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Abstract We propose a novel method for vector sketch simplification based on the simplification of the

geometric structure that is extracted from the input vector graph, which can be referred to as a base complex.

Unlike the sets of strokes, which are treated in the existing approaches, a base complex is considered to be

a collection of various geometric primitives. Guided by the shape similarity metrics that are defined for the

base complex, an agglomeration procedure is proposed to simplify the base complex by iteratively merging

a pair of geometric primitives that exhibit the minimum cost into a new one. This simplified base complex

is finally converted into a simplified vector graph. Our algorithm is computationally efficient and is able to

retain a large amount of useful shape information from the original vector graph, thereby achieving a tradeoff

between efficiency and geometric fidelity. Furthermore, the level of simplification of the input vector graph

can be easily controlled using a single threshold in our method. We make comparisons with some existing

methods using the datasets that have been provided in the corresponding studies as well as using different

styles of sketches drawn by artists. Thus, our experiments demonstrate the computational efficiency of our

method and its capability for producing the desirable results.
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1 Introduction

Sketches are drawings comprising short strokes and that do not contain considerable amount of detail.

This style of drawing is extensively used in different fields of application such as graphic design, artis-

tic logo or format design, computer-aided design in engineering, and two-dimensional (2D) animation.

Sketches are usually quickly drawn on a paper by artists who express their inspirations or an original

design concept; thus, a sketch often contains a large number of intersecting strokes in disorder. Sketches

that are to be used for high-level editing, such as high-quality delineating for animation and sketch-based

three-dimensional (3D) modeling, need to be graphically cleaned up. In practice, to obtain clean and

simple line drawings from sketches, one has to often manually draw lines by tracing the sketches, which

can be obtained at a dramatic time and labor cost. Thus, an automatic and robust sketch simplification

technique is urgently required.

A sketch that is drawn using electronic painting tools, such as tablets and stylus pens, is a vector

graph. Vector graphs have an extensive area of application because of their prominent advantages such
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(a) (b) (c)

Figure 1 (Color online) (a) Drawing a triangle with seven strokes; (b) the base complex of (a) comprises black curves,

red nodes, and differently colored patches; (c) the largest blue patch in (b) is a polygon surrounded by dense boundary

points.

as resolution independency, storage saving, and easy editing. The objective of sketch simplification is to

reduce the complexity of rough sketches and to produce relatively clean line drawings while maintaining

the fidelity of the simplified sketches with respect to the original drawings.

The techniques that have been previously used simplify the sketches by grouping and merging the ex-

isting strokes based on geometric information, such as distances [1] or additional semantic information [2],

and various parameters often have to be manually tuned to achieve satisfying results. In contrast to these

prevailing methods, we propose a vector sketch simplification method based on a geometric structure that

is extracted from an input vector graph, i.e., a base complex, which can be described as a collection of

graphic primitives including nodes, curves, and patches, as depicted in Figure 1(b). Specifically, we con-

vert a vector sketch into a base complex and resolve its simplification using an agglomeration procedure

that iteratively merges two neighboring graphic primitives that are guided by shape similarities, which

are defined for various graphic primitive pairs.

The used agglomeration process is inspired by an iterative contraction approach that is commonly

used in 3D mesh simplification algorithms. The simplification of the base complex can be gradually

accomplished by performing reductions in the number of graphic primitives and slight modifications in

the shape of the base complex. The requirement of shape similarity ensures a minimum change in shape

after each step of the agglomeration, which avoids undesired deformations and ensures consistency with

the original shape. Our method performs efficiently and only a single threshold is used to control the

level of simplification with respect to the actual requirements. The simplified base complex is finally

converted into a vector graph as the simplified output.

We can summarize our contributions as follows:

• As an intermediate representation of the input vector graph, a geometric structure called a base

complex is created, which inherits the crucial geometric information of a vector graph;

• Based on the base complex, the iterative decimation algorithm of 3D mesh simplification is adapted

to 2D sketch simplification, which is guided by the shape similarities of graphic primitives in a base

complex;

• In contrast to the existing approaches, which depend on many parameters, the simplification of a

base complex can be easily controlled using a single parameter.

2 Related work

In this section, we review the related studies on vector graph processing with a focus on the problem

that we have attempted to address, which can be described as sketch simplification. Besides, because

our concept of sketch simplification is inspired by mesh surface simplification, we also discuss published

studies on iterative algorithms that have been used for mesh simplification.

Vector graph simplification. To simplify an input vector sketch comprising a large number of

strokes, some existing methods group the strokes, replacing each group with a smooth parametric curve.

Further, the stroke grouping is usually guided by an analysis of the geometric properties of the strokes

such as their degree of proximity, continuity, or parallelism. For example, the method presented in [1]

considers stroke proximity and continuity and specifies a single distance-based parameter to control sketch
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simplification. Similarly, the method presented in [3] utilizes a dynamic threshold to control the stroke

simplification process. In [4], the parts of strokes to be simplified are determined using two types of

stroke density metrics. The stroke density is controlled by the omission of curves; however, the result

of simplification depends on the sequence of painting. In [5], the input sketches are partitioned into

differently sized boxes to accomplish local ordering; subsequently, piecewise B-spline curves are fitted to

the globally ordered data points.

To obtain better stroke groupings, some studies use the regions of a sketch as guidance for grouping. For

example, a novel high-level semantic analysis of strokes, which is presented in [2], succeeds in obtaining

sensible stroke groups when assisted by semantic information of the regions. However, the semantic

regions of a sketch are not easy to identify. Even though this approach involves a mutual refinement

process of stroke and region interpretations, sketch simplification can still be realized by stroke grouping.

Machine learning approaches have also been investigated for sketch simplification. The study presented

in [6] uses a learning-based method to classify strokes; after defining three stroke features, a trained neural

network is used to determine whether the pairs of strokes belong to a same group. A disadvantage of this

method is that it is designed to refine the painting style of a specific designer. In [7], a supporting vector

machine (SVM) is used to train stroke pairing; further, unlike in [6], the stroke pairs are divided into three

categories. This method does not require manual annotations; however, a large amount of input sketches

and corresponding clean line drawings are required to train the SVM. The study in [8] presents a method

of sketch simplification using a convolutional neural network (CNN). However, this method is designed

to address raster images; after a CNN has been used to perform a series of convolution operations on a

raster image, the results have to be processed into vector graphs using other vectorization tools.

Except for [8], all the cited methods have been designed for vector graphs. To address the input sketches

in raster forms, the method described in [9] uses both the Garbor and the Kalman filters to extract clean

lines from the sketch. The method described in [10] establishes over-segmented clean line drawings from

the input sketch with high fidelity and further merges successive lines if they can be approximated well

using a single curve. This global optimization process presents a tradeoff between fidelity and simplicity.

The approach in [11] uses the Delauney triangulation of a point set to identify the regions of a graph and

to extract its skeleton for further processing, which shares similarities with [12, 13].

Sketch simplification plays an important role in sketch-based 3D design and modeling systems, which

often starts from 2D curves. Sketch-based modeling systems help those with sufficient drawing skills to

easily manipulate 3D shapes without having to understand the underlying details of modeling. Such

systems provide a lightweight, gesture-based interface to approximate 3D polyhedral modeling, in which

sketch simplification can be considered to be a pre-processing phase. The simplification processing that is

applied in the modeling systems is simple, and a cleaned line drawling is usually obtained by interactive

operations. More details on these procedures are available in [14–20].

Iterative mesh simplification. The iterative mesh simplification method is among the most popular

within the various categories of existing mesh simplification algorithms. Its main procedure involves

repeated application of local operators that eliminate one mesh element in a single step (a vertex, an

edge, or a face), thereby iteratively simplifying a mesh. This simplifying operation is associated with an

error function that measures the amount of error introduced by a simplification operation.

For example, vertex decimation which was proposed in [21], deletes a single vertex and re-tessellates

the resulting hole. The method in [22] is a simpler variant of mesh optimization, in which the edges

are collapsed to generate levels of details and present a progressive mesh representation. Various similar

methods relying on different approximation errors have been proposed such as [23–27]. This kind of mesh

simplification method exhibits the benefit that it can generate a tradeoff among computational efficiency,

geometric fidelity, and topological generality.

The basic concept behind our method is similar to that of iterative mesh simplification [24]. However,

the problem of sketch simplification is quite different than the problem of mesh simplification, which

indicates that simplification operators and cost functions that are suitable for sketch simplification have

to be reinvented. To solve this problem, we introduce the base complex for sketch simplification.
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(a) (b) (c) (d) (e)

Figure 2 (Color online) (a) Input vector sketch; (b) base complex of the input vector graph containing nodes, curves,

and patches; (c) simplified result obtained after merging pairs of primitives under the constraint of shape similarity mea-

surements; (d) two types of unsmoothing cases are marked in red boxes; one is the curve confusion at an intersection, the

other is a zigzag shape; (e) the obtained simplified graph.

(a) (b) (c)

Figure 3 (Color online) (a) Simple input vector graph; (b) intersections between various strokes are shown as red dots;

(c) base complex extracted from (a), where the patches are set in different colors; the black solid lines show the open curves;

the black dotted lines show the closed curves, and nodes are represented as red dots.

3 Method

The overview of the steps used in our method is depicted in Figure 2. An input vector sketch (Figure 2(a))

comprises a large set of polynomial curves such as Bézier curves. Unlike the current stroke-grouping

methods, our method explores the solution space of sketch simplification by considering a vector graph

as a 2D mesh (Figure 2(b)). By extending the concept of a base complex from the surface [28] and

volumetric meshes [29] to the 2D space (Figure 2(b)), valid primitive pairs that are identified from the

base complex are sorted to minimize the distortion of sketch simplification. This procedure provides a

good balance between the simplicity of the sketch and the fidelity with respect to the original shape

(Figure 2(c)).

3.1 Base complex

Definition. A base complex is a collection of primitives, i.e., nodes, curves, and patches. A node is the

intersection between two strokes, or the endpoint of a stroke. A curve comprises a set of line segments. A

curve bounded by two nodes is referred to as an open curve, and a closed curve is topologically a circle.

A patch is a closed region bounded by curves. An example of a base complex is depicted in Figure 3(c).

Extraction. Given a sketch that contains strokes (Figure 3(a)) (e.g., Bézier curves and straight line

segments), we first compute all the stroke intersections, as depicted in Figure 3(b). The strokes are

further separated into pieces by nodes, and each piece is represented using a curve in the base complex.

To find patches, we construct a graph G = (V,E), where V denotes a set of vertices and E denotes

a set of edges [30]. The vertex set V corresponds to a set of nodes in a base complex. An edge in E

corresponds to a curve between two nodes. A patch can be defined as a closed path in G, which does

not contain any other closed paths. A patch can be represented by a sequence of ordered vertices and

each edge in E is adjacent to a maximum of two patches. The base complex is constructed by finding all

patches in G, as depicted in Figure 3(c).



Liu Y, et al. Sci China Inf Sci May 2019 Vol. 62 052105:5

3.2 Base complex simplification

The initially obtained base complex is intricate, and we simplify it by iteratively applying a collapse op-

erator, which acts on primitive pairs by merging them into a single primitive. Three classes of primitive

pairs can be found in the base complex, namely the curve-curve, the curve-patch, and the patch-patch

pairs. The process of merging primitive pairs eliminates at least one edge at every step and guaran-

tees a monotonic decrease of graph complexity. By quantifying the shape variation in the process of

simplification, the collapse operation attempts to minimize it in each step of the collapse procedure.

The primitive pair collapse operator is inspired by the contraction operation in iterative mesh simplifi-

cation algorithms [24]. However, in mesh simplification, only vertex pairs are considered for contraction

operation, whereas three different classes of primitive pairs are considered for the simplification of a base

complex. Furthermore, the cost function in mesh simplification is a quadric error metric for the mesh,

while our method relies on the measurement of shape similarity between various geometric primitives.

Our simplification pipeline can be summarized as follows:

(1) Identify all the valid pairs of primitives in the base complex;

(2) Rank all the pairs in an ascending order of the cost of shape variation;

(3) Remove the top-ranked pair if the stopping criteria is unsatisfied; otherwise, exit;

(4) Re-evaluate the cost for the neighboring elements that are affected by the removal operation and

reorganize the array of pairs;

(5) Goto step (1).

The stopping criteria is a user-specified shape similarity value ǫ. Suppose we have a similarity mea-

surement function for a primitive pair Oi and Oj , denoted by d(Oi, Oj). We construct a new primitive

Oij new by merging the primitive pair Oi, Oj . The cost w of the shape variation while collapsing Oi,

Oj is defined by w = min(d1, d2), where d1 = d(Oi, Oij new) and d2 = d(Oj , Oij new) are the similarities

between Oij new and the original primitive pair Oi and Oj . The shape variation is defined by measuring

the shape similarity of the newly introduced primitive and the original primitive pair before the collapse

operation. In the following text, we explain the method that is used to compute the shape similarity as

well as the procedure of identification and removal of valid primitive pairs in detail.

3.2.1 Shape similarity measurement

A considerable amount of work has been conducted on similarity measurement of 2D objects in various

research areas such as planar object recognition, shape matching and retrieval. One of the central

concerns in similarity measurement is the shape feature representation that is required for performing

shape similarity measurement. Among these available similarity measurement methods, we choose to use

the Fourier transform (FT) method to analyze the shape of a graphic primitive. The shape feature of a

primitive obtained by the FT method is called Fourier descriptor (FD), and the used shape similarity d is

the Euclidean distance of FDs for the two primitives. The reasons for using an FT are given as follows.

(1) The advantage of using an FD is the simplicity of its application in a computational environment,

which makes the process of finding shape descriptors using computer programs an easy task. Besides, it

is based on a well-developed mathematical theory and supported by theoretical and experimental studies

that confirm the utility of FDs as feature representations of a planar shape.

(2) The shape representation based on the FT is invariant to translation, scaling, and rotation, and it

is also compact and easy to derive.

(3) Despite the FT being sensitive to boundary noise, with the representations behaving poorly in the

presence of noise or distortion of the boundary, the boundaries of the vector geometric primitives are

almost smooth, and noise-generated impact on the performance of the method can be neglected.

The contour-based FT method is a powerful tool for conducting shape analysis. It transforms a shape

boundary to its corresponding shape feature, as described in detail in [31, 32]. In the FT method, the

contour of a 2D object is considered to be a closed curve comprising successive boundary points with the

coordinates (xt, yt), 0 6 t < N , where N is the total number of points on the boundary. An example of

this coordinate chain is depicted in Figure 4(a). For an object with a closed contour, a periodic function
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Figure 4 (Color online) (a) Contour of a triangle and its central point; (b) periodic function R(t) of the triangle created

using 256 sampling points on the contour in (a). The horizontal axis indicates the sampling points, whereas the vertical

axis indicates the distance from the sampling point to the central point.

u(t) that considers the boundary points as the input variable can be defined to describe the object.

This periodic function is further expanded in a Fourier series u∗(t). The normalized Fourier transformed

coefficients of the expansion are used as shape features and are referred to as the FD. This object is

uniquely represented by its Fourier coefficients.

In general, a shape signature u(t) is a one-dimensional (1D) function which uniquely describes a 2D

object shape. Among the various shape signatures that are used, the centroid distance is chosen as

the shape contour signature in our work because of its good performance, as described in [33, 34]. The

centroid distance function R(t) is expressed as belows, which is depicted in Figure 4(a).

R(t) =

√

(xt − xc)
2
+ (yt − yc)

2
, (1)

where xc = 1
N

∑N−1
t=0 x(t) and yc = 1

N

∑N−1
t=0 y(t). The function R(t) can be written as a Fourier series

in the form of an exponential summation.

R(t) =

N−1
∑

n=0

an exp

(

j2πnt

N

)

, 0 6 t 6 N − 1, (2)

where an = 1
N

∑N−1
t=0 R(t) exp(−j2πnt

N ), n = 0, 1, . . . , N − 1 are the Fourier coefficients. According to [31],

the normalized shape feature vector can be expressed as

FD =
[

f1, f2, fi, . . . , fN/2

]

, (3)

where fi =
|ai|
|a0|

. ai denotes the i-th component of Fourier coefficients. The deviation of the primitive

α and β is the Euclidean distance between the feature vectors {fα
i } and {fβ

i }, which is calculated as

follows:

d(α, β) = ‖FDα − FDβ‖ =

√

√

√

√

N/2
∑

i=1

(

fα
i − fβ

i

)2
. (4)

A smaller d indicates a higher similarity or a lower difference between α and β, and vice versa.

3.2.2 Removal of the primitive pairs

A sketch contains only curves; however, its base complex contains nodes, curves, and patches. To eliminate

curves in a sketch, we design collapse operations on the base complex to merge and remove valid primitive

pairs. These collapse operations can be classified as the operations of a curve-curve (CC) pair, a curve-

patch (CP) pair, or a patch-patch (PP) pair type.

Valid pair identification. While any combination of primitives that are either curves or patches

can be considered to be a pair, a pairing is valid only when the two primitives are immediate neighbors
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(a) (b) (c)

Figure 5 (Color online) (a) Input vector graph; (b) the red patch has a common edge with the green patch, so that they

can be paired; (c) a new patch is obtained after the patch-patch merging. The public edge of the two patches is marked by

a blue dashed line.

A

B

C

(a) (b)

O
l

O
p

Figure 6 (Color online) (a) Input vector graph; (b) the point A is the common point of the curve Ol and the patch Op.

The blue dashed curve is the affected edge EAB on Op, and EAB is expanded outwards because of Ol.

to each other. Two patches are neighboring when they share at least one curve, whereas a patch and a

curve are neighboring if they share at least one node. However, it is less straightforward to define the

neighborhood of a curve, and we use both connectivity and geometric distance to identify its neighbors.

If the minimum distance D(l,m) = mini,j ‖p
l
i − pmj ‖ between the curves l and m is less than dε = αD

and the angle of the tangent vectors at the two points connected by the minimum distance is smaller

than dθ, the two curves can be considered to be neighbors. The diagonal of the bounding box of a sketch

is denoted by D.

Valid pair removal. The removal of a PP is to form a new patch by eliminating the shared curves

(Figure 5). The removal of a CC and a CP is not as simple; therefore, we will explain it in detail.

The removal of a CP involves the deletion of the curve c of the pairing, which is followed by the

deformation of the original patch o. The curve serves as a modifier for the shape of the patch, essentially

causing a slight deformation to an adjacent edge e belonging to the patch, as demonstrated in Figure 6.

The deformed edge can be computed by fitting a cubic Bézier curve to the samples of c and o. Similarly,

the removal of a CC is performed by fitting a cubic Bézier curve to the two curves of the pairing with a

least-square method, as depicted in Figure 7.

3.3 Conversion from a base complex to a vector graph

The graphic primitives in a base complex can be separated into descriptive and non-descriptive elements.

A descriptive graphic primitive has a perceptually meaningful existence by depicting what the artist

wants to express, whereas a non-descriptive graphic primitive expresses little information related to the

artist’s interpretation. Because of simplification, the amount of non-descriptive graphic primitives in

the simplified base complex decreases while that of the descriptive graphic primitives increases. More

specifically, the redundant primitives are removed and the remaining graphic primitives are sufficiently

compact to describe what the artist wanted to depict, as illustrated in Figure 8. In practical applications,

vector graphics are often represented in the form of line drawings; therefore, we use the curves and edges

of all the patches of the simplified base complex to create a simplified vector graph. Because both a curve

and a patch comprise discrete sampling points, each curve or edge of a patch is fitted onto a piecewise

cubic Bézier curve [35] to obtain a practical form.

While converting a base complex into a vector graph, two types of unsmoothing cases have to be

addressed, curve confusion and zigzag shape, as depicted in Figure 2(d). Note that the representation of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7 (Color online) Two representative cases of a curve-curve pair merging, where (a)–(d) present the merging process

of two broken curves and (e)–(h) present the merging process of two overlapped curves. Both the processes are achieved by

fitting the two nearest line segments into a Bézier curve and then connecting the remaining line segments to create a new

curve.

(a) (b) (c)

Figure 8 (Color online) The initial base complex (a), one part on detail (b) and its simplified base complex (c).

Figure 9 (Color online) Border patch.

some patches using a sequence of ordered vertices is redundant in the results obtained by the merging

algorithm because it may contain some nodes that belong to the patches that are deleted during PP

merging. To identify and resolve the unsmoothing cases, we apply a smoothing algorithm aided by the

redundant nodes and patches. The detailed procedure will be presented in the following.

In addition, if the input graph is rough and exhibits relatively wide borders, which is a common

consequence of repeatedly using plenty of strokes to depict the boundary of an area, a slender patch (we

call it the border patch) may remain on the border after simplification, as depicted in Figure 9. This

occurs because the weight of this border patch is larger than the threshold ε; therefore, it is preserved
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(a) (b) (c)

e
03

Figure 10 (Color online) (a) Vertices v0–v5 are vertices of the first type, each with a degree larger than 2. The edge e03

is adjacent to both the patch Op1 and Op2, whereas the other edges are only adjacent to one patch. (b) Vertex v2 is an

auxiliary vertex added to the blue patch, and it belongs to the second type of vertices. (c) Vertex v1 is of the third type.

without being merged into the neighboring patches. Perceptually, a border patch represents one edge of

the patch adjacent to it, and it is easy to find because of its small width and two long edges of similar

length. However, while converting a base complex into a vector graph, bi-edges may occur. To solve this

problem, one of the two edges can easily be eliminated by processing the CC merging operation once

more for further simplification.

Smoothing operation. We first create a clear representation of the patch. A patch comprises at

least 3 vertices and is expressed as Op = {v0, v1, . . . , vn−1}, where vi are its vertices. Between a pair of

vertices vi and vj , there exists exactly one edge eij , and it is considered to be adjacent to a maximum of

two patches.

As depicted in Figure 10, these vertices may be separated into three types. The first type of vertices

contains those of a degree greater than 2. The second type of vertices include the auxiliary vertices as

defined in [30]. Thus, if more than one edge exists between two junctions or if a patch is a loop without

any crossing points, an auxiliary point with a degree of 2 is added. The degree of the vertices of the third

type is equal to 2; however, they can be found at locations exhibiting sharp turns or corners.

The smoothing algorithm first uses the patch data to locate the short edge eij , which is defined as

(leij < dε) ∧ (leij/lOp
< β), (5)

where lOp
is perimeter of patch Op, leij is length of edge eij , and β is a constant that is set to 0.04. After

merging simplification, the base complex may contain large patches with redundant nodes, where some

nodes that belonged to small patches before merging procedure will exist on the created large patch.

As depicted in Figure 11, if a short edge eij exists on the patch Op1, we can obtain information about

neighboring edges ejh and eki on both sides of eij . We determine the edge eij to be located in a zigzag

shape if the three edges eki, eij , and ejh are adjacent to the same patches. Further, the two neighbor

edges ejh and eki can be merged into a new curve by the CC merging operation described in Subsec-

tion 3.2.

If the three edges (eki, eij , and ejh) are instead adjacent to different patches, as depicted in Figure 11(b),

we are faced with curve confusion. In this case, the edges eki, eij , and ejh are adjacent to the patches

Op1 and Op4, Op1 and Op3 as well as Op1 and Op2, respectively. The solution involves finding the other

pair of neighboring edges, named emi and ejn, on the opposite patch Op3. Then the four edges eki, ejh,

emi, and ejn are paired with each other in six combinations, ekiejh, ekiemi, ekiejn, ejhemi, ejhejn, and

emiejn. Next, the unit tangent vectors of these four edges at the endpoints of edge eij are calculated and

expressed as tki, tjh, tmi, and tjn. A valid combination of the two edges can be merged into one curve

if it satisfies the following relation:

T =
|t1 · t2|

‖t1‖ ‖t2‖
< γ, (6)

where t1 and t2 represent any two of the described unit tangent vectors. In our experiments, the value

of γ is set to 0.174.
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(a)

(b)

Figure 11 (Color online) (a) The leftmost picture depicts the result of merging simplification. The zigzag curve problem

is presented in more detail on the right, where the short edge eij is marked in red. The edge eij and both of its two

neighboring edges (eki and ejh) that are found using one of the adjacent patches Op1 and Op2. The edges eki and ejh can

be merged into a new curve by curve-curve merging. (b) Details of the curve confusion problem at a junction. The short

edge eij located on the confusion junction is marked in red. Two valid curve pairs eki ejn and ejh emi are merged into the

corresponding new curves.

3.4 Technical details

According to the three merge operations described in Subsection 3.2, the calculation of weights is discussed

as follows.

Patch-patch merging. Onew = Op1 ∪Op2, where Onew is a patch. Two shape deviations are calculated

as d1(Op1, Onew), d2(Op2, Onew), and the weight is w = min(d1, d2). Curve-curve merging is accomplished

in a similar manner.

Curve-patch merging. Onew = Op ∪Ol, where Onew is a patch and the weight is w = d1(Op, Onew).

Aided by Figure 4, the calculation procedure for the FD of a patch is easy to understand. For the FD of

a curve Ol, the calculation process is the same as that of a patch. A curve can be considered to be a slender

patch with a considerably small width. If n ordered points exist on a curve Ol, it can be expressed as

{pOl

0 , pOl

1 , . . . , pOl

n−2, p
Ol

n−1}; for an infinitesimally narrow patch, {pOl

0 , pOl

1 , . . . , pOl

n−2, p
Ol

n−1, p
Ol

n−2, . . . , p
Ol

1 ,

pOl

0 }. We have devised a simple test to verify whether the FD that is calculated in this manner is

appropriate. As depicted in Figure 12(a), eight lines are drawn from right to left. The degree of bending

of these curves increases for each drawn curve. We first calculate the FDs of these eight lines. Using the

rightmost line as a reference, we calculate the shape similarities with other lines d(l1, li), i = 2, 3, . . . , 8.

As depicted in Figure 12(b), the degree of deviation of the seven shape similarities increases in order,

which indicates that this method of FD calculation is reasonable.

4 Experiments and discussions

To evaluate the validity of our algorithm, we verify it using datasets provided by previously published

studies [1, 2, 6], an image simulation from [8], as well as using some vector graphs of different styles,

including three cartoon art graphs and three product design graphs, as presented in Figure 13.

It is necessary to highlight some differences between our method and the method in [2] because both
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Figure 12 (Color online) (a) Eight lines are drawn from right to left with a progressive increase in the bend angle;

(b) shape similarities of the lines.

(a) (b) (c) (d) (e) (f)

Figure 13 (Color online) Graphs in the first row are input sketches. Their simplified versions are shown in the second

row.

the studies use a similar method for region merging. Most importantly, the objectives of these two

studies are different. The method in [2] is a stroke grouping method in which region merging led by

region detection is only used to address the over-segmentation problem (a “trapped ball” method), and

the merged regions are further used to improve or guide the stroke grouping operations. An example of

this approach is depicted in Figure 14. The objective of our study is to directly reduce the number of

graphic primitives to achieve the simplification of a base complex. Additionally, the regions in [2] are in

raster forms, and a large amount of calculation is required for a region of high resolution. In contrast, a

patch in our method is a vectorized polygon, and only its boundary has to be considered, as denoted by

the blue patch in Figure 1(c).

Some comparisons with other existing algorithms are given in the following paragraphs, where the

parameter setting and performance of our algorithm are also discussed.

Comparisons. The results of comparisons with the methods presented in [1, 2, 6, 8] are depicted in

Figure 15. The graphs in the first row are the input sketches, whereas those in the second row are results

from existing methods ([1] in Figure 15(a), [6] in Figure 15(b) and (c), [2] in Figure 15(d) and (e), and [8]

in Figure 15(f)). The graphs that are illustrated in the last row are results of our method. First, in

terms of visual effects, our results are as good as those obtained by other methods, and some of them

are even better, such as that shown in Figure 15(a). Regardless of the differing styles of the sketches,

our method provides concise and simplified results. Second, in terms of processing time, our algorithm

is more efficient. The running times that are required for the two sketches in Figure 15(d) and (e) are
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(a) (b) (c)

Figure 14 (Color online) (a) Input sketch of a girl, where the red rectangle denotes an example area of region detection;

(b) patches in the base complex of our method; (c) initial over-segmented regions obtained by “trapped ball” method in [2].

(a) (b) (c) (d) (e) (f)

Figure 15 The graphs in the first row are the input sketches, where (a) is obtained from [1], (b) and (c) from [6], (d) and

(e) from [2], and (f) is a vector graph simulated from [8]. The second row shows the results of the compared methods, and

the third row presents the results of our method.

16 and 33 s, respectively, while the method in [2] requires 2.3 and 3.8 min for the same sketches. The

running time of our method on some of the other sketches in Figure 15 is even shorter because their

complexity is lower than that of sketches in Figure 15(d) and (e).

In addition to producing a concise output, another advantage of our algorithm is its capability to

satisfy the high fidelity requirement, i.e., it is able to maintain as much useful strokes of the input vector

graph as possible. In Figure 16, we show some detailed parts of the graphs at which this effect is shown.

For example, by applying the method in [10] to the Figure 13(b), we cannot obtain complete connection

between the teeth of the animal, regardless of the manner in which we adjust the operation thresholds.

In contrast, our method retains the curve connecting the two patches and obtains a more complete shape.

Similarly, some of the details from the results of [2] are shown in the second row of Figure 16(c).

The inputs of the learning-based method described in [8] are presented in raster form, and their outputs

are also raster images. They perform a simple vectorization by the publicly available Potrace software in

the final step. Their method is robust and effective and is considerably suitable to be used in the field of
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(a) (b) (c)

Figure 16 (Color online) (a) Input sketches; (b) outputs of our method; (c) output of the method from [10] in the first

row and that of the method from [2] in the second row. The parameter options of [10], i.e., the maximal number of open

curves, the minimal length of open curves, and the minimal region size, are set to 12, 10, and 7, respectively.

Figure 17 (Color online) Six results obtained using a different simplification degree (from weak to strong) of the [8] online

demonstration. The final graph is the result of our method. Despite minor deviations in the sequence, the part highlighted

by the red rectangle is not simplified as accurately as in the result of our method. The blue dots show the topological nodes.

(a) (b) (c)

Figure 18 (Color online) (a) Initial base complex, containing 198 patches and 176 curves; (b) by setting ε = 0.015, we

obtain a simplified base complex with 28 patches and 15 curves; (c) by setting ε = 0.05, we obtain a simplified base complex

with 8 patches and 11 curves. The nose and an ear of the squirrel are merged into the neighboring patch, which does not

occur in (b).

comics or manga; however, it cannot be used for product design that requires 3D editing. The limitation

is that aside from the common problem in machine learning which has strong dependency on the quality

and quantity of the training data, it does not consider the topological structure (e.g., [30]) of the graph,

thereby neglecting connectivity in some crucial parts. However, our approach maintains the topological

structure information of the graph, as shown using an example in Figure 17.

Parameters. The merging algorithm of our method is completed when the current minimum weight

is greater than the parameter ε, which controls the simplification level of the graph. If a larger ε is

set, some details of the input graph may disappear. The larger the value of ε is, the higher will be the

degree of simplification of the vector graph, further, more amount of information will be lost. The results

obtained using different thresholds are shown in Figure 18.

In addition to being able to control the base complex simplification level by setting the parameter ε,

one can also specify the number of graphic primitives that should be left in base complex such as the



Liu Y, et al. Sci China Inf Sci May 2019 Vol. 62 052105:14

(a) (b)

Figure 19 (Color online) (a) By setting N = 128 and ε = 0.015, 41 patches and 16 curves remaine in the base complex

after merging; (b) by setting N = 1024 and ε = 0.015, 23 patches and 14 curves remaine in the base complex after merging.

Table 1 Parameter settings and running time

Input ε α Time (s)

a 0.018 0.012 6.332

b 0.025 0.012 8.118

c 0.013 0.012 7.652

d 0.014 0.012 3.488

e 0.014 0.013 5.085

f 0.015 0.012 1.317

number of patches or the number of curves. However, because the number and shape of the graphic

primitives vary with different vector graphs, it is more convenient to control the simplification by setting

ε. By conducting many experiments, we have conclude that the optimal value of ε is generally between

0.01 and 0.03, and is usually around 0.015.

While calculating the FD, the number of boundary sampling points is set as N . As reported by [36],

the shape characteristics of a graph can be represented with 128 sampling points. The accuracy of the

shape representation in our method can be adjusted by varying the number of sampling points. If more

sampling points are chosen, more details of the shape can be preserved. Consequently, the matching

result will be more accurate. To optimally balance the accuracy and time, we set N = 256. A change

in N will affect the value of ε. If we commence by setting the simplified base complex to N = 256 and

ε = 0.015 and by subsequently changing the value of N to 128, the value of ε should be increased to

obtain a similar simplified result. Conversely, if N is set to 512, ε should be decreased 0.015 to get a

similar simplified result. This is because when the value of N is large, the accuracy of features is high

and the corresponding error is small, which indicates that the d calculated by Euclidean metric will be

small; Further, a small threshold ε should be chosen. An example of this effect is shown in Figure 19.

Other parameters in our algorithm, such as dε = αD which indicates the average bandwidth of the

input sketch, are fixed; specifically, α = 0.012. As already described, during the curve-curve merging,

we use the distance and angle constraints to identify curve pairs, which is a procedure similar to the one

in [1]. However, when the minimum distance is shorter than dε and when the angle of two tangents at

the shortest distance is smaller than dθ, the two curves can be paired up but not necessarily merged.

This is because of the restriction of ε; if the shape of the potential new curve changes considerably as

compared to the two initial curves, the cost of this step would become larger than ε, and they would not

be merged. The value of α only affects valid pairs of curves but does not affect merging. Therefore, a

larger α can be set to obtain more possible valid curve pairs, without any concern about this resulting

in undesired shape changes during simplification.

Performance. The running time of our algorithm primarily depends on the size and complexity of the

input graphs or the number of primitives in the base complex, and it ranges from a few seconds to several

minutes. The degree of simplification of the vector graph can be controlled by modifying the dominant

parameter ε. Examples of the running time for several sketches under different parameter settings (shown

in Figure 13) are presented in Table 1 .
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Limitations. As mentioned in Subsection 3.2, the PP merging is performed by simply combining

two patches with a common edge into a new one. These patches blindly expand, without shrinking in

shape, which leads to the appearance of boundary patches. This phenomenon is especially noticeable if a

considerably rough graph is used. Although boundary patches can be rectified during post-processing by

performing CC re-merging, if the boundary patches are considerably wide, the results of the re-merging

simplification are not desirable. In addition, it may happen that two curves which should perceptually

be merged but do not merge during the merging procedure because a fixed experimental value of ε is

used and w > ε. We will study and address these limitations of our method in future work.

5 Conclusion

We have proposed a vector graph simplification method based on the agglomeration of primitives in the

base complex of a vector graph. A base complex is essentially a collection of graphic primitives, i.e.,

nodes, curves, and patches. And the core of our method is an algorithm that iteratively merges two

primitives of the base complex, guided by the shape similarity measurement. A single threshold is used

to control the simplification of the base complex.

Our algorithm is fast and simple, and it can be applied to arbitrary vector graphs. We would like to

implement the functionality which would allow users to edit sketches on-the-fly in the future. Instead of

stopping our simplification process using a hard threshold, we would like to enhance the robustness of

our approach by also incorporating the intention of the user [37].
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