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Abstract
Image vectorization is an important yet challenging problem, especially when the input image has rich content. In this paper, we
develop a novel method for automatically vectorizing natural images with feature-aligned quad-dominant meshes. Inspired by the
quadrangulation methods in 3D geometry processing, we propose a new directional field optimization technique by encoding the
color gradients, sidestepping the explicit computing of salient image features. We further compute the anisotropic scales of the
directional field by accommodating the distance among image features. Our method is fully automatic and efficient, which takes
only a few seconds for a 400×400 image on a normal laptop. We demonstrate the effectiveness of the proposed method on various
image editing applications.
Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Image processing

1. Introduction

Vector graphics, which is a collection of simple geometric elements
with possibly color encoded, has several preferred benefits over a
raster image, such as geometric editability, resolution-independence,
compact representation, and ease of reuse. It is a default image rep-
resentation in many applications such as color editing, image embed-
ding, image compression and reconstruction.

Vector image can be represented as simple polygons and other
shapes with points, lines, and curves which are easy for practition-
ers to create and modify, and can be also as complicated as gradient
meshes [SLWS07, LHM09] and diffusion curves [STZ14, HSF∗17].
Gradient meshes and diffusion curves gain some popularity in recent
years due to their capability in achieving high-quality and photo-
realistic rendering. However, they are either restricted to regular
domains or inefficient to compute, limiting their usage for images
with complex scenes. Mesh-based representations, such as triangle
mesh [LHFY12] and quad mesh [LKSD17,XLM∗18], have also been
employed to represent a vector image. While the former is storage
expensive, poor continuity and inconvenient for editing, the latter
requires a robust quad-meshing approach that can capture the com-
plex features in an image that is hard to achieve without introducing
many irregular nodes. A shared difficulty for all the existing image
vectorization methods is that they either require an image segmen-
tation as a pre-processing step to extract features from the image or
post-simplification of the geometric elements in the vector image to
remove noise, where either one is a difficult problem to solve on its
own.

In this paper, we present a new image vectorization method that
overcomes the above limitations by developing a quad mesh genera-
tion method for images where neither feature extraction such as a full
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segmentation or post-processing is needed. Our method generates an
image gradient-aware directional field and adapts the similar local
parameterization of the instant meshing [JTPSH15] to guide the gen-
eration of quad-meshes for images. Different from state-of-the-art
quadragulations [JFH∗15, JTPSH15, HZN∗18] that are specifically
designed for geometries with features usually manually labeled, we
consider an image with abundant implicit features and embed the
gradient of pixels into the directional field optimization to bypass
the challenges of feature extraction from images. Besides the inher-
ited advantages from instant meshing [JTPSH15] which is fast and
robust, the introduced approach produces quad meshes having high
fidelity to 2D image because we utilize a new cross field optimization
framework that works well for complex image features. Experiments
demonstrate that our approach is effective for image vectorization
and its related applications, such as vector image editing, embed-
ding, and mosaic.

2. Related Work

Our method is based on quad mesh generation and surface parame-
terization methods. We review only the closely related work on quan-
drangulation, curve-based and mesh-based image vectorization.

Quandrangulation. A cross field is a powerful tool to guide the edge
directions in quandrangulation. Specifically, [LJX∗10,JTPSH15] use
4-way rotationally symmetric cross fields. The target directions are
derived from the principal curvatures [CSM03, CP05], but the 2D
image cannot get the principal curvatures. In this paper, the main di-
rection of the cross field depends on the gradient of input image so
as to preserve and align with the image feature. Smooth cross fields
are generated by optimizing a nonlinear energy function based on
periodic functions [HZ00, RVAL09] or a mixed-integer representa-
tion [RVLL08,BZK09]. However, those methods may be easily stuck
in local minima. In our work, we alleviate this issue by alternating
the direction field optimization and singularity cancellation.
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Figure 1: The pipeline of our method.

The parameterization can be extracted as quad-mesh us-
ing [EBCK13]. Ref. [LZ14] achieves minimum worst-case distortion
and prioritizes higher distortion reduction. Global methods usually
sacrifice most time to optimize the parametrization with integer con-
straints, which aims to enforce low distortion and reduce the number
of singularities [BCE∗13, MZ13, LZ14]. However, their implemen-
tations are complex, and usually not scalable. Quantized Global Op-
timization [CBK15] uses motorcycle graphs to quickly construct a
valid quantization based on a seamless parametrization. In this pa-
per, we extract quadrilateral vertices by optimizing the position of
the vertex onto local coordinate system that can align with the image
feature.

Image partition at pixel level requires each element is a small clus-
ter of connected pixels with similar colors. The shape of elements
should be regular, and sometimes be convex [DL15], which means
that each element is a convex polygon. Unfortunately, partitioning
an image into convex polygons is challenging to meet boundary ad-
herence especially partitioning into quad-mesh. In particular, how to
exploit geometric information disseminated into image partitioning,
can be a valuable source of knowledge to analyze scenes and ob-
jects. Because images usually have complex features and boundary
constraints, there is very little research work on partitioning image
into quad elements.

On the other hand, many applications in computer graphics and
shape modeling use models of surfaces that are composed of quadri-
laterals, such as Catmull-Clark subdivision surfaces [WZHS15],
mesh editing [LLL17] and physics-simulation [LHS∗18]. Meshing
algorithms can be classified into local and global methods. The for-
mer are usually simple, robust and scalable, but due to their lo-
cality, they tend to introduce many singularities. The most popular
global approaches seamlessly parameterize the surface, regularly tes-
sellate the parametric space, and then lift it back to 3D space. All of
those methods can only process simple models without complex con-
straints.

Curve-based vectorization. Orzan et al. [OBW∗08] use a rough ver-
sion of the domain to efficiently solve the low-frequency components
of the solution and use the fine version of the domain to refine the
high-frequency components. But the solver is affected by flicker ar-
tifacts due to the rasterization of the curve on a discrete multi-scale
pixel grid. Later, Prevost et al. [PJSH15] synthesize ray tracing meth-

ods by using intermediate triangle representations with cube patches
to synthesize smooth images. Sun et al. [STZ14] proposed a fast mul-
tipole representation for diffusion curve images (DCI) random access
evaluation. Their approach enables the real-time performance of ras-
terization and texture-mapped DCI for up to millions of curves. Hou
et al. [HSF∗17] present Poisson vector graphics (PVG), an exten-
sion of the popular diffusion curves, for generating smooth-shaded
images. However, curve-based vectorization is complicated and in-
efficient for image editing.

Hybrid vectorial-rasterized image representation. Hybrid
vectorial-rasterized plays a critical role in the maintenance of
image representation. Pixels store a digital image as a grid of point
samples [TC04] that can reconstruct a limited-bandwidth continuous
2-D source image. Ref. [HT04] processes a potentially non-planar
quadrilateral directly without any splitting and interpolates attributes
smoothly inside the quadrilateral on 3-D surface. Ref. [TC05]
presents a fully automatic way to compute textures with customiz-
able discontinuities and signal texture pair, starting from an original
high resolution image. However, all of these methods have complex
calculations and inefficient image representation.

Mesh-based image vectorization. Gradient mesh has more concise
expression but more difficulty in quadrilateral mesh generation. In
this paper, we will focus primarily on recent work on mesh-based im-
age vectorization. Triangulation is the simplest representation struc-
ture and can be generated easily. So many image vectorization meth-
ods are based on triangulation. Swaminarayan and Prasad [SP06]
presented an artistic abstraction method from the input image by gen-
erating triangle primitives along edges and colors are sampled from
the input image. Demaret et al. [DDI06] presented an adaptive trian-
gulation method for image and using the first-order spline to recon-
struct input image details, specifically for image compression. Xia
et al. [XLY09] proposed a triangle-based method with a patch-based
image representation which has more color variations.

Besides triangulation, quadrilateralization is also a common rep-
resentation structure for images. Lecot and Levy [LL06] divided im-
ages into a set of regions defined by cubic splines whose color gra-
dients are given on vertices. Sun et al. [SLWS07] presented a quad
mesh-based representation called gradient mesh for image vectoriza-
tion. This method is semi-automatic and user interaction to generate
the gradient mesh on the raster image. Lai et al. [LHM09] proposed
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topology-preserving gradient meshes generated on arbitrary image
regions with holes. The cubic spline surface fitting procedure is com-
pletely automatic. However, this method requires slit mapping for
holes on images that would produce large parameterization distor-
tion for images with complex features.

3. Algorithm

Given an image with the possibly complex scenes as the input, such
as a natural image, we propose a new quadrilateral mesh generation
method that can efficiently and robustly vectorize the image while
capturing the features with high fidelity.

We represent the input image as a graph G = (V,E), where each
vertex v ∈ V is a pixel of the image and has a position (i, j) ∈ R2.
Given two pixels adjacent to each other horizontally, vertically, or
diagonally, we define an edge e ∈ E to connect them. The graph
structure is used to smooth the scale, optimize the position field and
extract the quadrilaterals.

As shown in Fig. 1, our method follows the standard field-aligned
quad-meshing pipeline: generating an optimized directional field to
guide the edge directions of the final mesh, computing a smooth pa-
rameterization to place the vertices of the mesh, and extracting the
actual edge and face elements of the final mesh. However, the ma-
jority of methods following this pipeline are only for mesh inputs,
rarely directly applicable to images. By representing an image with
a graph, we make the technical contribution of obtaining a smoothed
directional field that well captures the variation of colors of an image
with as few as possible singularities in Section 3.1. For the purpose
of completeness, we describe the parameterization in Section 3.2 and
mesh extraction in Section 3.3.

3.1. Cross field optimization

We compute an anisotropy directional field for the graph G. Our com-
putation is decomposed into two steps: optimizing the directions first
and then computing the scales along with the directions.

(a) Input image (b) Gradient image (c) Weight w

Figure 2: The process of weights computing.

The directions are aligned to image features without any parame-
ter tuning by incorporating image gradient information into the op-
timization energy. The number of singularities is minimized through
cancellation. Both the feature alignment and the singularity distri-
butions are determined during the direction optimization, which we
describe in the following.

Directions. We define a per-vertex four-way rotational symmetric
cross field that has four directions with a unit length for each direc-
tion. Each cross can be represented by a unit vector up to a rotation

by kπ

2 , where k ∈ {0,1,2,3}. We use the gradient direction com-
puted for each vertex to initialize the cross field. For each vertex of
the graph, its direction (cosθ,sinθ) can be computed as follows:

θi, j = arctan(gi+1, j−gi−1, j,gi, j+1−gi, j−1) (1)

where g is the gray value from the input image and θi, j ∈ [−π,π].

(a) The initialized cross field (b) The smoothing of cross field

Figure 3: Comparison before and after cross field smoothing.
Since a natural image can have cluttered, discontinuous and nu-

merous features, treating them as hard constraints will lead to a cross
field not smooth in regions near the features and also containing too
many singularities. We instead compute a weight through the image
gradients and embed it into our energy:

pi, j = Round
((

θi, j+1−θi, j
)
/ π

2
)

qi, j = Round
((

θi+1, j−θi, j
)
/ π

2
) (2)

Esmooth = ∑
m
i=1 ∑

n−1
j=1 wi, j

(
θi, j+1−θi, j− pi, j

π

2
)2

+∑
m−1
i=1 ∑

n
j=1 wi, j

(
θi+1, j−θi, j−qi, j

π

2
)2 (3)

where the ambiguity induced by rotational symmetry is explicitly
encoded using integer variables pi, j and qi, j are calculated by Eq. 2
and pi, j,qi, j ∈ Z . The weight wi, j = eGti, j value is proportional to
the length of the gradient as shown in Fig. 2, where Gti, j is gra-
dient value. From Fig. 3(a), we can see that the initialized cross
field can align the boundary features of the image. Therefore, we
set a large weight relative to the position where the gradient value is
large to prevent the cross field deviating the image features during
the smoothing process as shown in Fig. 3(b). What’s more, a set of
appropriate weights can make cross field align with features of the
image and smooth cross field in the meantime. We use the cross field
in the neighborhood to optimize the cross field at the center point by
Eq. 3 as shown in Fig 4. By considering the cross field as a potential

(a) cross field before smoothing (b) cross field after smoothing

Figure 4: The process of smoothing cross field.
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(a) 1 iterations (b) 3 iterations (c) 15 iterations (d) last iterations

Figure 5: Singularity optimization. From (a) to (b), under the action of cross field, singularities move and a pair of positive and negative
singularities offset each other. From (c) to (d), under the action of cross field, the singularity points continue to disperse until they reach a
relatively stable position, at which time the cross field gradient around each singularity point is nearly symmetrical.

field, the singularity point is equivalent to the charge in the potential
field and the charge density can be simulated using the image gradi-
ent value. Therefore, we can decide a vertex of the graph is a positive
or negative charge by:

Ii, j =pi, j− pi+1, j−qi, j +qi, j+1 (4)

If Ii, j > 0, the vertex Ii, j is a positive charge, and if Ii, j < 0, it
is negative. By calculating the potential field force at the charge, we
can adjust its position. This can be achieved by modifying the integer
offset between pi, j and qi, j of adjacent vertices. Fig. 5 illustrates ex-
amples of the movement of charges and the cancellation of a positive
charge and a negative one by changing pi, j and qi, j.

Our optimization of the direction and singularity is performed as
follows. We employ an alternating optimization strategy to smooth
cross field. Firstly, we compute p and q according to the initial cross
field. Then we take w, p and q as constants to smooth cross field by
solving the energy function defined by Eq. 3. Secondly, by fixing the
directions, we remove nearby singularities by changing the values of
pi, j and qi, j. This process is repeated until the position and number
of singular points no longer change. The pseudo-code is summarized
in Algorithm. 1.

In the process of optimizing singular points, we choose to change
the maximum absolute value of p and q around a singular point,
which corresponds to the maximum difference between the two cross
fields. In this case, the difference between the two cross field will be
smaller by optimizing Eq. 3. Therefore, the singular point will move
to a new location and the cross field will also be further smoothed.
The singular points are characterized by their degrees (or equiva-
lently, indices). The degree of positive and negative singular points
are 3 and 5, respectively, so only singularities with opposite signs
can be combined. When the gradient of cross field around all singu-
lar points is symmetrical, the singular points will be fixed. In Fig. 5,
the singularities in blue and red that are separated by image boundary
cannot be combined because the cross field around the boundary has
a large weight. In this case, the conditions for merging the singular
point are not met.

Scales. Given the smoothed cross field, we then compute the scale
along each direction, so that small quadrilaterals are filled in regions
with dense features and large elements are used for regions with
sparse features. Firstly, we specify the number of grids m and cal-
culate an initial length L based on m. Then we compute scales based

Algorithm 1 Smoothing cross field
Input:

The initial cross field θi, j;
The integer variables pi, j and qi, j;
The weight w of each θi, j;

Output:
The smooth cross field θi, j;
The set of singularities S;

1: repeat
2: Updating the cross field by minimizing Eq. 3;
3: Finding the singularities S← s by Eq. 4;
4: while S 6= φ do
5: Selecting s ∈ S;
6: S = S\{s};
7: Finding the absolute maximum pi j or qi j around the singu-

lar point s by calculating the Eq. 2;
8: pi j±1 or qi j±1;
9: end while

10: until The singularities (their positions and number) do not
change

on a distance field where feature lines are treated as sources. The
distance field function is defined as:

D(p) = e
E2(p)

v2 (5)

where E(p) is the Euclidean distance from vertex p to the nearest
feature edge that can be detected with Canny operator easily [Can87].
v ∈ (0,2) is a control parameter. It determines the degree of change
in the scale of the quadrilateral. The scale for the four directions at
each vertex, α, can be computed by the following equation:

α(p) =
D(p)−minD

maxD−minD
. (6)

We then update α by multiplying it with a target edge length for
the final quad mesh. Up to now, we have computed an isotropic scale
for a quadrilateral, which is not flexible enough. Imagine that, if the
computed minimum scale is larger than the distance between two
nearby feature lines as shown in Fig. 6, the isotropic scale will lead
to a quad element not aligning well with features. We then compute
an additional scale β.

Given the previously computed isotropic scale α, we then traverse
all vertices on features to determine if β is necessary whether. For a
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Figure 6: Schematic diagram of optimizing scaled cross field.

vertex on two parallel feature lines, we compute the distance between
the two feature lines along the direction passing through the vertex.
For example, the length of the purple line in Fig. 6. If the distance is
less than α∗L (e.g. the red line in Fig. 6), we compute scale β by Eq.
7, where Dvi is the spacing of two parallel features.

βi = Dvi/(αL) vi ∈ VBoundary (7)

After re-computing the scales for all the vertices on features, we
finally perform smoothing of the scales by:

αi← ∑
j∈N (i)

α j, αi← αi/N

βi← ∑
j∈N (i)

β j, βi← βi/N
(8)

where N is the number of adjacent vertices.

After the smoothing of scales, α ∗ L and β ∗ L are the final grid
length for the two perpendicular directions, respectively. Smoothing
of scale values can produce different values for the two directions,
resulting in anisotropic elements (i.e. rectangular shaped rather than
square-shaped quads). Anisotropy arises when it is required by fea-
ture alignment. In all other cases, the two scale values tend to be
equal, resulting in isotropic (square-shaped) elements.

3.2. Vertex optimization

Given the optimized direction field and the scale field (α,β). We
want to extract the final quad mesh whose edges align with the di-
rection and vertex positions fall precisely on the feature lines. We
modify the position optimization (local parameterization) proposed
by [JTPSH15] to take into account the anisotropic scales.

Since each position pi has two different scales(αi,βi), we design
new energy function with scale constraints to optimize the position
points along with the ex and ey directions respectively. As shown in
Fig. 7, we establish a local coordinate system with pi as the origin at
vertex vi. Here point p0 and point p1 are the neighbors of pi, ex and
ey represent two unit vectors perpendicular to each other, αi and βi
are the scales of pi. We define an integer translation of position point
ux j,uy j ∈ Z . Then our position optimization energy on the graph is
as follows:

Eposition(p,u) := ∑
i∈V

∑
j∈N (i)

∥∥∥pi− p j−
(
ux jαiLex +uy jβiLey

)∥∥∥2

(9)
Given the above energy, the same optimization strategy to

[JTPSH15] is employed. The optimization result is a position field

that is smooth enough to obtain a high-quality quad mesh, where
most of the edge lengths of the resulting mesh are close to α and β.

Figure 7: The local coordinate system.

(a) Before projection (b) After projection

Figure 8: Projecting mesh vertices to feature curves.

Our feature alignment is enforced by projecting vertices to points
with the local maximal gradient during the optimization by

pi = ei · (pi− vi)ei + vi (10)

Fig. 8 demonstrates the effectiveness of our feature alignment,
where the yellow dots represent the candidate position points, and the
red arrow indicates the projecting direction of position point along
the cross field’s orientation.

3.3. Mesh extraction

Our quadrilateral mesh extracting process is similar to that of Jakob
et al. [JTPSH15] by using a greedy searching strategy along orienta-
tions of cross field. Compare with [JTPSH15], our method can pro-
duce smoother cross field with image feature aligned. Moreover, the
generated quadrilateral meshes are anisotropic under the field scales
constrains, which requires considering the different scales of each
vertex along with the four directions of the cross field, rather than
only considering a fixed length. With these improvements, dense fea-
tures in an image can be well captured (Fig. 10 right) by our method,
while many of them are ignored by the original method.

4. Experimental Results and Applications

To evaluate the quality of the image vectorization by the proposed
method, we show the experimental results and comparisons with the
state-of-art methods. Furthermore, we give some application results.
All experiments were performed on an Intel i5 core 2.50 GHz CPU
laptop and 8GB RAM.

Comparisons with quadrangulation methods. There are many
ways to generate meshes on the surface of a geometric model, but
many methods have more or few requirements for input data. For
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Table 1: Comparison of the number of singularities.

Image (Figure) Instant cross field [JTPSH15] Our method

Girl (Fig. 1) 53 36
Pepper (Fig. 2) 24 22
Plant (Fig. 10) 68 44

Amulet (Fig. 14) 331 203
Church (Fig. 14) 92 66

Boy (Fig. 14) 146 124

example, restrictions such as surface closure, smooth feature lines
are required. So most methods can’t be used directly to process 2D
images. So we pre-extract the feature edges and consider the fea-
ture lines and the bounding box of the image as the input, and then
smoothing cross field.

(a) Input image

(b) Instant cross field [JTPSH15] (c) Our cross field

Figure 9: Comparisons of cross field after smoothing.

From Fig. 9 and Table 1, we can see that our method can produce
smoother cross field and fewer singularities than [JTPSH15] because
we have designed a new method to optimize the cross field with soft
constraints and merge singular points. On the other hand, [JTPSH15]
propose a parameter-free alternative to the above process, which en-
tirely sidesteps curvature-related heuristics, which directly optimizes
for geometric approximation error by computing distances in the em-
bedding space.

We compare several other state-of-the-art methods mainly in
the aspect of quadrilateral mesh extracting based on 3D mod-
els [JTPSH15, JFH∗15] with our quadrilateral mesh method based
on 2D images. From Fig. 10, we can see that our method can
produce quadrilateral with anisotropy and adaptability. So the
quadrilateral generated by our method is more regular compared
with [JFH∗15]. Our quadrilateral has a better boundary recall com-
pared with [JTPSH15].

Comparisons with convex image partitioning methods. Although
our algorithm produces quadrilateral meshes by optimizing cross
field and computing local parametrization different from the im-
age partitioning, it can be evaluated using the standard quality cri-
teria required for image partitioning methods. We assess the per-
formance of our method by comparing it with CONPOLY [DL15]
and N-Cuts [SM00] which are image over-segmentation methods as
shown in Fig. 11. Image can be divided into a certain number of

Result of [JTPSH15] Result of [JFH∗15] Our method

Figure 10: Automatic quad-mesh generation.

cells with the color similarity. We call these cells are superpixels.
We perform our experiments on the Berkeley Segmentation database
(BSDS500) [SM00], which contains 500 images with 481 ∗ 321 (or
321 ∗ 481) pixel resolution.

We compare our method with CONPOLY [DL15] and N-
Cuts [SM00] in terms of boundary adherence quality criteria: bound-
ary recall (BR) [LSK∗09]. BR measures the consistency of superpixel
boundaries and the ground truth, which is computed by calculating
the fraction of the ground truth within a small disk-shaped neighbor-
hood of superpixel boundaries. In our experiments, the radius of the
disk is set to 2 pixels.

Fig. 12 shows the results on boundary recall statics. It is demon-
strated that our method achieves better boundary recall when the
number of quad-mesh are better than CONPOLY [DL15] and N-
Cuts [SM00]. Because our algorithm produces quadrilateral meshes,
which are closer to a squared shape than other methods. So that our
method can improve boundary recall while maintaining the higher
compactness.

4.1. Image vectorization

Given the quad-dominant mesh representation of an image, we treat
each quad element as a Ferguson patch, where the Bessel interpola-
tion method [FH00] is used to estimate the first partial derivatives.
As adjacent patches share vertices and edge, patch curve bound-
aries have G1 continuity and colors have C1 continuity. Finally, given
the values and derivatives at the patch corners, positions and colors
can be readily evaluated inside the patch using bicubic interpolation.
From Fig. 13(b), we can see that the quad mesh generated by our
method can preserve image boundary and the most edge of quad-
mesh can align the image gradient direction. Fig. 13(c) is the result
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(a) CONPOLY [DL15] (b) N-cuts [SM00] (c) Our method

Figure 11: Qualitative comparisons between our algorithm and
CONPOLY [DL15], N-Cuts [SM00]. The number of superpixels in
the three halves of each image are roughly 1500 (on the top left cor-
ner), 900(on the middle) and 300 (on the bottom right corner) re-
spectively.

Figure 12: Evaluating boundary adherence of two popular super-
pixel algorithms and our method on the BSDS500 dataset.

of image reconstruction, and it takes 0.41 seconds for a typical mesh
with 1378 patches in the resolution 258*262.

We compare our method with Lai et al. [LHM09] for image vec-
torization. Lai et al. [LHM09] proposed automatic gradient mesh
generation for image vectorization with holes, but this method re-
quires slit mapping for holes. Much more significant, our method
performs more efficient and fully automatic. We can produce ideal
representations both for simple images and natural images. Lai’s
method processed the Amulet image with 154.4 seconds and pro-
cessed the Pepper image with 17 seconds. From the reconstruction
color error comparison, Lai’s method has computed average color
error per pixel, in which the Amulet image is 2.76 and the Pepper
image is 1.25. Our algorithm are 1.44 and 1.26, respectively. We can

(a) Input image (b) Quad mesh (c) Image reconstruc-
tion from quad mesh

Figure 13: Automatic quad-mesh generation and image reconstruc-
tion.

Table 2: Timing statistics. Running times are measured in seconds
on a laptop with an Intel i5 core 2.50 GHz CPU and 8GB RAM.

Image (Figure) Resolution Quad-num Time(s) Error

Flower (Fig. 13) 258*262 1378 4.2 0.98
Amulet(our) (Fig. 14) 508*457 4673 18.6 1.44
Amulet(Lai) (Fig. 14) 508*457 4000 154.4 2.76
Pepper(our) (Fig.14) 256*270 956 4.4 1.26
Pepper(Lai) (Fig.14) 256*270 600 17 1.25

Church (Fig. 14) 481*321 2709 8.9 2.48
Boy (Fig. 14) 321*481 7635 9.2 1.7

see that our results also achieve high visual quality compare with
Lai’s method under a similar number of quad elements.

Fig. 14 shows examples containing holes comparisons between
our method and Lai et al. [LHM09], within which the Amulet im-
age contains 21 holes. Since their method conformally parameter-
izes the object-of-interest into a rectangular domain with horizontal
slips, it often requires the object to have a similar geometry as the pa-
rameterization domain to reduce the area distortion. Our method is
more flexible and can deal with object with complex geometries. Our
method also runs 5 times faster than Lai et al.’s method (see Table 2).

4.2. Vector image editing

Color editing. Color editing is usually used to manipulate the color
of a specific object region while maintaining important boundary fea-
tures. Many existing color editing methods are mainly aimed at raster
images rather than vector images. Our quad meshes can restrict color
operations to the desired object region. Firstly, we use an interactive
image segmentation method [TGVB13] to let users select region of
interest and chooses the color transform interval, our algorithm will
automatically select control vertices and transform the color value
of control vertices by establishing a mapping relationship between
the target region and the color transform interval. In other words, we
only edit the color value without change color gradient value of the
vertex of quadrilateral by calculating the mean and variance of the
user-specified color gradient interval. Finally, reconstruct the image
based on the color information of the quadrilateral vertices as shown
in Fig. 15.

Image embedding. Similar to color editing, the main function of
image embedding is that the user selects the region of interest, and
then uses our algorithm to partition the simple image into the quadri-
lateral mesh and obtain the control vertices. Then copy it onto a com-
plex image. Finally, the image of the complex background is cloned
onto the final target image as shown in Fig. 16.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



Guangshun Wei, Yuanfeng Zhou, Xifeng Gao, Qian Ma, Shiqing Xin, Ying He / Field-aligned Quadrangulation for Image Vectorization

Input images Quadrangulation Vectorization results

Figure 14: Comparison with Lai et al.’s method [LHM09] (row 1-
2). Our method (rows 3-6) is able to produce comparable results as
their method with the similar number of quad elements, but it runs
five times faster. Our method can also deal with image with complex
content.
Discernible image mosaic. We utilize quad meshes to produce dis-
cernible image mosaics, with relatively large image tiles replaced
by images drawn from a database, to resemble a target image. Our
method adopts a quad mesh based descriptor to encode the image in
the target image and database: To keep enough information about the
image, we split each mesh to the 8*8 grid in the direction of the cross
field and calculate the mean of color of each grid. Then use these

values to compute the description vector. Before calculating the de-
scription vectors, we apply edge-preserving smoothing to the image
to remove the details, because they may cause the description vectors
to produce noise. In order to directly measure the similarity between
the current mesh and each image in the database, we can calculate
the L2 distance between the corresponding vectors. Compared with
existing works on image mosaics, our method can process images
of any topology, not limited to rectangular images and emphasizes
the preservation of visual edges in the target image, which produces
the mosaic image is more artistic and ornamental. We compared our
method with other representative techniques that generate image mo-
saics with similar styles to ours. Ref. [PCK09] (GIzMOs) treats an
image partitioning as a pre-processing step before replacing the tile,
specifically, this method removes some images from their database
to reduce the image similarity in favor of a stronger mosaic effect.
We also compared with Picture Mosaics [LLC], well-known com-
mercial software. From Fig. 17, where the pictures of Tai Chi and
Mona Lisa are divided into 1000 meshes and 3000 meshes, respec-
tively. We can see that the mosaic image produced by our method is
closer to the original image and our method outperforms others on
complex images.

5. Conclusions

We developed an efficient quadrangulation method tailored for im-
age vectorization. Our method computes a smooth cross field by
minimizing a new energy function with scaled constraints according
to the direction of image gradient and distance to image boundary,
thereby ensuring cross field can preserve the image features well.
It then adjusts its singularities through cluttering and adopts a local
parameterization to partition the image into a quad-dominant mesh.
Our algorithm is fully automatic and it can process images with rich
content. We demonstrated the advantages of our method through ex-
tensive experimental results and applications.
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