 𝑗 ∈E

𝜕 ∥𝑒𝑖 𝑗 ∥
𝜕𝑣

=
𝑣−𝑝1
∥𝑣−𝑝1 ∥ +

𝑣−𝑝2
∥𝑣−𝑝2 ∥ +

𝑣−𝑝3
∥𝑣−𝑝3 ∥ +

𝑣−𝑝4
∥𝑣−𝑝4 ∥

=
∑4
𝑖=1

𝑣−𝑝𝑖
∥𝑣−𝑝𝑖 ∥ =

∑4
𝑖=1

−−→
dir𝑖 ,

(11)

where 𝑒𝑖 𝑗 is the curve edge (shortest collision-free path) between
the nodes 𝑣𝑖 and 𝑣 𝑗 . To ensure that the rope net does not penetrate
the surface model, all nodes should be on or outside the surface.
Therefore, during the optimization process, we check the position
of each node and pull it onto the surface using [Larsen et al. 1999]
if lying inside (leave it alone if it is located on the surface or in the
exterior). Figure 16 shows an example of the optimization process.
For this example, it has 51 nodes and each node takes 0.65 seconds
on average to run the L-BFGS optimization. Moreover, it only needs
3 iterations (one iteration refers to all nodes moving once), which
is due to the fact that the initial rope net is good enough. In our
experiments, the number of iterations required for all models ranges
from 3 to 68, with 5 as the average. The cactus example (Figure 33c)
requires the most iterations.

Fig. 16. We only need a few iterations to shrink the initial rope net to a
tight one. Here we show the results of the front (top row) and back (bottom
row) of an object respectively in the 0th, 1th, 2th, 3th iteration.

ALGORITHM 1: The algorithm for tightening rope net.
Input : an initial node set V and an initial rope net

configuration E
Output : a tight rope net R
Compute the total length of the rope net

∑
𝑖, 𝑗 ∥𝑒𝑖 𝑗 ∥;

Compute the gradients of
∑
𝑖, 𝑗 ∥𝑒𝑖 𝑗 ∥ w.r.t. each node 𝑣𝑖 ;

while the norm of the gradient vector is larger than the
specified tolerance do

Move every node 𝑣 ∈ V by Eq (11);
Update the collision-free path 𝑒𝑖 𝑗 between 𝑣𝑖 and 𝑣 𝑗
by [Crane et al. 2013];

end

Collision-free path. For any two adjacent nodes, we compute the
collision-free path using the heat-based method proposed in [Crane
et al. 2013]. This method computes the shortest path going through
the specified domain, i.e. the surface and the exterior in our problem.
Specifically, in the implementation, we first discretize the space

(colored blue) bounded by the surface M and a large

Fig. 17. Illustration of
collision-free path.

box covering the model (drawn by the
black rectangle) into a tetrahedral mesh.
Figure 17 shows a 2D example. Limiting
the path inside the blue space can natu-
rally prevent the penetration of the rope
net. We then compute the discrete gradi-
ent, divergence and Laplace operator for
the tet-mesh, which arewell-established
in [Desbrun et al. 2008]. Finally, we em-
ploy the heat-based method [Crane et al.
2013] to compute the shortest distance
field, from which the shortest distance ∥𝑒𝑖 𝑗 ∥, as well as the collision-
free path 𝑒𝑖 𝑗 can be quickly found. In particular, by running the
heat-based method in the tetrahedral mesh of the exterior space, the
collision-free path between the node 𝑣𝑖 and the node 𝑣 can be traced
along the negative gradient direction, assuming that the distance
field is linear in each tetrahedral element. Therefore, the collision-
free path consists of a sequence of corner points, each being the
intersection between the path and a triangle face of the tetrahedral
mesh. In Eq. (11), 𝑝1, 𝑝2, 𝑝3, 𝑝4 are four corner points incident to the
node 𝑣 .

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

Computational Object-Wrapping Rope Nets • 6:9

Fig. 18. 2D illustration of our hoist configuration for hoisting an object
(blue). Given the object’s center of gravity (yellow dot) and one lifting point
(green dot) directly above it, we compute a pair of anchor points (orange
dots) 𝑥 and 𝑦. The sling angles 𝜃1 and 𝜃2 are formed by their slings (orange
lines) with the horizontal axis.

5.2 Hoist Planning
So far, we have a rope net that secures the object tightly. Next, we
introduce how to use our rope net in lifting practice. Specifically,
we consider the most used sling configuration of bridle hitch, where
two anchor points are used together to lift an object with one lifting
point; see Figure 18. The goal is to distribute stresses evenly across
the entire rope net to avoid overloading and ensure safety in lifting
operation [Johnson 2016].

Our solution is to first search for a set of candidate anchor pairs
and then perform mechanics analysis to find the best one, as is done
in the industry practice [Johnson 2016]. Note that the lifting point
is always located on the object’s plumb line, so we do not optimize
the lifting point in our algorithm. In our implementation, the lifting
point is placed above the object’s center of gravity (0.3 as the default
height).

Candidate pairs of anchor points. Our guidelines to select the
candidate anchors come from the standard constraints [Johnson
2016] in the industry practice.

• The anchor points should be always visible from the lifting
point since we never drag the slings over the object surface.

• The object’s center of gravity (COG) must be not only directly
under the lifting point but also below the lowest anchor point
before the object being lifted, to reduce the forces on the
slings and the anchor points.

• The sling angles of anchors 𝜃1 and 𝜃2 (formed by their slings
with the horizontal direction) need to be greater than 𝑝𝑖/4
and smaller than 𝑝𝑖/3.

Given the object’s center of gravity (yellow dot) and a lifting point
(green dot) directly above it (Figure 18), we assume that the orien-
tation of the input object conforms to the guidelines as described
above. The first step is to uniformly sample points on the entire
rope net. The unit length of rope (0.001 in our implementation) is
taken as the step size for the dense sampling. Next, following the
guidelines, we remove the sampling points if they lie beneath the

horizontal plane through COG or the connecting line to the lifting
point penetrates the surface model.
For the remaining sampling points, we generate a set of point

pairs. Since accurately measuring the sling angle for any free-shape
object is difficult, we instead use the angle 𝜃3 formed at the lifting
point [Johnson 2016] (The angle between the two orange lines).
For a pair of sampling points, its two points and the lifting point
form a triangle. We refer to this pair as a candidate if the object’s
plumb line passes through the triangle and the angle 𝜃3 formed at
the lifting point is greater than 𝑝𝑖/3 and less than 𝑝𝑖/2. We denote
the set containing all pairs of points as A.

Mechanics analysis of rope net. We search for a suitable point pair
(𝑥,𝑦) ∈ A via mechanic analysis. To ensure safety, the stresses
acting on the rope net during lifting should be as small as possible,
while the stress of each curve edge should not exceed the stress
limit of the rope. Therefore, the problem can be formulated as:

min
(𝑥,𝑦) ∈A

𝐸 (𝑥,𝑦,R, 𝐹)

s.t. 𝐼 (𝑥,𝑦, 𝑒, 𝐹) < 𝜆, ∀ 𝑒 ∈ E,
(12)

where 𝜆 is the yielding point of a specific material (by default we
use 𝜆 = 5.48𝑒7𝑁 /𝑚2 for elastic). 𝐼 (𝑥,𝑦, 𝑒, 𝐹) is the stress of a curve
edge 𝑒 ∈ E when taking points 𝑥 and 𝑦 as the anchors and applying
the lifting force 𝐹 . The objective function is then formulated by:

𝐸 (𝑥,𝑦,R, 𝐹) =
∫
𝑒∈E

𝐼 (𝑥,𝑦, 𝑒, 𝐹) 𝑑𝑒. (13)

Our goal is to compute a pair of anchor points so that the rope net
is not overloaded and the sum of the stresses on the rope net is
minimal.
In the implementation, since the mechanical analysis takes on

average 3 minutes for each candidate pair, to reduce the time con-
sumption, we sort the pairs in set A in descending order by their
angles 𝜃3 formed at the lifting point. We then select the first ten
sampling point pairs in A as the candidate. Our input consists of a
3D object positioned in a physically simulated environment, a rope
net whose material is specified as nylon, and two sampling points
called anchor points. The lifting forces at the anchor points are
determined by the gravity of the object. We compute the stress field
of the rope net based on the finite element analyses in a popular
FEM software [Abaqus 2018]. Let 𝑉𝑒 denote all the elements in the
curve edge 𝑒 . The stress value of the curve edge 𝑒 is computed as:
𝐼 (𝑥,𝑦, 𝑒, 𝐹) = max

𝑡 ∈𝑉𝑒
𝜎 (𝑡), where 𝜎 (𝑡) is the stress value of the element

𝑡 in the curve edge 𝑒 .

Loop-reinforcement processing. In case no anchor point pair is
found that is capable of lifting the object under the safety constraint,
we perform the following reinforcement of the rope net. As shown
in Figure 19a, we find the weak curve edges (highlighted by the blue
rectangles) whose stresses are greater than 𝜆. For every weak curve
edge, we first project it onto the surface, and start tracing closed
curves passing through the midpoint of the projection, guided by the
directional field. From the newly traced closed curves (with different
colors in Figure 19b), we search for non-trivial loops (highlighted by
the red rectangles in Figure 19b) that are short and field-aligned by
minimizing the measure described in [Campen et al. 2012]: 𝑐𝛼 (𝑙) =

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

6:10 • J. Liu et al

(a) (b)
Fig. 19. An example of the Loop-reinforcement processing. (a) The weak
curve edges (highlighted by the blue rectangles) whose stresses are greater
than 𝜆. (b) The non-trivial loops (highlighted by the red rectangles) searched
from the traced closed curves (with various colors).

Step#0 Step#1 Step#2 Step#3

Step#7 Step#8

Step#4 Step#5 Step#6

Step#9 Step#10 Step#11 Step#12 End

Fig. 20. 2D illustration of the assembling process of our rope-able circuit
net. The green dots denote the nodes of rope net and the rope-able circuit
net consists of the order lines in orange. The circuit net starts with a first
direction for the starting node. Then we turn left or turn right, rather than
straight ahead to the next exit direction.∑
𝑝∈𝑙

√
𝑐𝑜𝑠2𝜃 (𝑝) + 𝛼2𝑠𝑖𝑛2𝜃 (𝑝), where 𝜃 (𝑝) is the angle between the

loop’s tangent and the field direction at the point 𝑝 on the loop 𝑙 and
𝛼 = 30 is the balanced parameter. After that, these non-trivial loops
we call them as reinforcement loops are added to L and recompute
the tightened rope net through the approaches described in Section 4
and Section 5.1. Note that we do not add such a non-trivial loop to
L if it intersects with a key loop in L. Moreover, if two non-trivial
loops intersect, we add the shorter one to L.

5.3 Assembly
Our rope net can be seen
as a graph with each
node has exact a 4 de-
gree. According to the
theorem of the Eulerian
circuit [Bondy and Murty
1976]: every piece of the graph can be visited exactly once; the
starting and ending nodes of the traversal is the same; and the
starting node can be chosen arbitrarily. We employ the Fleury algo-
rithm [Skiena 1990] that fully exploits these properties to assemble
the rope net. However, the constructed rope net using the original
Fleury algorithm cannot guarantee to hold the object tight, since
the rope is not knotted at the nodes; see right inset. We propose to
practically construct a rope-able circuit net by physically pinning
each node to enhance the stability; see left in inset.
Based on the Fleury algorithm, we modify the rope tracing on

how to select the in-path and out-path at every node. Each 4-degree

A11

A21

A31

A41

A12

A22

A42

A32

B11 B12

B21 B22

B31 B32

B42B41

Fig. 21. Comparison to the rope net with various assembling way in physical
reliability. The left two columns show the general Euler cycle based rope
net before lifting and after shaking at the four different hoisting points in
order. The right two columns are the results of rope net with our rope-able
Euler cycle.

node forms a local 4-fork structure located on a plane that allows
a counter-clockwise order for the four directions, as in Figure 15.
For a node 𝑣 , we assume the

−→
dir1 is the first entry direction for 𝑣 ,

and then we choose −−→dir2 (right turn) or −
−→
dir4 (left turn), rather

than −−→dir3 (straight ahead), as the next exit direction. In this way,
the algorithm starts from an arbitrary node and chooses the next
curve edge at each step as described above. It then moves to the
other endpoint of the curve edge and deletes the current curve edge.
At the end of the algorithm, there are no curve edges left, and the
tracing path forms a single-rope based Eulerian circuit. An example
of the rope net assembly process can be found in Figure 20.

We conduct a real shaking experiment to compare our rope-able
circuit net with the Eulerian circuit generated from the original
Fleury algorithm. As shown in Figure 21, our rope net exhibits
stable resistance to forces with varying strength and directions,
which also demonstrates the physical reliability of our method.

6 RESULTS AND EVALUATION
In this section, we propose a set of metrics (Section 6.2) to quantita-
tively measure the effectiveness of the computed rope nets for 3D
objects with various complexities. We also perform ablation studies
(Section 6.3) and compare to alternative approaches to demonstrate
the advantages of our method. At last, we give additional experimen-
tal results (Section 6.4) to analyze the performance of the algorithm
under the conditions such as different parameters and high genus,
and show physical results.

6.1 Implementation
We implement the rope net computation on a 64-bit version of the
Win10 system with an Intel CoreTM i7-7700 CPU 4.2GHz and 8GB
memory. We test our algorithm on 37 meshes from Thingi10K [Zhou
and Jacobson 2016], McGill 3D Shape Benchmark [Siddiqi et al.

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

Computational Object-Wrapping Rope Nets • 6:11

∥R ∥: 21.11, |V |: 115

FTightness (R) :0.90
Fstress (R) : 2.87e6 𝑁 /𝑚2

∥R ∥: 9.64, |V |: 35

FTightness (R) :0.92
Fstress (R) : 1.72e6 𝑁 /𝑚2

∥R ∥: 25.51, |V |: 76

FTightness (R) :0.89
Fstress (R) : 5.16e6 𝑁 /𝑚2

∥R ∥: 16.32, |V |: 46

FTightness (R) :0.93
Fstress (R) : 1.13e7 𝑁 /𝑚2

(a) DLM (b) Ours

Fig. 22. We compared the final rope net initialized with the dual loops (field-
aware geodesic loops) computed in DLM method [Campen et al. 2012] and
optimization.

2007], and AIM@SHAPE Shape Repository. The computation of our
workflow from rope net generation to rope net tightening, has an
average 5-10 minutes per model.

6.2 Evaluation metrics
We design a series of evaluation metrics to quantitatively evaluate
various aspects of our rope net, i.e. its tightness, stress distribution
and simplicity.

Fig. 23. An ex-
ample of a per-
turbation, such
as pulling 𝑝 to
𝑞.

Tightness. Recall that the resulting opti-
mized rope net R may contain some parts lying
in the exterior space, but must have at least a
point on the surfaceM. Let 𝑝 ∈ R be an arbi-
trary point exactly lying on the surfaceM, and
𝑞 ∈ M be a point in a small neighborhood of 𝑝 .
Generally speaking, if we slightly perturb R at
𝑝 (keeping the rope net structure unchanged)
such that the new rope net R𝑞 (we call it 𝑞-
based rope net) passes through 𝑞, the length of
the 𝑞-based rope net must be greater than or at
least equal to that of the 𝑝-based rope net since
R is stable (length-minimized), as illustrated in
Figure 23. We can compute the length change
rate of ∥R∥ w.r.t. 𝑝 by

max
𝑞∈Neigh(𝑝)

∥R𝑞 ∥ − ∥R∥
∥𝑝 − 𝑞∥ ,

where Neigh(𝑝) denotes the neighborhood of 𝑝 on the surfaceM.
Note that since the rope net is allowed to leave the surface, we use
geodesic distance to measure the lengths of the parts of the rope
net lying on the surface and use Euclidean distance to compute the
lengths of the other parts not on the surface. The Tightness of R
can be thus defined by

FTightness (R) = max
𝑝∈R∩M

max
𝑞∈Neigh(𝑝)

∥R𝑞 ∥ − ∥R∥
∥𝑝 − 𝑞∥ . (14)

In implementation, we sample 𝑝 to be the middle point of each
curve edge. For a fixed 𝑝 , we select the point 𝑞 along the direction
that is orthogonal to the curve edge of the rope net and tangent to
the surface. The bigger FTightness (R) is, the tighter the rope net is,
indicating that the rope net can tightly secure the target without
slipping.

Stress distribution. The stress distribution of a rope net depends
on where to lift the rope net and where to wrap the target object.
Hence, we compute the stress distribution Fstress (R) as the sum
of the stresses on each curve edge based on formula 𝐸 (𝑥,𝑦,R, 𝐹)
(Eq 13). The lower value of Fstress (R), the smaller of the stresses
on the rope net, which implies that the rope net can perform the
load-balance lifting task better.

Simplicity. We use the number of the rope nodes |V| and the
length of the rope net ∥R∥ to measure the simplicity of the rope
net. It is apparent that the fewer nodes the rope net has, the simpler
the rope net is. For fair comparisons, we uniformly scale the input
model to a 1 × 1 × 1 box.

6.3 Ablation studies
While we cannot find prior work solving the same problem, we
demonstrate the rationality of our designed pipeline by comparing
our method against a set of possible alternatives using the proposed
metrics.

Various key loop strategies. We look into an ablation experiment
that replaces our SDF-based key loop with dual loops (field-aware
geodesic loops) computed in the DLM method [Campen et al. 2012].
We extract dual loops from the quad layout of its results. These
loops automatically construct a rope net that guarantees the 4-
degree property but are not necessarily satisfy the specific rope
net requirements. As shown in Figure 22, our method yields better
performance in covering the critical wrapping regions of the object
and is more suitable to generate a simple and cost-effective rope
net.

Various initial rope nets. We note that the dual of a quad lay-
out is naturally a curve network with every node having a va-
lence of four, which can be directly used for the initialization of
our rope net. However, as shown in Figure 24, we compare our
generated rope nets with the ones from instant meshing [Jakob
et al. 2015], feature-aligned meshing [Huang et al. 2018], and sim-
ple quad-domain [Tarini et al. 2011a], respectively. Our results are
considerably simpler and cost less materials for all the models. More-
over, our rope nets capture more easily of the crease regions than
the other approaches. The main reason is that our initial rope net
generation is directly guided by a shape descriptor that segments

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

6:12 • J. Liu et al

∥R ∥: 112.04, |V |: 2469 ∥R ∥: 36.039, |V |: 269 ∥R ∥: 53.542, |V |: 582 ∥R ∥: 6.4752, |V |: 17

FTightness (R) :0.95
Fstress (R) : 5.63e5𝑁 /𝑚2

FTightness (R) :0.86
Fstress (R) : 4.65e6𝑁 /𝑚2

FTightness (R) :0.82
Fstress (R) : 2.87e6𝑁 /𝑚2

FTightness (R) :0.90
Fstress (R) : 4.58e7𝑁 /𝑚2

∥R ∥: 211.22, |V |: 4090 ∥R ∥: 153.76, |V |: 2358 ∥R ∥: 33.522, |V |: 136 ∥R ∥: 7.6385, |V |: 22

FTightness (R) :0.95
Fstress (R) : 9.24e5𝑁 /𝑚2

FTightness (R) :0.92
Fstress (R) : 1.65e6𝑁 /𝑚2

FTightness (R) :0.85
Fstress (R) : 1.10e7𝑁 /𝑚2

FTightness (R) :0.96
Fstress (R) : 2.06e7𝑁 /𝑚2

∥R ∥: 94.161, |V |: 1439 ∥R ∥: 94.683, |V |: 1494 ∥R ∥: 24.953, |V |: 127 ∥R ∥: 8.0236, |V |: 29

FTightness (R) :0.96
Fstress (R) : 2.14e5𝑁 /𝑚2

FTightness (R) :0.95
Fstress (R) : 3.77e5𝑁 /𝑚2

FTightness (R) :0.83
Fstress (R) : 1.94e6𝑁 /𝑚2

FTightness (R) :0.97
Fstress (R) : 2.58e7𝑁 /𝑚2

∥R ∥: 123.08, |V |: 3121 ∥R ∥: 125.18, |V |: 3193 ∥R ∥: 41.889, |V |: 389 ∥R ∥: 6.3673, |V |: 17

FTightness (R) :0.95
Fstress (R) : 1.68e5𝑁 /𝑚2

FTightness (R) :0.93
Fstress (R) : 2.85e5𝑁 /𝑚2

FTightness (R) :0.82
Fstress (R) : 7.38e5𝑁 /𝑚2

FTightness (R) :0.94
Fstress (R) : 2.27e7𝑁 /𝑚2

∥R ∥: 253.55, |V |: 7175 ∥R ∥: 218.19, |V |: 5384 ∥R ∥: 106.59, |V |: 1464 ∥R ∥: 10.842, |V |: 60

FTightness (R) :0.91
Fstress (R) : 2.36e4𝑁 /𝑚2

FTightness (R) :0.92
Fstress (R) : 2.44e4𝑁 /𝑚2

FTightness (R) :0.90
Fstress (R) : 2.12e5𝑁 /𝑚2

FTightness (R) :0.96
Fstress (R) : 3.31e5𝑁 /𝑚2

∥R ∥: 115.94, |V |: 4193 ∥R ∥: 109.81, |V |: 3772 ∥R ∥: 27.493, |V |: 266 ∥R ∥: 8.1712, |V |: 44

FTightness (R) :0.95
Fstress (R) : 1.88e5𝑁 /𝑚2

FTightness (R) :0.92
Fstress (R) : 1.62e5𝑁 /𝑚2

FTightness (R) :0.87
Fstress (R) : 1.12e6𝑁 /𝑚2

FTightness (R) :0.97
Fstress (R) : 8.83e6𝑁 /𝑚2

(a) IM (b) QF (c) SQD (d) Ours

Fig. 24. Comparing with the dual layout-based rope net. The final rope nets
(a-c) are initialized by IM ([Jakob et al. 2015]), QF ([Huang et al. 2018]) and
SQD ([Tarini et al. 2011a]) and tightened using our tightening algorithm.

parts of an object effectively. The misalignment of the separatri-
ces traced out from irregular vertices is a long-standing problem in
quad-meshing [Tarini et al. 2011b], and it can lead to arbitrarily long
separatrices and a complex quad-layout. Even there is no singular-
ity misalignment problem present in the quad-layouts, as shown

∥R ∥: 39.17, |V |: 198

FTightness (R) :0.90
Fstress (R) : 1.18e6 𝑁 /𝑚2

∥R ∥: 16.44, |V |: 73

FTightness (R) :0.92
Fstress (R) : 3.80e6 𝑁 /𝑚2

(a) Skeleton-driven method (b) Our method
∥R ∥: 28.48, |V |: 154

FTightness (R) :0.94
Fstress (R) : 3.49e6 𝑁 /𝑚2

∥R ∥: 10.37, |V |: 47

FTightness (R) :0.96
Fstress (R) : 1.61e7 𝑁 /𝑚2

(c) IGM (d) Our method
Fig. 25. Comparison on the models with sharp feature and high genus. The
rope nets (left-column) are the results of Skeleton-driven method ([Usai et al.
2015]) and IGM method ([Bommes et al. 2013a]) taken as initializers and
tightened them by our tightening algorithm. The rope nets (right-column)
are our results.

in Figure 25, our results are still simpler since the quad meshing
methods usually need to take into consideration of the mesh quality
which is irrelevant to our rope net generation.

With vs. without the loop-reinforcement processing. To study the
effectiveness of the reinforced rope net with more key loops, we
compare our method to itself without any reinforcement. The re-
sults of the stress distribution are shown in Figure 26. Note the
additional key loops of weak curve edges after applying the rein-
forcement processing step. Naturally, the rope net becomes denser
as demonstrated in Figure 26b. With the reinforcement step, the
stresses distributed over the rope net are much smaller than the one
without, as shown in Figure 26.

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

Computational Object-Wrapping Rope Nets • 6:13

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

0 0.2 0.4 0.6 0.8 1

St
re

tc
h

st
re

ss

without loop-reinforcement
with loop-reinforcement

∥R ∥: 8.34, |V |: 22 ∥R ∥: 12.12, |V |: 39

FTightness (R) :0.90
Fstress (R) : 1.39e7 𝑁 /𝑚2

FTightness (R) :0.93
Fstress (R) : 1.04e7 𝑁 /𝑚2

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

0 0.2 0.4 0.6 0.8 1

St
re

tc
h

st
re

ss

without loop-reinforcement
with loop-reinforcement

∥R ∥: 8.11, |V |: 44 ∥R ∥: 10.81, |V |: 75

FTightness (R) :0.89
Fstress (R) : 2.13e7 𝑁 /𝑚2

FTightness (R) :0.90
Fstress (R) : 5.53e6 𝑁 /𝑚2

(a) (b) (c)
Fig. 26. Comparing the stress distribution of the rope net (a) with and (b)
without the loop-reinforcement step under the similar hoisting plan. (c)
shows the distribution of the stress on each edge with and without loop-
reinforcement. The reinforcing rope nets have smaller maximum stress and
perform better in load balancing than those without the reinforcements.

6.4 Additional results
Gallery. Our method can compute the rope nets and hoisting

plans over 3D models with various complexities. In Figure 27, we
show a gallery of examples generated by our method. For each
model, its hoisting plan consists of one lifting point (dotted by red
sphere) and a pair of anchor points (dotted by blue spheres) on the
rope net.

Key parameters. Our approach allows the easy change of parame-
ters 𝑘1 and 𝑘2 in Eq 7 to adjust the simplicity of the generated rope
net. In Figure 28, we use different 𝑘1 and 𝑘2 to generate rope nets
with varying simplicity. We also expose the variant 𝜆 of our method
to users for controlling safety aspect during hoisting. As shown in
Figure 29, we compare the performances of the rope nets made of
carbon fibre (Figure 29a) with that made of nylon (Figure 29b). Note
that, when using a strong rope (Carbon fibre rope), we can provide
a simpler rope net while satisfying the stress constraint.

Robustness to high genus. As shown in Figures 27, 22,and 25, our
approach can handle models with high genus. The complexity of
the rope net depends on the cross-field. High genus shapes often
have complicated cross-field. We can easily simplify the complexity
of such kind of models by wrapping the rope nets around their
enveloping surfaces presented by the nested cage [Sacht et al. 2015],
as shown in Figure 30. However, this method only can work for
high genus shapes with tiny holes since the enveloping surface
could cover the small holes. The rope net is still complex if the
shape model with many large holes in geometry; see Figure 22 and
Figure 25.

Fig. 27. Gallery of examples generated by our method. We compute the
rope nets and hoisting plans over 3D models with various complexities. For
each model, its hoisting plan consists of one lifting point (dotted by red
sphere) and a pair of anchor points (dotted by blue spheres) on the rope net.

Physical results. As shown in Figure 31, we printed 12 models
and realized our computed rope nets on the corresponding physical
objects. We employ 4 people and provide them with our assembly
GUI for constructing the rope net. As expected, every rope net can
be assembled using a single rope. The assembly time ranges from 30
minutes to 180 minutes for one model with an average of 60 minutes
over all the 12 models.

7 DISCUSSION AND CONCLUSION
We introduce an interesting problem of computational object-wrapping
rope net, which not only tightly secures the object in practice,
but can also be composed with a single rope. We present a shape-
aware curve network to effectively solve the problem. Both topology
and geometry of the curve network are optimized via a discrete-
continuous optimization to satisfy the requirements of the rope net.
Through extensive experiments, we demonstrate that our approach
is noticeably effective in terms of robustness and generally applica-
ble for 3Dmodels with different shape complexities. Using the visual
guidance tool that we provide for users, the assemble property of
our rope net is also demonstrated through physical experiments.
Moreover, our method produces high-quality rope nets for a wide
variety of shapes and proposes extensive metrics for the rope net
evaluation that can be well generalized to new problem instances.

As a first attempt to solve the new problem, our current solution
still has some limitations. Our method starts with the key loop

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

6:14 • J. Liu et al

𝑘1 = 2, 𝑘2 = 2 𝑘1 = 2, 𝑘2 = 3 𝑘1 = 3, 𝑘2 = 3

∥R ∥: 4.58, |V |: 34
Fstress (R) : 2.25e7 𝑁 /𝑚2

∥R ∥: 5.78, |V |: 45
Fstress (R) : 1.45e7 𝑁 /𝑚2

∥R ∥: 6.92, |V |: 60
Fstress (R) : 1.08e7 𝑁 /𝑚2

𝑘1 = 2, 𝑘2 = 2 𝑘1 = 2, 𝑘2 = 3 𝑘1 = 3, 𝑘2 = 3

∥R ∥: 6.77, |V |: 21
Fstress (R) : 4.19e7 𝑁 /𝑚2

∥R ∥: 11.76, |V |: 38
Fstress (R) : 1.74e7 𝑁 /𝑚2

∥R ∥: 16.98, |V |: 44
Fstress (R) : 1.46e7 𝑁 /𝑚2

Fig. 28. We can easily vary 𝑘1 and 𝑘2 for different simplicity to generate
the rope nets.

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

0 0.2 0.4 0.6 0.8 1

St
re

tc
h

st
re

ss

Carbon fiber

Nylon

∥R∥: 6.06, |V|: 32 ∥R∥: 9.21, |V|: 48
(a) Carbon fibre rope (b) Nylon rope (c) Stress distribution

Fig. 29. Our method can incorporate rope usages to generate the rope nets
formed by different physical materials.

generation, which is such an important step of our pipeline since
every other step (e.g., assistant curves, initial rope net, rope net
consolidation, etc.) is computed from this initial set of loops. After
that, the rope net consolidation step moves the curve edges by
minimizing the total length of the rope. However, in some rare
cases, the two steps do not connect well, such as in the example of
the cactus model; see Figure 33c, which is due to the requirements
of the rope net are not directly embedded in generating the initial
key loops. In Figure 33c, the optimized rope net is quite different
from the initial result, indicating that our initial key loops are not
helpful for this case. Directly incorporating mechanical aspects into
our formulation to find stable key loops would be a better choice.
If considering the frictional property of a surface, the rope net,
after being shortened, may not be exactly a geodesic net, as shown
in Figure 33d. Then the interesting observation is that the lateral
frictional force is proportional to the geodesic curvature. Therefore,
in real-life scenarios, the rope net is not a geodesic net even if in
the stable state. A promising direction is to solve a coupled problem

(a) (b)

Fig. 30. An example of the simplification process for high genus shapes
with many small holes. To simplify the complex of rope net, we compute an
enveloping surface (plotted by the gray color) of the original chair model (a)
by the nested cage [Sacht et al. 2015] and compute the rope net wrapping
around the enveloping surface based on our method (b).

by jointly learning or optimizing the key loop generation and the
rope net consolidation together.
On the other hand, the heuristic key loop strategy based on the

SDF approach is motivated by real-world lifting experience and
works well for most shapes, while it still has some space to be
improved. For example, it may extract no key loops for some extreme
cases, such as primitive shapes and very thin parts; see Figure 33a-
b. And it generates inconsistent key loops across various mesh
resolutions, resulting in different rope nets of the same object; see
Figure 32. Nevertheless, how to obtain the stable loops of 3D objects
is an exciting research problem. Our algorithm, in its current form,
still lacks enough physics considerations, which needs to be further
improved in the future.

Interesting results are observed when the input models are sym-
metric. The rope nets tend to be also symmetric. However, our
current approach does not explicitly guarantee this property. We
also believe that this would be a future work of our algorithm.

ACKNOWLEDGEMENTS
We thank all the reviewers for their valuable comments and sug-
gestions. Thanks for the models from the Thingi10K, the McGill 3D
Shape Benchmark and the AIM@SHAPE Shape Repository. This
work was supported in part by NSFC (61772318, 61772016, 62132021)
and National Key Research and Development Program of China
(2018AAA0102200).

REFERENCES
Abaqus. 2018. Abaqus. http://www.feasol.com.
Tobias Achterberg. 2009. SCIP: solving constraint integer programs. Math. Program.

Comput. 1 (2009), 1–41.
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013a. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32 (2013),
98:1–98:12.

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization
of Quadrilateral Meshes. Comput. Graph. Forum 30 (2011), 375–384.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Cláudio T. Silva, Marco Tarini,
and Denis Zorin. 2013b. Quad-Mesh Generation and Processing: A Survey. Comput.
Graph. Forum 32 (2013), 51–76.

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

http://www.feasol.com

Computational Object-Wrapping Rope Nets • 6:15

Fig. 31. Some rope nets physically realized using our method.

#face: 1088 #face: 7480 #face: 17304 #face: 41884
∥R ∥: 6.57, |V |: 16 ∥R ∥: 5.11, |V |: 15 ∥R ∥: 5.66, |V |: 15 ∥R ∥: 8.80, |V |: 30

Fig. 32. The number of faces used in the input model can effect its critical
wrapping regions extracted by the SDF-based key loops (plotted by various
colors in the top row). Although exhibiting similar shape, our rope net is
still not invariant to different resolutions.

(a) (b) Initial rope net (c) (d)
Fig. 33. Limitations of our rope net. Our method may fail for objects where
no key loops are extracted such as primitive shape objects (a), and shapes
composed with extremely thin features that may break ropes (b). (c) With-
out considering the frictional coefficient of the surface, the rope net after
optimization is far from the initial result. (d) The stabilized rope net when
fractional force exists.

David Bommes, Tobias Vossemer, and Leif Kobbelt. 2008. Quadrangular Parameteriza-
tion for Reverse Engineering. In Proceedings of the 7th International Conference on
Mathematical Methods for Curves and Surfaces. 55–69.

J A Bondy and U S R Murty. 1976. Graph Theory with Applications. 117–134 pages.
https://doi.org/10.1007/978-1-349-03521-2_8

Y. Boykov, O. Veksler, and R. Zabih. 2001. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 11
(2001), 1222–1239.

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality
quad layouts on manifolds. ACM Trans. Graph. 31 (2012), 110:1–110:11.

Marcel Campen and Leif Kobbelt. 2014. Dual strip weaving: interactive design of quad
layouts using elastica strips. ACM Trans. Graph. 33 (2014), 183:1–183:10.

Keenan Crane, C. Weischedel, and M. Wardetzky. 2013. Geodesics in heat: A new
approach to computing distance based on heat flow. ACM Trans. Graph. 32 (2013),
152:1–152:11.

Mathieu Desbrun, Eva Kanso, and Yiying Tong. 2008. Discrete Differential Forms for
Computational Modeling. Vol. 38. Birkhauser, 287–324.

Tamal K. Dey, Jian Sun, and Yusu Wang. 2010. Approximating Loops in a Shortest Ho-
mology Basis from Point Data. In Proceedings of the Twenty-Sixth Annual Symposium
on Computational Geometry. 166–175.

Rosen Diankov, Siddhartha S. Srinivasa, Dave Ferguson, and James J. Kuffner. 2008.
Manipulation planning with caging grasps. (2008), 258–292.

Thomas Eiter and Heikki Mannila. 1994. Computing Discrete Fréchet Distance. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.937

Jianhui Fu, Jaedeuk Yun, Yoongho Jung, and Deugwoo Lee. 2017. Generation of filament-
winding paths for complex axisymmetric shapes based on the principal stress field.
Composite Structures 161 (2017), 330–339.

Jingwei Huang, Yichao Zhou, Matthias Nießner, Jonathan Richard Shewchuk, and
Leonidas J. Guibas. 2018. QuadriFlow: A Scalable and Robust Method for Quadran-
gulation. Comput. Graph. Forum 37 (2018), 147–160.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
field-aligned meshes. ACM Trans. Graph. 34 (2015), 189:1–189:15.

Zhongping Ji, Ligang Liu, and YigangWang. 2010. B-Mesh : A Fast Modeling System for
Base Meshes of 3 D Articulated Shapes. Computer Graphics Forum 29, 7, 2169–2177.

Dave Johnson. 2016. Hoisting and Rigging Safety Manual. Infrastructure Health and
Safety Association. https://www.ihsa.ca/products/M035.

David J. Ketchen and Christopher L. Shook. 1996. THE APPLICATION OF CLUSTER
ANALYSIS IN STRATEGIC MANAGEMENT RESEARCH: AN ANALYSIS AND
CRITIQUE. Strategic Management Journal 17, 6, 441–458.

Lingchen Kong, Chuanqi Qi, and Hou-Duo Qi. 2019. Classical Multidimensional Scaling:
A Subspace Perspective, Over-Denoising, and Outlier Detection. IEEE Transactions
on Signal Processing 67 (2019), 3842–3857.

Tsz-Ho Kwok, Weiwei Wan, Jia Pan, Charlie C. L. Wang, Jianjun Yuan, Kensuke Harada,
and Yong Chen. 2016. Rope caging and grasping. 2016 IEEE International Conference
on Robotics and Automation (ICRA) (2016), 1980–1986.

Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. 1999. Fast Proximity
Queries with Swept Sphere Volumes.

Jian Liu, Shiqing Xin, Zengfu Gao, Kai Xu, Changhe Tu, and Baoquan Chen. 2018.
Caging Loops in Shape Embedding Space: Theory and Computation. 2018 IEEE
International Conference on Robotics and Automation (ICRA) (2018), 1–5.

Satoshi Makita and Weiwei Wan. 2017. A survey of robotic caging and its applications.
Advanced Robotics 31 (2017), 1071–1085.

Giorgio Marcias, Kenshi Takayama, Nico Pietroni, Daniele Panozzo, Olga Sorkine-
Hornung, Enrico Puppo, and Paolo Cignoni. 2015. Data-driven interactive quadran-
gulation. ACM Trans. Graph. 34 (2015), 65:1–65:10.

Nets4you. 2019. Hoisting net. https://www.nets4you.com/hoist-and-lifting-nets/.
Vishal P Patil, Joseph D Sandt, M. Kolle, and J. Dunkel. 2020. Topological mechanics of

knots and tangles. Science 367 (2020), 71 – 75.
Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Roberto, and Paolo Cignoni. 2016.

Tracing Field-coherent Quad Layouts. Comput. Graph. Forum 35 (2016), 485–496.

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

https://doi.org/10.1007/978-1-349-03521-2_8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.937
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.937
https://www.ihsa.ca/products/M035
https://www.nets4you.com/hoist-and-lifting-nets/

6:16 • J. Liu et al

Florian T. Pokorny, Johannes A. Stork, and Danica Kragic. 2013. Grasping objects with
holes: A topological approach. 2013 IEEE International Conference on Robotics and
Automation (2013), 1100–1107.

Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. 2015. PerfectMatching
Quad Layouts for Manifold Meshes. Comput. Graph. Forum 34 (2015), 219–228.

Alberto Rodriguez, Matthew T. Mason, and Steve Ferry. 2011. From caging to grasping.
I. J. Robotics Res. 31 (2011), 886–900.

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Trans.
Graph. 34 (2015), 170:1–170:14.

Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019.
Chebyshev nets from commuting PolyVector fields. ACM Trans. Graph. 38 (2019),
172:1–172:16.

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. 2007. Consistent mesh partitioning
and skeletonisation using the shape diameter function. The Visual Computer 24
(2007), 249–259.

Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufandeh, Sylvain Bouix, and
Sven J. Dickinson. 2007. Retrieving articulated 3-D models using medial surfaces.
Machine Vision and Applications 19 (2007), 261–275.

S. Skiena. 1990. Implementing discrete mathematics - combinatorics and graph theory
with Mathematica.

Johannes A. Stork, Florian T. Pokorny, and Danica Kragic. 2013. Integrated motion
and clasp planning with virtual linking. 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (2013), 3007–3014.

Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and Olga Sorkine-
Hornung. 2013. Sketch-based generation and editing of quad meshes. ACM Trans.
Graph. 32 (2013), 97:1–97:8.

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011a.
Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30
(2011), 142.

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011b.
Simple Quad Domains for Field Aligned Mesh Parametrization. ACM Trans. Graph.

30, 6 (Dec. 2011), 1–12.
Julien Tierny, Joel Daniels, Luis Gustavo Nonato, Valerio Pascucci, and Cláudio T. Silva.

2012. Interactive Quadrangulation with Reeb Atlases and Connectivity Textures.
IEEE Transactions on Visualization and Computer Graphics 18 (2012), 1650–1663.

Yiying Tong, Pierre Alliez, David Cohen-Steiner, and Mathieu Desbrun. 2006. Design-
ing quadrangulations with discrete harmonic forms. In Proceedings of the Fourth
Eurographics Symposium on Geometry Processing. 201–210.

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2015.
Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton.
ACM Trans. Graph. 35 (2015), 6:1–6:13.

Usnet. 2019. Cargo lifting. https://www.usnetting.com/cargo-netting/cargo-lifting-
nets/.

Weiwei Wan, Rui Fukui, Masamichi Shimosaka, Tomomasa Sato, and Yasuo Kuniyoshi.
2012. Grasping by caging: A promising tool to deal with uncertainty. 2012 IEEE
International Conference on Robotics and Automation (2012), 5142–5149.

Weiwei Wan, Rui Fukui, Masamichi Shimosaka, Tomomasa Sato, and Yasuo Kuniyoshi.
2013. A New ’Grasping by Caging’ Solution by using Eigen-shapes and Space
Mapping. 2013 IEEE International Conference on Robotics and Automation (2013),
1566–1573.

Weiwei Wan, Boxin Shi, Zijian Wang, and Rui Fukui. 2020. Multirobot Object Transport
via Robust Caging. IEEE Transactions on Systems, Man, and Cybernetics: Systems
(2020), 270–280.

Dmitry Zarubin, Florian T. Pokorny, Marc Toussaint, and Danica Kragic. 2013. Caging
complex objects with geodesic balls. 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (2013), 2999–3006.

Sen Zhang, Hui Zhang, and Jun-Hai Yong. 2015. Automatic Quad Patch Layout Extrac-
tion for Quadrilateral Meshes. Computer-Aided Design and Applications 13 (2015),
1–8.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10, 000 3D-Printing
Models. ArXiv abs/1605.04797 (2016).

ACM Trans. Graph., Vol. 41, No. 1, Article 6. Publication date: August 2021.

https://www.usnetting.com/cargo-netting/cargo-lifting-nets/
https://www.usnetting.com/cargo-netting/cargo-lifting-nets/

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Rope net generation
	4.1 Key Loops
	4.2 Assistant Curves
	4.3 Mixed-integer Optimization

	5 Rope Net Consolidation
	5.1 Rope Net Tightening
	5.2 Hoist Planning
	5.3 Assembly

	6 Results and Evaluation
	6.1 Implementation
	6.2 Evaluation metrics
	6.3 Ablation studies
	6.4 Additional results

	7 Discussion and Conclusion
	References

