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Abstract— Given an articulated robot arm, we present a
method to identify two regions with non-empty interiors. The
first region is a subset of the configuration space where every
point in the region is manipulable. The second region is a
subset of the workspace where every point in the region
is reachable by the end-effector. Our method expresses the
kinematic state of the robot arm using the maximal coordinates,
so that the kinematic constraints take polynomial forms. We
then reformulate the optimization-based inverse kinematics (IK)
algorithm as gradient flows. Finally, we use sum-of-squares
(SOS) programming to certify the convergence of each gradient
flow. Our main result shows that the feasibility of an SOS
programming problem is a sufficient condition for the manip-
ulability and reachability of the sublevel sets of polynomial
functions. Our method can be used to certify manipulable or
reachable regions by solving a set of linear matrix inequalities
(LMIs) or to maximize the volume of a region by solving a set
of bilinear matrix inequalities (BMIs). These identified regions
can then be used in various motion planning problems as hard
safety constraints.

I. INTRODUCTION

When computing a continuous trajectory for a robot arm

in the Cartesian space [27], it is important to make sure that

every point on the trajectory can be reached by the robot’s

end-effector. Further, a “safe” trajectory should also be robust

to uncertainties [44], so that an arbitrary perturbation to the

trajectory can be compensated by a change in the config-

uration. These two requirements are known as reachability

[26] and manipulability [44]. A manipulable point is a point

in the robot’s configuration space, from which a robot can

move its end-effector along any directions. A reachable point

is a point in the workspace, which belongs to the image of

the forward kinematic function.

For a typical robot arm with redundant degrees of freedom,

the set of manipulable points will form manipulable regions

with non-empty interiors in the configuration space. Simi-

larly, reachable points will form regions in the workspace.

However, these regions have irregular boundaries that are

difficult to represent discretely. To approximate the shape

of these regions, previous works [26], [10], [33] propose to

first find a discrete set of manipulable or reachable points and

then connect these points. However, these methods are not

guaranteed to produce inner-approximation, i.e. the approxi-

mations might not preserve manipulability or reachability. In

this paper, we address the problems of inner-approximations

of manipulable and reachable regions for a given kinematic

system.

Unlike the reachability of a kinematic system, forward and

backward reachability problems of a dynamic system have

been vastly studied in previous works, i.e. [9], [29], [11],
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[17], [37], [8], [4], [42], [43]. Some of these works [29]

derive outer-approximations of reachable regions, others like

[42] propose inner-approximations. These works require that

a dynamic system be represented in the explicit form:

ẋ = f(x), (1)

where x is the configuration, and all entries of f are poly-

nomial functions. Unfortunately, the kinematic reachability

problem takes a different mathematical form, and cannot be

analyzed as a dynamic system.

Main Result: We present a method to derive inner-

approximations for regions of manipulability and reacha-

bility. Our main idea is that, although the kinematic sys-

tem cannot be represented in the form of Equation 1,

the optimization-based IK algorithms can be understood as

gradient flows, which in turn take the form of Equation 1.

As a result, we can use similar ideas as [30] to identify the

convergent region of an IK algorithm, which corresponds to

manipulable and reachable regions. In other words, we show

that an IK algorithm will converge if 4 conditions hold and

these 4 conditions can be certified by checking the feasibility

of a set of matrix inequalities.

Our method proceeds as follows. First, we consider a

robot’s kinematic constraints under the maximal coordinates

[5], so that the forward kinematic function is reformulated

as a set of polynomial constraints (Section III). Second, we

analyze various forms of optimization-based IK algorithms

and derive their corresponding gradient flows (Section IV).

We then present the conditions under which the trajectory

of a gradient flow will converge, and we transform the con-

ditions into matrix inequalities by applying the S-procedure

(Section V). We highlight that our method can identify non-

trivial manipulable and reachable regions with non-empty

interiors for different 2D robot arms (Section VI).

II. RELATED WORK

We review related topics in IK, Lyapunov theory, sum-of-

squares programming, and reachable set computation.

A. Inverse Kinematics

Inverse kinematic algorithms recover a robot’s config-

uration, given the end-effector’s desired position in the

workspace. IK problems can be solved using numerical meth-

ods [36], [39], [41] or machine learning methods [14], [23].

In particular, an optimization-based IK algorithm updates

the robot’s configuration under the minimal coordinates and

move the end-effector towards its goal position, but there is

no guarantee that the goal position can be reached. Methods

have been proposed to improve the robustness of IK algo-

rithms by performing approximate reachability analysis [26],

[43]. These methods are based on sampling and discretization

and they do not guarantee that the approximation is inner.

By comparison, algebraic methods [18], [28] can check exact
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reachability or detect infeasibility. Both algebraic methods

and our method are based on the maximal coordinates of the

robot. The main difference is that algebraic methods check

reachability for a single point, while our method can identify

an entire reachable region. The notion of manipulability [34],

[26] is closely related to reachability: a robot’s end-effector

can move from a manipulable point to any point in a small

neighborhood. The manipulability ellipsoid [44] is an indica-

tion of the manipulable neighborhood size, while our method

provides an inner-approximation of this neighborhood.

B. Lyapunov Theory

A Lyapunov function can be used to identify a region

of attraction for a general dynamic system [30]. A time-

varying Lyapunov function can be understood as funnel [6],

such that a trajectory starting inside the funnel will always

stay inside. It is only after sum-of-squares programming is

invented in [24] that Lyapunov functions can be determined

computationally. In particular, previous works [31], [25],

[25] have used Lyapunov functions to analyze numerical

optimization algorithms. For example, authors of [31] use

special Lyapunov functions to provide convergence guarantee

or prove the convergence speed of first-order methods. We

also use Lyapunov functions to analyze optimization-based

IK algorithms, but we are not interested in the speed of

convergence. Instead, we use Lyapunov functions to restrict

all the points generated by the optimizer inside a closed,

viable region, by using the Nagumo’s theorem:

Lemma 2.1 (Nagumo ’s Theorem [3]): If f in Equation 1

is continuous on a compact set S , and if we have f ∈ T (S,x)
for every x ∈ ∂S , then S is forward invariant for at least one

solution to Equation 1. Here T (S,x) is the tangent cone ofS at x.

C. Sum-of-Squares Programming

Sum-of-squares programming can be used to approximate

(from below) the minimal value of a polynomial function,

when restricted to a (semi-)algebraic set. A semi-algebraic

set A is defined by some equality constraints F and in-

equality constraints G, where each equation in F,G is a

polynomial:

A = {x∣F(x) = 0,G(x) ≥ 0} .
If another polynomial P (x) is positive onA, then a sufficient

condition can be derived by the generalized S-procedure:

P (x) −Leq(x)F(x) −Lneq(x)G(x) ∈ SOS

Lneq(x) ∈ SOS,
(2)

where SOS is the set of sum-of-squares polynomials and x

is a set of polynomial variables. If some polynomial P (x) ∈
SOS, then PR(x) = M(x)THM(x), where M contains

monomials of x and H is a positive semi-definite (PSD)

matrix. In this way, polynomial variables can be eliminated

and the constraint P (x) ∈ SOS is transformed in a PSD-

cone: H ∈ PSD. The sufficient condition is also necessary

when the semi-algebraic set is Archimedean [13], which is

usually the case in our problem because x is bounded in our

definition of A. Although Equation 2 is infinite dimensional

in the polynomial variables x, verifying that a polynomial

belongs to SOS can be transformed into a matrix inequality

in the polynomial coefficients, which is finite dimensional

[24].

Sum-of-squares programming finds applications in stabil-

ity analysis [30], reachable set computation [42], and colli-

sion detection [1]. However, when the semi-algebraic set is

not fixed and contains decision variables, the SDP constraints

become bilinear matrix inequalities (BMIs). These BMI

constraints arise when a controller is optimized to maximize

the stability region [15] or the size of a funnel is minimized

to resist disturbance [16]. Sum-of-squares programming can

only solve small problems because it induces semidefinite

programming (SDP) problems, whose size is combinatorial

in the number of polynomial variables. Some recent advances

propose alternative optimization formulations based on linear

programming (LP), second-order cone programming (SOCP)

[2], and a mixture of LP and SDP [12], [38], that are

more efficient to solve. However, LP/SOCP-based methods

are too restrictive in the solution space and the LP+SDP-

based formulation is not convenient when handling BMI

constraints.

D. Reachable Set Computation

The reachable set problem of a dynamic system has

been studied for decades [9], [29], [11], [17], [37], [8],

[4], [42], [43]. Some of these techniques [9], [11], [4] are

only applicable to linear systems. For nonlinear dynamics,

both forward [20] and backward [42] reachable sets are

identified based on the HJB equation. Our work considers

the reachability of a kinematic problem, instead of a dynamic

system, while we borrow these techniques by formulating IK

algorithms as gradient flows of a numerical optimization. A

similar approach is used in [40] to analyze the convergence

of first order moment methods.

III. PROBLEM STATEMENT

In this section, we formulate a 2D robot’s forward kine-

matic problem under both minimal and maximal coordinates

[5], and we give the formal definitions of the manipulable and

reachable regions. We assume that the robot is an articulated

body with N links and the consecutive links are either

connected by hinge joints or prismatic joints.

A. Minimal Coordinates

We denote the minimal coordinate vector as xmin, which

is a N -dimensional vector consisting of joint angles or

translational distances. We further assume that xmin is under

the joint limits:

L ≤ xmin ≤U, (3)

where L,U are the lower and upper bounds, respectively.

The forward kinematic function maps xmin to the links’

global rotation and translation by a recursive rule. We denote

the ith link’s global rotation by Ri and translation by ti and

we assume R0 = I and t0 = 0. If the ith link and the i− 1th
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link are connected using a hinge joint, then we have:

Ri =Ri−1 (cos(xmin
i ) −sin(xmin

i )
sin(xmin

i ) cos(xmin
i ) )

ti =Ri−1li−1 + ti−1 −Rili.

(4)

Here xmin
i is the ith component of xmin, li−1, li are the local

translations from the i−1th and ith link to the joint position,

as illustrated in Figure 1 (a). If the ith link and the i − 1th

link are connected using a prismatic joint, we have:

Ri =∆RiRi−1

ti =Ri−1li−1 + ti−1 −Ridix
min
i .

(5)

Here ∆Ri is the relative rotation from the i − 1th link to

the ith link, and di is the translational direction in the local

frame of reference, as illustrated in Figure 1 (b).

The end-effector’s position is the global position of a point

on the N th link. If the local coordinates of this point is XN ,

then we define the end-effector as Emin(xmin) ≜RNXN +
tN . Note that Equation 4 and Equation 5 can be eliminated

recursively and incorporated into the function Emin. Under

these definitions, the set of manipulable points is defined as:

Smin
M = {xmin∣∀∆E,∃∆xmin,∆E = ∂E(xmin)

∂xmin
∆xmin} ,

and the set of reachable points is defined as:

Smin
R = {Emin(xmin)∣L ≤ xmin ≤U}.

B. Maximal Coordinates

We use x without subscript to denote the maximal co-

ordinates. In 2D cases, the maximal coordinates are repre-

sented as a 4N -dimensional vector with four scalar variables(si ci xi yi ) to represent the ith link’s global rotation and

translation as follows:

Ri = (ci −sisi ci
) ti = (xi

yi
) .

To ensure the rigidity of the link, we introduce an additional

constraint:

c2i + s2i = 1. (6)

If the ith link is connected to the i − 1th link via hinge

joint, then we have the following constraints to model their

connectivity:

Rili + ti =Ri−1li−1 + ti−1
(ci si )Ri−1 (cos(Ui+Li

2
)

sin(Ui+Li

2
) ) ≥ cos(

Ui −Li

2
), (7)

where Li,Ui are the ith component of L,U, respectively.

If the ith link is connected to the i − 1th link via prismatic

(a)

Ri−1, ti−1

Ri, ti

li

li−1
Li

Ui+Li

2

Ui

(b)

Ri−1, ti−1

Ri, ti

li−1

di

∆Ri

Fig. 1: Connectivity constraints between the ith link and the i−1th
link can be hinge joints (a) and prismatic joints (b).

joint, then we have the following constraints:

Ri =∆RiRi−1

Ridi × (ti −Ri−1li−1 − ti−1) = 0
Li ≤ tTi Ridi ≤Ui.

(8)

Unlike the minimal coordinates, Equation 6, Equation 7, and

Equation 8 cannot be eliminated and we arrange them into

two sets of equality and inequality polynomial constraints:

Ceq(x) = 0 Cneq(x) ≥ 0.
The end-effector of the robot under the maximal coordinates

takes the same form as that under the minimal coordinates,

denoted as: E(x) = RNXN + tN . Under these definitions,

the set of manipulable points is:

SM = {x∣∀∆e,∃∆x,
∂Ceq(x)

∂x
∆x = 0,∆e = ∂E(x)

∂x
∆x} ,

and the set of reachable points is:

SR = {E(x)∣Ceq(x) = 0,Cneq(x) ≥ 0} .
It is trivial to verify that the reachable and manipulable sets

defined under the minimal and the maximal coordinates are

identical, i.e. SR,M = Smin
R,M . Our problem is to find two

strict subsets: S̄M ⊂ SM and S̄R ⊂ SR. Previous methods

[26], [10], [33] have shown that the manipulability and

reachability of a certain point x can be checked. However,

our goal is to identify subsets S̄M and S̄R with non-empty

interiors, containing infinite number of points.

Remark 1: We use the symbol x to denote the maximal

coordinates of a robot arm, the configuration of a dynamic

system in Equation 1, and the polynomial variables in a SOS

constraints (Equation 2). This will not cause ambiguity as x

plays these three roles under different contexts.

IV. GRADIENT-FLOW OF IK ALGORITHM

In this section, we first review conventional optimization-

based IK algorithms under the minimal coordinates [7]. we

then extend this idea to the maximal coordinates. Finally, we

derive the corresponding gradient flow of each optimization

algorithm.

A. Minimal Coordinates

The optimization problem under the minimal coordinates

takes the following form:

argmin
xmin

1

2
∥Emin(xmin) − e∥2

s.t. L ≤ xmin ≤U,

(9)

where e is the desired position of the end-effector. This

optimization can be solved using the Levenberg-Marquardt

or damped least square method, but there is no guarantee that

Emin(xmin) = e on convergence. We notice that Equation 9

can also be solved by formulating xmin as the configuration

of a fictitious dynamic system and time-integrating the

gradient flow:

ẋmin = [∂Emin

∂x
]
T

(e −Emin(xmin)). (10)

As long as the joint limits are not violated during the

time integration, Equation 10 will monotonically reduce the

objective function and converge to a local minima. The

trajectory generated by Equation 10 can be understood as
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the convergence history of the least square algorithm when

infinitesimal step sizes are taken.

B. Maximal Coordinates

We can extend optimization-based IK algorithms to the

maximal coordinates x. However, since x is not guaranteed

to satisfy the rigidity and link connectivity constraints, we

consider two different forms of optimization problems. First,

we can formulate Ceq as soft constraints and solve the

following problem:

argmin
x

1

2
∥E(x) − e∥2 + 1

2
∥Ceq(x)∥2

s.t. Cneq(x) ≥ 0.
(11)

Since Cneq are generally nonlinear in x, typical algorithms

that can solve Equation 11 involve augmented Lagrangian

methods and interior point methods [22]. A major drawback

of Equation 11 is that the optimization algorithm might

not return a valid solution that satisfies Ceq(x) = 0. By

comparison, solving Equation 9 will always result in a

valid solution even if Emin(xmin) ≠ e. The gradient flow

corresponding to Equation 11 is:

ẋ = ∂E

∂x

T (e −E(x)) − ∂Ceq(x)
∂x

T

Ceq(x). (12)

A second method is to formulate Ceq as hard constraints and

solve the following optimization problem:

argmin
x

1

2
∥E(x) − e∥2

s.t. Ceq(x) = 0 Cneq(x) ≥ 0.
(13)

If the initial guess satisfies the polynomial constraints Ceq

and Cneq , Equation 13 will always return a valid solution

in theory. However, if too large step sizes are taken by an

optimizer, the solution might be stuck in an infeasible area

with a rank-deficient constraint Jacobian, from which the

optimizer will not be able to recover feasibility. To guarantee

the satisfaction of Ceq , we can take infinitesimal step sizes,

resulting in the following projected gradient flow:

ẋ = ∂E

∂x

T (e −E(x)) + ∂Ceq(x)
∂x

T

λ

s.t. Ċeq = ∂Ceq(x)
∂x

ẋ = 0,
(14)

where λ is the Lagrangian multiplier that projects out any

changes to Ceq .

Remark 2: Both the gradient flow (Equation 12) and the

projected gradient flow (Equation 14) take the form of

Equation 1, where x can be interpreted as the state of

a dynamic system. To see this for the projected gradient

flow, we can compare Equation 14 and Equation 1, which

immediately leads to the following linear system:

⎛
⎝ I

∂Ceq(x)

∂x

T

∂Ceq(x)

∂x
0

⎞
⎠(

f−λ) = (
∂E
∂x

T (e −E(x))
0

) .
This linear system is guaranteed to have a solution that

defines f , even when ∂Ceq(x)/∂x is rank-deficient.

V. REGION IDENTIFICATION

In this section, we analyze the properties of the fictitious

dynamic systems, Equation 12 and Equation 14, using sum-

of-squares (SOS) programming. Similar to previous works

[16], [37], we assume that S̄R and S̄M correspond to the

sublevel sets of two polynomials PM , PR:

S̄R = {e∣PR(e) ≤ 1} S̄M = {x∣PM(x) ≤ 1},
where the two polynomials PM,R are complete polynomials

in x,e, whose coefficients are decision variables. We now

show that the manipulability and reachability can be achieved

if the following 4 conditions hold for a gradient flow:

1) The gradient flow starts from a valid initial guess.

2) One solution to the gradient flow will stay inside S̄M .

3) Objective function is zero when the solution converges.

4) The joint limit will not be violated inside S̄M .

Each of these conditions can be transformed into polynomial

positivity constraints on some semi-algebraic set, for which

the S-procedure [24] can be used to derive a sufficient

condition. We use condition 4 as an example.

Condition 4: To ensure that the joint limits will not be

violated in S̄M , we can define F = ∅ and G = 1 − PM(x)
in Equation 2 and derive:

Cneq(x) −Lneq
M (x)(1 − PM(x)) ∈ SOS

L
neq
M (x) ∈ SOS,

(15)

where L
neq
M is the polynomial Lagrangian multipliers. In the

following subsections, we certify the first 3 conditions first

for Equation 12 and then for Equation 14.

A. Case with Soft Constraints

Condition 1: The gradient flow will reduce infeasibility

by minimizing Ceq , so it does not require the initial guess,

denoted as xinit, to satisfy Ceq(xinit) = 0. In other words,

any xinit that falls inside S̄M is valid, i.e. the following

constraint implies condition 1:

PM(xinit) ≤ 1. (16)

Our formulation requires xinit to be a known constant. If

xinit is unknown, we can treat xinit as additional decision

variables, but the constraints of Equation 16 take a general

nonlinear form, which requires constrained optimization with

mixed nonlinear, LMI constraints. Optimization algorithms

for this kind of problem are not well-studied.

Condition 2: We propose two forms of constraints, such

that satisfying either one of these constraints will imply

condition 2. First, since Equation 12 always reduces the

objective function value, then the flow starting inside S̄M
will never reach ∂S̄M if objective function values on ∂S̄M
are always larger than that on xinit. In other words, our

sufficient constraint is:
1

2
∥E(x) − e∥2 + 1

2
∥Ceq(x)∥2 >

1

2
∥E(xinit) − e∥2 + 1

2
∥Ceq(xinit)∥2 ∀x ∈ ∂S̄M ,e ∈ S̄R,

which takes the following form by applying the S-procedure:

[1
2
∥E(x) − e∥2 + 1

2
∥Ceq(x)∥2]−

[1
2
∥E(xinit) − e∥2 + 1

2
∥Ceq(xinit)∥2] − ǫ−

L
bd
M(x,e)(1 − PM(x)) −Lbd

R (x,e)(1 − PR(e)) ∈ SOS

L
bd
R (x,e) ∈ SOS,

(17)

where Lbd
M,R are the Lagrangian multipliers and ǫ is a small

constant to ensure the strictness of inequality. Our second
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constraint treats PM as a Lyapunov function that restricts the

trajectory in ∂S̄M via Lemma 2.1. Lemma 2.1 requires that

f lies in the tangent cone of S̄M when x is on the boundary

of S̄M , i.e:
∂PM(x)

∂x
ẋ ≤ 0 ∀x ∈ ∂S̄M ,e ∈ S̄R,

which takes the following form by applying the S-procedure:

− ∂PM(x)
∂x

[∂E
∂x

T (e −E(x)) − ∂Ceq(x)
∂x

T

Ceq(x)]−
L

bd
M(x,e)(1 − PM(x)) −Lbd

R (x,e)(1 − PR(e)) ∈ SOS

L
bd
R (x,e) ∈ SOS.

(18)

Condition 3: We need to show that the gradient flow

always converges to zero. In other words, if the current

objective function is not zero, there is always a local direction

to reduce it, for which a sufficient condition is for the

following Jacobian matrix to have a full rank:

J(x) = ( ∂E(x)
∂x

T ∂Ceq(x)

∂x

T )T ∀x ∈ S̄M .

This is a polynomial matrix inequality (PMI) constraint,
which takes the following form by applying the S-procedure:

y
T (JJT − ǫI)y −Lconv

M (x,y)(1 − PM(x)) ∈ SOS

L
conv
M (x,y) ∈ SOS,

(19)

where y are auxiliary polynomial variables and Lconv
M are

the Lagrangian multipliers. We add a small constant ǫ to

ensure the strictness of the rank condition.

We have transformed the 3 properties of the gradient flow

in Equation 12 and we summarize our main results below:

Lemma 5.1: If the following optimization problem is fea-

sible, then S̄R ⊆ SR ∩E(SM):
argmin

PM ,PR,L
neq

M
,Lbd

M
,Lbd

R
,Lconv

M

0

s.t. Equation 15,16,17,19 or Equation 15,16,18,19.

Proof: Reachability: Consider the trajectory generated

by time-integrating gradient flow of Equation 12 and let

x(t = 0) = xinit so x(t = 0) ∈ S̄M by Equation 16.

The solution x(t) will monotonically reduce the objective

function value, so x(t) ∈ S̄M if Equation 17 is satisfied. Or

if Equation 18 is satisfied, then we have x(t) ∈ S̄M for at

least one solution due to Lemma 2.1. Let t→∞, we have:

0 = ∥ẋ∥2 = ∥JT (e −E(x)
Ceq(x) ) ∥2 ≥ ∥(

e −E(x)
Ceq(x) ) ∥2ǫ,

due to Equation 19. Therefore, the trajectory will converge

to the zero-level set of the objective function and will not

violate Cneq (due to Equation 15). Therefore, for every point

e ∈ S̄R, there exists a gradient flow that converges to a

valid robot configuration with e = E(x), so S̄R is reachable.

Manipulability: For any ∆e, we can find ∆x by solving:

(∆eT 0
T )T = J(x(∞))∆x,

which must be solvable as J(x(∞)) has a full row-rank.

The resulting ∆x satisfies the condition of SM showing thatS̄R ⊆ E(SM).

B. Case with Hard Constraints

Condition 1: The projected gradient flow needs to start

from an initial guess that satisfy Ceq and Cneq . Therefore, a

valid initial guess needs to satisfy the following constraints:

PM(xinit) ≤ 1
Ceq(xinit) = 0 Cneq(xinit) ≥ 0, (20)

which imply condition 1.

Condition 2: We derive two constraints similar to those
in Section V-A, where the difference is that we can further
restrict the semi-algebraic set by adding the equality Ceq =
0 to F. Adding more equations to the semi-algebraic set
will introduce more decision variables to the SOS constraints
and result in a larger feasible domain. As the first sufficient
constraint, we can provide guarantee that objective function
values on ∂S̄M are always larger than that on xinit:

[1
2
∥E(x) − e∥2] − [1

2
∥E(xinit) − e∥2] − ǫ−

L
bd
C (x,e)Ceq(x)−

L
bd
M(x,e)(1 − PM(x)) −Lbd

R (x,e)(1 − PR(e)) ∈ SOS

L
bd
R (x,e) ∈ SOS,

(21)

where Lbd
C

is the additional polynomial Lagrangian multi-

plier to restrict Ceq = 0. As the second sufficient constraint,

we treat PM as a Lyapunov function that restricts the pro-

jected gradient flow in S̄M using Lemma 2.1. However, we

can further restrict the semi-algebraic set using the identity

Ċeq = 0, leading to the combined sufficient condition:

∂PM(x)
∂x

ẋ ≤ 0 ∀Ċeq = 0,x ∈ ∂S̄M ,e ∈ S̄R,
which takes the following form after applying the S-
procedure:

− ∂PM(x)
∂x

[∂E
∂x

T (e −E(x)) + ∂Ceq(x)
∂x

T

λ]−
L

bd
λ (x,e, λ)∂Ceq(x)

∂x
[∂E
∂x

T (e −E(x)) + ∂Ceq(x)
∂x

T

λ]−
L

bd
C (x,e, λ)Ceq(x) −Lbd

M(x,e, λ)(1 − PM(x))−
L

bd
R (x,e, λ)(1 − PR(e)) ∈ SOS

L
bd
R (x,e, λ) ∈ SOS,

(22)

where Lbd
λ,C are additional polynomial Lagrangian multipli-

ers to restrict Ċeq = 0,Ceq = 0 and λ are treated as auxiliary

polynomial variables.

Condition 3: We have to ensure that there is always a

direction along which we can reduce the objective function

value and that the direction is not orthogonal to the tangent

bundle of the constrained manifold of Ceq . A sufficient

condition for this argument is that the direction after pro-

jection has a length of at least ǫ of its original length.

Mathematically, this constraint is:

∥ẋ∥2 ≥ ǫ∥e −E(x)∥2 ∀Ċeq = 0,x ∈ ∂S̄M ,e ∈ S̄R,
which takes the following form after applying the S-
procedure:

∥
∂E

∂x

T

(e −E(x)) +
∂Ceq(x)

∂x

T

λ∥2 − ǫ∥e −E(x)∥2−

Lconv
λ (x,e, λ)

∂Ceq(x)

∂x

⎡
⎢
⎢
⎢
⎣

∂E

∂x

T

(e −E(x)) +
∂Ceq(x)

∂x

T

λ
⎤
⎥
⎥
⎥
⎦
−

Lconv
C

(x,e, λ)Ceq(x) −L
conv
M (x,e, λ)(1 − PM (x))−

Lconv
R (x,e, λ)(1 − PR(e)) ∈ SOS

Lconv
M (x,e, λ), Lconv

R (x,e, λ) ∈ SOS,

(23)

where Lconv
λ,C are additional polynomial Lagrangian multipli-

ers. Below, we summarize our main results for the projected

gradient flow.
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Lemma 5.2: If the following optimization problem is fea-

sible, then S̄R ⊆ SR:

argmin
PM ,PR,L

neq

M
,Lbd

M ,Lbd
R ,Lbd

C
,Lbd

λ ,

Lconv
M ,Lconv

R ,Lconv
C

,Lconv
λ

0

s.t. Equation 15,20,21,23 or Equation 15,20,22,23.

Proof: Reachability: Consider the trajectory generated

by time-integrating gradient flow of Equation 14 and let

x(t = 0) = xinit so x(t = 0) ∈ S̄M by Equation 16 and

Ċeq(x(t)) =Ceq(x(t)) = 0 for all t ≥ 0 by the definition of

the projected gradient flow. The solution x(t) will monoton-

ically reduce the objective function value, so x(t) ∈ S̄M if

Equation 21 is satisfied. Or if Equation 22 is satisfied, then

we have x(t) ∈ S̄M for at least one solution due to Lemma

2.1. Let t → ∞, we have 0 = ∥f∥2 ≥ ∥e − E(x)∥2ǫ due to

Equation 23. Therefore, the trajectory will converge to the

zero-level set of the objective function and will not violate

Cneq (due to Equation 15) or Ceq .

Remark 3: As compared with the gradient flow, the pro-

jected gradient flow leads to more relaxed conditions to

identify a reachable subset. In the gradient flow, we assume

that J has a full-rank, which is used to pull an infeasible

x back to the constraint manifold. This is not needed in

the projected gradient flow as x never leaves the constraint

manifold. This relaxed condition potentially allows the iden-

tification of a larger reachable set. On the other hand, the

full-rank condition in the gradient flow always leads to the

identification of the reachable and the manipulable subset

simultaneously. For the projected gradient flow, we can only

prove reachability but not manipulability in Lemma 5.2.

C. Applications

If xinit is known, the optimization problems defined in

Lemma 5.1 and Lemma 5.2 are under BMI constraints that

are linear in both PM,R and polynomial Lagrangian multi-

pliers L●M,R. As a typical application, users want to verify

whether the known PM,R are strict inner-approximations

of the manipulable and reachable sets. In this case, PM,R

are fixed and BMI constraints are further reduced to LMI

constraints. Feasibility of LMI constraints can be verified in

polynomial time using interior point methods. As another

application, users want to find PM,R that are as-large-as-

possible. In this case, we follow [1] and approximate the

reciprocal of volume of S̄R using the trace of SOS matrix.

In other words, if PR(x) is an SOS polynomial, then

PR(x) =M(x)THM(x) and the volume of S̄R can then be

approximated by Tr(H). A common, additional requirement

from users is that the region S̄R is convex, which can be

further restricted to SOS-convexity. This is because verifying

function convexity cannot be performed using SOS program-

ming, but verifying SOS-convexity can be transformed into a

PSD-cone [1]. In summary, to maximize the identified region,

we solve the following optimization for the gradient flow:

argmin
PM ,PR,L

neq

M
,Lbd

M
,Lbd

R
,Lconv

M
,Lconv

R

Tr(H)
s.t. Equation 15,16,17,19 or Equation 15,16,18,19

PR(x) ∈ SOS ∩ SOS-convex.

(24)

And we solve the following optimization for the projected

gradient flow:

argmin
PM ,PR,L

neq

M
,Lbd

M ,Lbd
R ,Lbd

C
,Lbd

λ ,

Lconv
M ,Lconv

R ,Lconv
C

,Lconv
λ

Tr(H)

s.t. Equation 15,20,21,23 or Equation 15,20,22,23

PR(x) ∈ SOS ∩ SOS-convex.

(25)

We can only find local minima for BMI-constrained op-

timizations. Similar to [16], we use an alternating direc-

tion solver. Within each outer loop, we first fix PM,R

and optimize L●M,R, which is a LMI-constrained convex

optimization. We then fix L●M,R and optimize PM,R, which

is another LMI-constrained convex optimization. The outer

loop terminates when the relative function value change is

smaller than a threshold.

VI. RESULTS AND ANALYSIS

We implement our algorithm using C++ and solve all the

LMI-constrained optimization problems using Mosek [21] on

a desktop machine with 16GB memory and Intel Xeon W-

2155 processor. We use polynomials of degree d = 2 to relax

all the SOS constraints. In other words, if some polynomial

P (x) ∈ SOS, then a degree d relaxation is denoted as P (x) ∈
SOSd, which dictates that P (x) = Md(x)HdMd(x). HereMd is a vector of monomials in x up to degree d and

Hd is the matrix of decision variables. Note that d = 2 is

enough for relaxing all the SOS constraints, because every

polynomial optimization problem (POP) can be reduced

to an equivalent quadratic-constrained optimization problem

(QCQP) by introducing auxiliary variables [19]. Below, we

illustrate our method on different simplified robot models and

highlight the influence of different factors and parameters.

We always use Equation 24 to maximize the regions with

Equation 18 for condition 2, unless otherwise stated.

As our first evaluation, we use a 2D robot arm with 2 links

connected by 2 hinge joints, both with non-trivial joint limits,

in which case we have ∣xmin∣ = 2, ∣x∣ = 8, ∣Ceq(x)∣ = 6,∣Cneq(x)∣ = 2, and ∣e∣ = 2. We solve Equation 24 from an

initial guess xinit that is derived by randomly sampling a

minimal coordinates vector xmin within the joint limits and

then converting to the maximal coordinates. The polynomials

PM,R are initialized to small unit balls around xinit and

E(xinit), respectively. The convergence history of the outer

loop of the alternating direction solver is illustrated in

Figure 2. In all examples, the outer loop converges within 20

iterations (each involving 2 LMI-constrained optimizations).

On convergence, the identified reachable subset S̄R is locally

maximized, but the region is small compared with the true

reachable set SR. To identify larger subsets of SR, we

can randomly sample multiple xinit, solve for S̄R around

each xinit, and then take union of all S̄R. As illustrated

in Figure 3, we can identify a large subset of SR by

randomly sampling 260 initial guess. The computational time

of solving Equation 24 for 260 times is 25200 seconds.

In our second evaluation, we use 2D robot arm with 2 links

connected by 1 hinge joint and 1 prismatic joint, both with

non-trivial joint limits, in which case we have ∣xmin∣ = 2,
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Fig. 2: (a): Convergence of the outer loop of the alternating
direction solver. (b): The identified region S̄R of each iteration.

Fig. 3: For a 2-link robot with 2 hinge joints, we show the true
reachable set SR (black) and the 260 randomly sampled S̄R (color
coded by size of each S̄R).

∣x∣ = 8, ∣Ceq(x)∣ = 7, ∣Cneq(x)∣ = 3, and ∣e∣ = 2. Again,

we solve Equation 24 for 260 times and take union of allS̄R, which takes 54100 seconds of computational time. The

result is illustrated in Figure 4.

In our third evaluation, we compare the formulation based

on gradient flow (Equation 24 with Equation 18 for condition

2) and the formulation based on projected gradient flow

(Equation 25 with Equation 22 for condition 2). We solve

for S̄R 260 times using both formulations and profile the

distribution of identified subset size in Figure 5. Some of the

subsets identified using Equation 25 has larger volumes, but

the two distributions of volumes are comparable on average.

However, the total computational time using Equation 24 is

25200 seconds and the computational time using Equation 25

is longer than 100000 seconds, i.e. computational cost of

Equation 25 is at least 4× higher. This is because we

need to introduce λ as additional polynomial variables in

Equation 25, leading to much larger optimization problems.

Finally, we compare the two different constraints for

condition 2 in both formulations. As illustrated in Figure 6,

we solve Equation 24 first with Equation 17 and then with

Equation 18 and compare the volume of identified S̄R.

Clearly, the constraint based on Lemma 2.1 (Equation 18,22)

generates larger volumes than the constraint based on objec-

tive function values (Equation 17,21).

VII. CONCLUSION AND LIMITATIONS

Our work applies the sum-of-squares programming tech-

nique to identify the convergent region of an optimization al-

Fig. 4: For a 2-link robot with 1 hinge and 1 prismatic joint,
we show the true reachable set SR (black) and the 260 randomly
sampled S̄R (color coded by size of each S̄R).
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Fig. 5: We compare S̄R identified using Equation 25 (a) and
Equation 24 (b). Some of the S̄R identified using Equation 25 has
larger volumes (around 0.05), while the maximal volume of S̄R
under Equation 24 is only 0.03. However, the computational cost
of Equation 25 is 4× higher than Equation 24 at degree d = 2.

gorithm. We apply this technique to analyze the optimization-

based IK solver and show that the identified convergent

regions correspond to manipulable and reachable sets of

an articulated robot arm. Our method can be applied to

both soft-constrained and hard-constrained problems, and

the resulting BMI problem allows users to either certify

a fixed region or to maximize the volume of an unknown

region from an initial guess. We have evaluated our method

on 2D robot arms and we show that manipulable/reachable

regions of non-trivial sizes can be identified using low-order

polynomial relaxations (d = 2), in both soft-constrained and

hard-constrained cases. Finally, we highlight that, although

we apply our method to analyze IK algorithms, our method

is more general and can be applied to any optimization

algorithms, as long as the functions Ceq,Cneq,E take poly-

nomial forms.

Our major limitation inherited from general SOS program-

ming is that the method only handles a small number of

polynomial variables. Indeed, the size of PSD-cone con-

straints for a problem with N polynomial variables grow

like (N + d
d
). To make computation practical on a desktop

machine, our method is restricted to robots with at most 2

links. A potential method to reduce computational cost is to

exploit sparsity in polynomial variables [35]. In robot arms

without closed loops, the dependency between polynomial

variables for different links has banded sparse pattern, which
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Fig. 6: We compare the two constraints that imply condition
2. We solve Equation 25 for 10 times from same xinit using
Equation 18,22 and compare the volume of identified S̄R.

is benign to sparse SOS formulations. Another method to

reduce cost is to use other theorems of Positivstellensatz

[12], [38], [2]. However, some alternative theorems [12], [38]

lead to more general, multi-linear problems, for which more

complex, local optimization techniques are required.

As a second limitation, we restrict the notion of reacha-

bility to the set of end-effector positions that can be reached

by local optimization from a common initial guess. As a

result, we can only find a small, reachable subset around a

nominal solution xinit. However, we have shown that we

can identify larger subsets by randomly sampling nominal

solutions, identifying many local reachable subsets around

each solution and finally taking union of these subsets. This

technique is similar to previous work [32]. Another avenue

for future work is to analyze non-optimization-based IK

algorithms such as the algebraic algorithm [28].
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