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Design and Optimization of Conforming Lattice
Structures

Jun Wu, Weiming Wang, Xifeng Gao

Abstract—Inspired by natural cellular materials such as trabecular bone, lattice structures have been developed as a new type of
lightweight material. In this paper we present a novel method to design lattice structures that conform with both the principal stress
directions and the boundary of the optimized shape. Our method consists of two major steps: the first optimizes concurrently the shape
(including its topology) and the distribution of orthotropic lattice materials inside the shape to maximize stiffness under application-
specific external loads; the second takes the optimized configuration (i.e. locally-defined orientation, porosity, and anisotropy) of lattice
materials from the previous step, and extracts a globally consistent lattice structure by field-aligned parameterization. Our approach is
robust and works for both 2D planar and 3D volumetric domains. Numerical results and physical verifications demonstrate remarkable
structural properties of conforming lattice structures generated by our method.

Index Terms—Lattice structures, topology optimization, homogenization, 3D printing.
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1 INTRODUCTION1

The design of lightweight structures by optimization is a2

classical and still active topic in engineering. Stimulated by3

the increasingly high flexibility and resolution offered by4

3D printing, there has been a growing interest in optimizing5

structures that are composed of delicate microstructures [1],6

[2]. These approaches assume that the microstructures are7

aligned with a prescribed regular grid. This simplifies mod-8

elling, simulation and optimization. It, however, limits the9

solution space, and thus the achievable structural perfor-10

mance. The microstructures are typically anisotropic (e.g. a11

hollowed cubic cell with uniform thickness is stiffer along12

its axes than along its diagonals). It is known that the ori-13

entation of anisotropic materials in stiffness-optimal struc-14

ture coincides with the principal stress directions resulting15

from forces acting on these materials [3]. Furthermore, axis-16

aligned microstructures do not match the curved surfaces17

of 3D shapes, which may create problems in assembly of18

mechanical components.19

To address the above issues, in this paper we propose20

an efficient and robust method to generate conforming lattice21

structures. A lattice is a connected array of struts. The lattice22

structure generated by our method is conforming in two23

aspects: the struts align with principal stress directions,24

maximizing structural stiffness; and, struts on the boundary25

capture the curved surface of the optimized shape. We note26
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that the shape, according to design options accessible to the 27

user, is allowed to evolve together with the optimization of 28

lattice distribution, i.e. the optimized shape is a subset of the 29

design domain. 30

Our method has two major steps, in line with the 31

homogenization-based optimization method proposed by 32

Bendsøe and Kikuchi [4] and the post-treatment of the 33

homogenization proposed by Pantz and Trabelsi [5] which 34

was recently revisited [6], [7]. In the first step of our 35

method, both the shape and the spatially-varying orien- 36

tation of lattices inside the shape evolve simultaneously 37

according to stress analysis and numerical optimization. 38

Rather than relying on extremely high-resolution finite el- 39

ements to capture the evolving lattice geometric details, 40

we develop a homogenization-based topology optimization 41

method which allows to efficiently simulate and optimize 42

the lattice material distribution on a relatively coarse level. 43

By introducing a novel parameterization of the unit cell, our 44

method ensures a uniform thickness of struts while allowing 45

a sufficient degree of lattice anisotropy. The second step, 46

which we call lattice compilation, extracts a globally con- 47

sistent lattice structure from the optimized, locally-defined 48

lattice configuration, including orientation, porosity, and 49

anisotropy. We address the challenging problem of extract- 50

ing connected lattices across cells with spatially-varying 51

orientation, by extending field-aligned meshing techniques. 52

This extension allows a fast and robust lattice compilation 53

where anisotropic geometric features are incorporated. 54

The specific contributions of our paper include: 55

• A novel workflow for designing, in both 2D and 3D, 56

conforming lattice structures based on homogenization- 57

based topology optimization and field-aligned parame- 58

terization. 59

• A simple and effective parameterization of the unit 60

cell for allowing structural anisotropy while ensuring 61

a uniform thickness of struts. 62
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Fig. 1: From left to right: Given a design domain with specified external loads, our method optimizes the distribution of
lattice materials for maximizing stiffness. From the optimized, locally-defined lattice configuration, a globally connected
lattice structure is compiled, and fabricated by 3D printing.

• A new formulation to allow simultaneous optimization63

of the shape and the lattice distribution.64

• A novel approach for extracting globally consistent65

lattice structures that accommodate anisotropy and het-66

erogeneity.67

Our method generates highly detailed lattice structures.68

The optimized lattice chair in Figure 1, for instance, consists69

of 178, 291 struts, achieved on a simulation resolution of70

140× 100× 200.71

The remainder of the paper is organized as follows. In72

the next section we review related work. In Section 3 we give73

an overview of the proposed method. In Sections 4 and 574

the two major steps of our method, lattice optimization75

and compilation, are presented. Results and analysis are76

presented in Section 6, before the conclusions are given in77

Section 7.78

2 RELATED WORK79

2.1 Structural Optimization for 3D Printing80

In the era of 3D printing (and more broadly, digital fabri-81

cation), structural optimization becomes increasingly rele-82

vant in computational design [8]. Skin-frame structures [9],83

honeycomb-like Voronoi structures [10], tree-like supporting84

structures [11], and bone-inspired porous structures [12]85

have been optimized as lightweight infill for prescribed 3D86

shapes. Guided by outputs from structural optimization,87

Martinez et al. proposed to use graded orthotropic foams as88

a parameterized metamaterial to fill a prescribed shape [13],89

[14]. In contrast to design and optimize internal structures90

for prescribed shapes, our method optimizes concurrently91

the shape and its internal microstructures for application-92

specific loads. Different from two-scale structural optimiza-93

tions (e.g. [15], [1]) which assume axis-aligned microstruc-94

tures, our method optimizes the orientation of microstruc-95

tures, in particular, to align it with spatially-varying stress96

directions. We restrict our design method to lightweight97

microstructures that are composed of struts, i.e. lattice struc-98

tures. We note that lattice structures are less optimal than99

closed-walled shell structures regarding stiffness, yet they100

have potential benefits regarding, among others, structural101

stability and manufacturing [16].102

Lattice structures are typically aligned with a regular103

grid [17], [18]. Rosen and his co-authors proposed a method104

to design lattice structures that conform with the boundary 105

surface of a prescribed 3D shape [19], [20]. Our method 106

optimizes concurrently the shape and align the lattices with 107

stress directions. The alignment of structures along principal 108

stress directions improves structural performance [21], [3]. 109

This principle has been applied to 2D planes (e.g. [22]) and 110

curved surfaces [23], [24], [25]. The appealing 2D results are 111

achieved by tracing stress directions or based on a ground 112

structure approach [26], [27]. Due to their inherent chal- 113

lenges associated with the initialization of samples/nodes, 114

a direct extension of these methods to 3D volumetric lattices 115

is not applicable. Our method constructs stress-aligned 3D 116

volumetric lattices, relying on homogenization-based topol- 117

ogy optimization and field-aligned meshing. 118

Our method is among recent efforts on structural analy- 119

sis and optimization for 3D printing. Stava et al. proposed a 120

method to detect and correct structural defects [28]. Recent 121

efforts include worst-case structural analysis [29], [30], and 122

stochastic structural analysis [31]. Chen et al. proposed 123

a solver for inverse elastic shape design [32]. Ulu et al. 124

optimized structures under force location uncertainty [33]. 125

Our method, targeting on stiffness maximization of lattice 126

structures under certain static loads, is complementary to 127

these efforts. Yet the integration goes beyond the scope of 128

this paper. 129

2.2 Homogenization-based Topology Optimization 130

Topology optimization is an important design method for 131

3D printing, as it effectively leverages the fabrication flex- 132

ibility to create structures with exceptional (mechanical) 133

properties. Topology optimization transforms optimal shape 134

design as a material distribution problem. In their seminal 135

work, Bendsøe and Kikuchi proposed a homogenization 136

method, which optimizes the distribution of square unit 137

cells with variable rectangular holes [4]. Due to the lack of 138

manufacturing means for such microstructures back then, 139

the homogenization method was replaced by density-based 140

approaches (e.g. SIMP [34]) which have since been widely 141

used in industry and in many academic contributions (e.g. 142

large scale optimization [35], [36], [37]). 143

In light of the capability of 3D printing to fabricate 144

microstructures, the homogenization method was recently 145

revisited to design structures with manufacturable mi- 146
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crostructures [6], [7], [38], based on the rectangular hole147

model [4]. A challenge is to compile a continuous structure148

from hollowed cells that are defined on a regular grid,149

and that, after optimization, have different orientations. To150

this end, a projection approach proposed by Pantz and151

Trabelsi [5] was improved to connect the orthotropic mi-152

crostructures [6], [39]. The output structure is represented153

by high-resolution pixels or voxels.154

Our approach to design conforming lattice structures155

follows the homogenization approaches, but differs in three156

aspects. First, we propose a new parameterization of cells157

to ensure that the variable cells have a constant thickness,158

while allowing a large degree in anisotropy. Our intention159

of creating uniform thickness is to simplify all downstream160

operations including surface mesh creation, process plan-161

ning, fabrication, surface treatment, inspection and qualifi-162

cation. Uniform thickness is a common practice in (metal)163

additive manufacturing of (axis-aligned) lattices [17], [18].164

Such structures can also be fabricated by a direct extrusion165

in 3D [40], or by robotic fabrication [41], [42]. We note166

that variable thickness is not impossible with 3D printing.167

Second, our method simultaneously optimizes the lattice168

distribution and the shape, achieved using multiple design169

variables. Last but not least, while existing works exploited170

projection methods for generating high-resolution pixel or171

voxel models, we develop a novel approach based on field-172

aligned meshing to compile the lattice structure. The opti-173

mized structure is compactly represented by a graph. This174

direction shares a similar goal with the recent work by175

Arora et al. [43]. In contrast to the design approach [43],176

our method unlocks a large solution space by optimizing177

the porosity, anisotropy, and orientation of lattices.178

2.3 Field-aligned Parameterization179

We develop a lattice compilation method based on field-180

aligned parameterization which has been researched inten-181

sively in the past decade, especially for generating quadri-182

lateral (quad-) mesh. We review briefly the more recent183

works on hexahedral (hex-) meshing, and for quad-meshing184

we refer an interested reader to the survey by Bommes et185

al. [44].186

For a given 3D closed shape, field-aligned hex/hex-187

dominant meshing techniques typically consist of three188

steps [45], [46], [47], [48], [49], [50]. It starts by estimating189

the gradients of a volumetric parameterization using a di-190

rectional field [51], [52], where the field is discretized per191

vertex or per tetrahedron and smoothly interpolated within192

the volume under a boundary alignment constraint. This193

is followed by computing a parameterization aligned with194

the estimated gradients by fitting. Finally it extracts the195

hex-mesh in the parametric space [53]. Robust hex-meshing196

remains a challenging problem. A promising direction is to197

topologically correct the directional fields [47], [48], [54],198

[55]. Lei et al. introduced a hex-mesh generation method199

based on surface foliation theory [56]. This approach, how-200

ever, requires heavy topological pre-processing of the input.201

The field-aligned parameterization pipeline is primarily202

used for generating semi-regular meshes. To ensure the203

validity of the mesh, complex geometric and topological204

computations are involved. In this paper we make use of205

field-aligned parameterization to generate lattice structures. 206

This new application differs from mesh generation, as lat- 207

tices are encoded by graphs rather than meshes. This goal 208

sidesteps the numerical stability issue and geometrical and 209

topological complexities typically occurred during mesh 210

extraction from the parameterization. 211

To efficiently and robustly extract consistent lattice struc- 212

tures, we extend the robust meshing approach that was 213

proposed by Jacob et al. [57] and further developed by Gao 214

et al. [50]. The per vertex local parameterization from [50] 215

fits our purpose well since the local parameterization aligns 216

exactly with the direction field by construction and permits 217

fast and scalable computations. The extension proposed in 218

this paper allows to incorporate anisotropy and heterogene- 219

ity. 220

The recent work by Arora et al [43] shares a similar 221

goal as ours, i.e. to extract field aligned struts from stress 222

directions. Our approach takes the optimized stress fields 223

as input, without a field smoothing operation that compro- 224

mises the accuracy of input fields. During lattice compi- 225

lation, while they extract the struts by tracing stress lines 226

and simplifying the duplicated ones, our approach directly 227

generates struts by simple and efficient graph operations. 228

This makes our approach fast and scalable, taking a couple 229

of minutes for an input with tens of millions of tetrahedral 230

elements (see Table 2). 231

3 OVERVIEW 232

Given a design domain and application-specific loads, our 233

method generates a lattice structure that maximizes struc- 234

tural stiffness. The struts in the optimized lattice struc- 235

ture conform with principal stress directions. Moreover, the 236

struts on the boundary span a smooth surface faithfully 237

approximating the optimized shape. 238

As illustrated in Figure 2 for 2D and Figure 1 for 3D, 239

our approach consists of two steps. The first optimizes the 240

shape (including its topology) and the distribution of lattice 241

material within the shape. The input includes a design do- 242

main and boundary conditions (Figure 1 left and Figure 2a), 243

as well as design specifications such as the target fraction of 244

solid material. The design domain in 3D is represented by 245

a closed triangle surface mesh. This mesh is voxelized, gen- 246

erating finite elements for simulation and optimization. The 247

output is a set of fields, indicating, per element, the occu- 248

pancy of lattice material, and the orientation and anisotropy 249

of lattice material (Figure 1 second left and Figure 2b). A 250

surface mesh is then reconstructed using Marching Cubes, 251

representing the optimized shape, i.e. the interface between 252

elements that are filled with lattice material and that are 253

empty. The shape enclosed by this reconstructed surface 254

mesh (or, the input surface mesh which defines the design 255

domain, in case that the entire design domain is to be filled 256

with lattices) is tetrahedralized. The optimized fields are 257

then interpolated on the vertices of the tetrahedral model. 258

The vertices, including their connectivity and their associ- 259

ated field values, serve as input for the second step, which 260

compiles a globally connected conforming lattice structure 261

composed of struts (Figure 1 second right and Figure 2c). 262

The output lattice structure is encoded by a graph. 263
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F

a) Design domain b) Optimized lattice distribution c) Continuous lattice structure

Fig. 2: A 2D example, illustrating the pipeline of our approach. Given the design specification (a), the first step optimizes the
distribution of lattice materials (b). The second step extracts a continuous lattice structure corresponding to the optimized
lattice configuration (c).
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Fig. 3: The design domain (a) is discretized into bilinear
quadrilateral elements. Each element is filled with lattice
material (b), i.e. a block of periodic cells (d). The cells are
adapted by scaling and rotating a unit cell (c).

4 LATTICE OPTIMIZATION264

The goal of our optimization is to find the optimal distri-265

bution of lattice material that maximizes structural stiffness,266

subject to a number of design constraints. To this end, the267

design space is discretized into a regular grid of bilinear268

square elements in 2D or trilinear cubic elements in 3D.269

As illustrated in Figure 3 for a 2D rectangular design do-270

main, each element is to be filled by repeating a unique,271

rectangular-shaped cell. The cells are adapted from a unit272

cell by scaling and rotation. The scaling factors and rotation273

matrices are to be optimized. The scaling factors for the cell274

in element e are denoted by αe, and in 2D by (αe,x, αe,y) and275

in 3D by (αe,x, αe,y, αe,z). The rotation matrix for element e276

is denoted by Re.277

The unit cell in 2D is a hollowed square with a side278

length of l and a thickness of t, which are specified by the279

user. In 3D, the cubic unit cell consists of the union of all280

12 edges with square cross section of thickness t. During281

scaling the side length of cells (l) is elongated, while the282

thickness (t) is kept constant. We note that this treatment283

differs from the standard scaling where the thickness is also284

scaled. This creates cells with gradation in the fraction of285

solid material (ve),286

ve(αe) = 1− (αe,xl − 2t)(αe,yl − 2t)

αe,xαe,yl2
. (1)

This gradation allows the optimization to place adapted287

cells with a smaller fraction of solid material in regions288

where the stress is relatively small. Furthermore, per axis289

elongation allows to increase the mechanical anisotropy of290

cells. This is beneficial since the stress tensors are typically 291

anisotropic. 292

Besides a scaling factor per axis and a rotation matrix, 293

each element is assigned a variable ϕe, to indicate whether 294

the element is empty (ϕe = 0) or filled (ϕe = 1) with 295

lattice material. The set of elements that are filled with lattice 296

material defines the overall shape of the optimized struc- 297

ture. To allow for gradient-based numerical optimization, 298

the variable ϕe is relaxed to take intermediate values, i.e. 299

ϕe ∈ [0, 1]. This variable is akin to the density variable in 300

classical density-based topology optimization, which in that 301

context indicates the fraction of solid material. In the context 302

of lattice optimization, this variable shall be interpreted as 303

the fraction of lattice material. The fraction of solid material 304

per element (ρe) depends on ϕe and the fraction of solid 305

material within an adapted cell (ve), i.e. 306

ρe(ϕe, αe) = ϕeve(αe). (2)

As the design space is parameterized by the fraction of
lattice material (ϕ), scaling factor (α), and orientation matrix
(R), the optimization problem is given as

min
ϕ,α,R

J =
1

2
FTU(ϕ,α,R) (3a)

s.t. :
∑

e ρe(ϕe, αe) ≤ vN (3b)
ϕe ∈ [0.0, 1.0], ∀e (3c)
αe,k ∈ [αk, αk], k ∈ {x, y, z},∀e. (3d)

Here the objective is to minimize the work done by the 307

external force, which is equivalent to minimize compliance 308

(i.e. stiffness maximization). F denotes the force vector that 309

is applied to the design domain. The force vector is constant. 310

U denotes the displacement vector of the shape when it 311

comes to its static equilibrium under the external force F. 312

The first constraint, Eq. 3b, restricts the amount of solid 313

material, where v is the fraction of available solid material, 314

and N is the number of elements in the design domain. 315

The second constraint, Eq. 3c, sets bounds for the fraction of 316

lattice material (ϕ). The third constraint, Eq. 3d, sets bounds 317

for the scaling factors (αx,αy,αz). The lower and upper 318

bounds of the scaling factors are user-defined. 319

The novelty of this formulation is two-fold. First, by 320

optimizing the scaling factors rather than the thickness of 321

hollowed cells, it ensures that all struts in the optimized 322

structure have the same thickness. As discussed in Sec- 323

tion 2.2, this eases the control of the 3D printing process. 324

Second, we assign an additional variable ϕ to indicate the 325

occupation of lattice material. This makes the formulation 326
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more general. Prescribing ϕ = 1 leads to optimized lattices327

that fill the entire design domain. This is useful as infill328

for prescribed shapes. Allowing ϕ to be decided by the329

optimization enables both the shape and the lattice to evolve330

simultaneously, achieving a higher stiffness.331

4.1 Stiffness Matrix for Lattices332

The objective function, Eq. 3a, involves the displacement333

vector (U), which is related to the external force (F). The334

unknown U is computed by solving the equilibrium equa-335

tion with finite element analysis,336

K(ϕ,α,R)U = F. (4)

Here the stiffness matrix, K, is assembled from per element337

stiffness matrix, Ke(ϕe, αe, Re).338

In standard finite element analysis of solids [58], the339

element stiffness matrix Ke is computed by integrating over340

the domain of an element, Ωe,341

Ke =

∫
Ωe

BTDeBdx, (5)

whereB is the element strain-displacement matrix for linear342

basis functions [58]. De represents the fourth order elasticity343

tensor, computed based on the Young’s modulus and Pois-344

son’s ration of the solid material.345

For analyzing elements that are filled with lattice ma-346

terial, the elasticity tensor De is not constant but rather347

depends on design variables αe and Re. Let us first consider348

an element that is filled lattice with ϕe = 1. The stiffness349

matrix for lattices is calculated by350

Ke(1, αe, Re) =

∫
Ωe

BTDe(αe, Re)Bdx, (6)

The elasticity tensor of a rotated lattice cell, De(αe, Re), is351

computed by rotating the elasticity tensor of this cell in its352

local coordinate system, De(αe). In engineering notation,353

De is represented as a 3× 3 matrix for 2D problems or a354

6× 6 matrix for 3D. The rotation of tensor is realized by355

De(αe, Re) = Re(Re)De(αe)R
T
e (Re), (7)

where the tensor rotation matrixR is given in the Appendix.356

The effective elasticity tensor of an elongated cell,357

De(αe), is evaluated by numerical homogenization. We358

make use of the Matlab code provided in [59] and [60]359

for homogenization in 2D and 3D, respectively. Given the360

scaling factors, the domain of the elongated unit cell is361

discretized by square finite elements with bilinear basis362

functions. To avoid performing homogenization for every363

αe during the optimization process, we pre-compute De364

for regularly sampled α values. In 2D, we fit a surface365

for every non-zero entry in D over the 2D domain of366

[αx, αx]× [αy, αy]. In 3D we use trilinear interpolation. The367

derivative of each non-zero entry in D with respect to α is368

evaluated using the interpolation.369

For elements with ϕe between 0 and 1, we use the power370

law from density-based approaches [34] to interpolate,371

Ke(ϕe, αe, Re) = ϕp
eKe(1, αe, Re), (8)

where the parameter p (typically p = 3) is introduced to372

penalize intermediate values in ϕe, and consequently the373

optimization steers ϕe towards either 0 or 1.374

4.2 Solving 375

The optimization problem (Eq. 3) is solved in an iterative 376

process, as in [6]. In each iteration the following compu- 377

tational steps are performed, until the maximum change 378

in design variables is smaller than a threshold (or the 379

maximum number of iterations is reached). 380

First, the equilibrium equation (Eq. 4) is solved, obtain- 381

ing the displacement vector, U. From the element displace- 382

ment vector (Ue), strain (εe) and stress (σe) per element, 383

in engineering notation, are calculated by εe = BUe and 384

σe = De(αe, Re)εe, respectively. 385

Second, design variables ϕ and α are updated using 386

a gradient-based solver. We make use of the method of 387

moving asymptotes (MMA) [61]. To avoid checkerboard 388

patterns, the design variables are regularized into ϕ̃ and 389

α̃ using the so-called density filter. ϕ̃ is then projected into 390

ϕ̃ by a (smoothed) Heaviside operation, to approach a 0-1 391

solution. The filter and Heaviside operator are widely used 392

in density-based approaches, e.g. in e.g. [62], [12]. 393

Third, the orientation of each element (Re) is updated 394

based on the associated stress tensor (σe). The stress tensor 395

is symmetric positive-definite. By eigendecomposition we 396

obtain three mutually orthogonal principal stress direc- 397

tions (v1, v2, v3). The eigenvectors are ordered by respective 398

eigenvalues in ascending order, i.e. γ1 ≤ γ2 ≤ γ3. As shown 399

by Pedersen [3], the optimal orientation of an orthotropic 400

material coincides with the principal stress directions, hence 401

the element is rotated by Re = [vT1 ; vT2 ; vT3 ]. 402

Fourth, the stiffness matrices of lattices, Ke, are re- 403

calculated based on the updated orientation (Re) and reg- 404

ularized variables ϕ̃ and α̃, according to Section 4.1. 405

4.3 Example 406

The output of our optimization is a set of fields defined 407

on the design domain. Figure 4 visualizes these fields for a 408

rectangular domain, which is discretized by a grid of 80×40 409

elements. The unit cell has l = 10t. The maximum fraction 410

of solid material is 0.15. Figure 4a shows the optimized 411

lattice fraction field. The field contains values very close 0 412

or 1 (cf. the colorbar). Even with a fraction of solid material 413

as small as 0.15, the lattice covers a large portion of the 414

design space. This is due to the fact that the unit cell has 415

a small fraction of solid material (i.e. 36%, with l = 10t). 416

Figure 4b visualizes the orientation of optimized cells. Here 417

the rotated frame is elongated according to the respective 418

scaling factor per axis. For clarity the frames are shown 419

for regularly-spaced samples. On the right, the frame field 420

is visualized for elements which have a fraction of lattice 421

material (ϕe) that is larger than a threshold (0.5). We note 422

that since the optimized field ϕ contains values close to 0 423

or 1, Figure 4c is independent (almost) of the value of the 424

threshold. 425

5 LATTICE COMPILATION 426

Up to this step, we have equipped with a design domain 427

with a set of fields including fraction of lattice infill, orien- 428

tation, and scaling, that are optimized for the prescribed 429

external loads (cf Figure 4). Since a region with a low 430

fraction implies that little material is required, we extract 431
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a) Occupancy of lattice materials (ϕ) b) Lattice orientation (R) and scaling (α) c) R and α, for ϕe ≥ 0.5
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Fig. 4: Visualization of the optimized fields. In (b) and (c) the frame is elongated according to the respective scaling per
axis (α), and then rotated according to the orientation (R).

a sub-area (volume) from the design space by thresholding432

(≥ 0.5) out low infill regions. With the actual shape being433

extracted, we now focus on generating a lattice structure434

that conforms to both the boundary of the shape and the435

directional and scaling fields.436

Our problem setting differs from the typical meshing437

problem in that both of our input and output are quite438

relaxed from the conditions of being a mesh. For the in-439

put, we put no constraints on its geometrical quality (i.e.440

angles, edge ratios, etc) nor its topological correctness (i.e.441

permitting non-manifold features, holes, and intersections).442

This maximizes the scope of the problem but poses a great443

challenge to the design of a robust solution. For the lattice444

output, it does not require face (solid) elements, making445

complex topological operations in most of the meshing446

methods unnecessary for our purpose. Moreover, consider-447

ing that it is not a hard requirement for our lattice structure448

to be all-hex cells for the designed structure to function,449

we choose the parameterization optimization in [50] that450

can be easily adapted to handle graphs and propose a451

simple extraction strategy to generate a lattice structure. The452

produced lattice structure contains mostly quad (hex)-like453

connections while allowing certain irregularity to adapt for454

rapid changes in the directions and scales.455

Our method takes a graph with vertices of the optimized456

shape as the input: G = (V,E), where every vertex v ∈ V457

has a position x ∈ Rk (k is 2 for 2D and 3 for 3D), an458

orientation matrix R ∈ Rk×k encoding the cross directions459

and also denoting a local coordinate system, and a scaling460

vector α ∈ Rk composed of scales for the k axes of the local461

coordinate system. Our goal is to extract a lattice structure,462

which is another graph G′ = (V ′, E′) that (1) reproduces463

the input direction and anisotropy as much as possible, and464

(2) has a resolution that can be flexibly controlled by a target465

edge length h.466

In the following, we first describe the parameterization467

optimization that incorporates anisotropic orientations, and468

then present the lattice structure extraction.469

5.1 Parameterization470

Given an orientation field O that includes the cross di-471

rections for all the vertices, we want to compute a pa-472

rameterization P with the gradient aligned to O. Meth-473

ods that compute a global parameterization with the gra-474

dient aligning to the orientation field in a least-square475

sense (e.g. [63], [64], [43] and [5], [7], [6], [39]), rely on476

non-linear optimization solvers which are not scalable to477

large datasets. We instead compute a parameterization478

for the input graph by representing it with a set of lo- 479

cal parameterizations and minimizing an energy between 480

the local parameterizations of adjacent vertices [57], [50]. 481

x

p

The local nature of the 482

parameterization makes it 483

easily parallelizable and 484

scalable to large inputs. 485

As illustrated in the in- 486

set, the local parameteri- 487

zation of a vertex in 2D 488

plane (or 3D volume) can 489

be uniquely determined by 490

its origin p, the orientation 491

matrix R, and unit lengths h·α, where h is the user-defined 492

global target edge length. The unit lengths are fixed through 493

the entire process. Unlike the previous approaches [50], [57] 494

that treat directions as a 4 rotational symmetric field in 2D or 495

a 24 rotational symmetric field in 3D, since the unit length 496

varies for different axis, our coordinate system is mutable 497

only by flipping the signs of each axis. The origin with a 498

random initialization, is the variable we need to optimize. 499

Given the above setting, the optimization energy of the 500

parameterization P is defined as the summation of all the 501

squared differences of local parameterizations for each edge: 502

E(P) =
∑
i∈V

∑
j∈N(i)

||pi − (Mijtij + pj)||2, (9)

where N(i) is a set of all the vertices sharing an edge with 503

vertex i, Mij is an interpolation of Mi and Mj where 504

M = RS and S is the scaling matrix converted from 505

h·α, and tij ∈ Zk encodes the integer translations of pj . 506

Mijtij+pj translates pj by integer moves to the nearest po- 507

sition to pi, effectively avoiding the integer jumps between 508

the two local parameterization and only the difference of 509

their fractional parts is measured. The computation of Mij 510

requires interpolating the directions and scales separately, 511

Mij =
(Ri + Rjr(Ri,Rj))

||Ri + Rjr(Ri,Rj)||
· (Si + Sj)

2
, (10)

where r(a, b) is the closest matching that gives the smallest 512

difference between two coordinate systems which can be 513

computed efficiently by enumerating all the cases. Note that, 514

there is no scaling involved when computing the matching 515

between orientations, which is similar to the one in [50]. The 516

only difference is that in [50], there are four cases to compare 517

for 2D and twenty-four cases for 3D, while we only need to 518

consider two and six cases in 2D and 3D respectively. 519



WU et al.: DESIGN AND OPTIMIZATION OF CONFORMING LATTICE STRUCTURES 7

The integer translation between two connecting vertices520

in the parameterization space, tij , is computed by a round-521

ing operation,522

tij = round[M−1
ij (pi − pj)]. (11)

By doing so, the energy between the two vertices will be523

minimized.524

We minimize E(P) in a Gauss-Seidel style by iteratively525

visiting every vertex and smoothing the origin of each526

vertex by computing an average of all its neighbors. The527

pseudo code of the optimization is provided in Algorithm 1.528

Algorithm 1 Optimize-Parameterizations (P)

1: for i = 1, . . . , n do
2: p′i ← pi, d← 0
3: for all j ∈ N (i) do
4: p′i ← dp′i + pj + Mijtij
5: d← d+ 1
6: p′i ← p′i/d
7: end for
8: pi ← p′i + Miround

[
M−1

i (xi − p′i)
]

9: end for
529

Fig. 5: Two close vertices in the input graph are not neces-
sarily close in the parameterization space.

The last step in line 8 rounds each origin of a local530

parameterization pi to the integer position closest to the531

vertex position xi. Consequently, each component of tij532

becomes -1, 0, or 1. For example, as illustrated in Fig. 5,533

tij = (0, 0) for Fig. 5 left, tij = (±1, 0) or (0,±1) for Fig. 5534

middle, and tij = (±1,±1) for Fig. 5 right. We note that this535

approach requires an input graph where the length of edges536

is much smaller than the desired length of the lattice struts,537

otherwise the integer translations after rounding could be538

larger than |±1|.539

After the rounding step at line 8 of Algorithm 1, if540

vertex i is on the input boundary, then pi is projected541

onto the tangent plane of i. This projection step ensures the542

conformity of the finally extracted lattice structure.543

To speed up the optimization, similar to [50], we con-544

struct a hierarchical structure of the input graph by halving545

the number of vertices for each level and perform the546

optimization on each level of the hierarchy by 50 iterations547

for 2D and 200 iterations for 3D.548

5.2 Graph Extraction549

In the input graph G, each vertex v has a smoothed local550

parameterization. The origin p of v provides a guidance551

for the vertex position in the output graph G′ = (V ′, E′).552

Besides, the integer translation associated with each edge 553

(vivj) of G, tij ∈ Zk(k = 2, 3), categorizes this edge as a 554

specific element in G′, depending on the L0 norm of tij 555

which is the number of ±1s in tij . In 3D (k = 3), this 556

number can be 557

• 0 (i.e. tij = (0, 0, 0)), indicating that the two vertices 558

are very close in the parameterization space, and thus 559

will be collapsed into to a point in G′, 560

• 1 (tij = (±1, 0, 0), (0,±1, 0), or (0, 0,±1)), meaning 561

that the edge is parallel to one of the stress directions, 562

and thus will be kept in G′, 563

• 2 (tij = (±1,±1, 0), (±1, 0,±1), or (0,±1,±1)) or 3 564

(tij = (±1,±1,±1)), respectively corresponding to a 565

rectangular or cuboid diagonal, which deviates from 566

the stress directions and thus shall not appear in G′. 567

For example, black and dashed green edges in Figure 6 left 568

correspond to ||tij ||0 = 1 and 2, respectively. 569

By utilizing the positional guidance of p and the indica- 570

tion of tij , the graph extraction is straightforward: collapse 571

the edges with ||tij ||0 = 0 (dots in Figure 6 represent 572

the averaged positions of collapsed edges), keep the edges 573

with ||tij ||0 = 1, and remove the diagonal edges (i.e. 574

||tij ||0 = 2 or 3). 575

Fig. 6: Left: for a vertex in the graph, the nearest diagonal
edges from its rotational directions will be relabelled to be
maintained in the final graph if there is no edge representing
the corresponding directions. Right: after the relabeling,
our final graph is generated by discarding all the diagonal
edges.

While the above procedure generates a graph with 576

mostly right angles, we notice T-junctions in the final graph 577

with near flat angles that are suboptimal for the stiffness of 578

the lattice structure. Figure 6 left illustrates a vertex with 579

T-junction in 2D. This can be attributed to the fact that the 580

removal of the diagonal edges is aggressive. The T-junctions 581

appear near singularities of the parameterization (similar to 582

the positional singularities in [50]) which result in elements 583

with non-right angles, for example, triangles and pentagons 584

in 2D, and prisms and general polyhedra in 3D. 585

To address this issue, we propose to keep some diagonal 586

edges in the final graph. Specifically, right after collapsing 587

edges with ||tij ||0 = 0, we check the configuration of every 588

vertex in the graph and identify critical diagonals. As illus- 589

trated in Figure 6, for a vertex in black, the process is done 590

by first normalizing all of its adjacent edge vectors onto 591

a unit circle (sphere in 3D), then computing their nearest 592

directions over 4 rotational-symmetric ones in 2D (6 in 3D), 593

e.g. red and dark green arrows, and finally relabelling a 594

diagonal edge to be an edge with ||tij ||0 = 1 such that each 595

of the 4 (6 in 3D) stress directions is represented by an edge 596

that is close to the direction (Figure 6 right). 597

In summary, the process to extract the graph G′, i.e. a 598

lattice structure, consists of the following steps. 599
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1) Categorize the edges in G based on ||tij ||0.600

2) Group vertices in G according to ||tij ||0 such that groups601

are connected by edges with ||tij ||0 6= 0. Note that a602

group might contain only a single vertex.603

3) Generate the initial G′. For each group, a new vertex is604

positioned at the average of the origins of vertices in G.605

This vertex inherits the edges to new vertices that are606

converted from neighbouring groups.607

4) Categorize the edges in G′ based on ||tij ||0.608

5) Identify and relabel critical diagonals in G′ to avoid T-609

junctions, and remove other diagonal edges.610

6 RESULTS611

6.1 Examples612

Our method works for both 2D and 3D. Figure 7 shows three613

optimized 2D lattice structures. In (a), the lattice distributes614

across the prescribed curved shape, with spatial variations615

in orientation, porosity, and anisotropy. In (b) and (c), the616

optimized lattices cover a subset of a rectangular design do-617

main, with variations in orientation in (c) and additionally618

variations in porosity and anisotropy in (b). The unit cell in619

2D is specified with l = 10t, α = 1, and α = 4.620

Figure 8 show 3D lattice structures optimized by our621

method. Our method is also applicable to design lattices622

that spread over a prescribed 3D curved shape, as shown in623

Figure 9. 3D examples are optimized with a unit cell using624

l = 4t, α = 1, and α = 2. Figure 10 shows fabricated bridge625

and cantilevers. The models are 3D printed with Form626

2 which uses stereolithography (SLA). The dimension of627

models and the thickness of struts are scaled to comply with628

the volume and feature size of the printer. The printed femur629

(Figure 11) has a dimension of 112.4 × 77.9 × 133.1mm3,630

with a thickness of 0.5mm. The chair (Figure 1) is 110.8 ×631

76.6× 142.1mm3, with a thickness of 0.6mm.632

6.2 Evaluation633

6.2.1 Design options634

We evaluate the influence of various design options on635

the resulting lattice structures using the 2D cantilever (636

Section 4.3, Figure 4), with the fraction of solid material637

v = 0.15, and bounds for the scaling factors α = 1 and638

α = 4. The optimized fields and compiled lattice structures639

are shown in Figures 12 and 13, respectively.640

In the first row of Figure 12, the fraction of lattice is641

fixed, ϕ = 1. Consequently the lattice distributes across the642

entire rectangular design domain. In (a) the scaling is also643

fixed, while in (b) the optimization of scaling is enabled.644

The enlarged solution space leads a decrease in compliance645

(i.e. improved stiffness), 418.33 (a) vs. 282.62 (b). In (c),646

the scaling factors along individual axes are decoupled,647

resulting in a further decrease in compliance to 239.97.648

In the second row of Figure 12, the fraction of lattice649

is optimized. Consequently, a shape evolves from the opti-650

mization, corresponding to ϕe ≥ 0.5. Similar to the trend of651

compliance in the first row, it decreases from (d), to (e), and652

to (f), along with the increased flexibility in optimization.653

(f) has the smallest compliance among the six cases. It654

decreases from (a) by 44.39%. This study, in agreement with655

similar numerical comparisons for various optimization op- 656

tions [7], confirms the significance of adaptive porosity and 657

anisotropic features for stiffness maximization [65]. 658

As a reference, an axis-aligned uniform lattice struc- 659

ture covering the entire domain (i.e. corresponding to the 660

initialization of Figure 12) is evaluated. Its compliance is 661

852.30, which is more than twice larger than the design 662

in Figure 12a, and 3.66 times larger than the design in 663

Figure 12f. This comparison confirms the importance of 664

aligning anisotropic microstructures with internal stress di- 665

rections for stiffness maximization. 666

6.2.2 Accuracy 667

To evaluate the accuracy of our lattice compilation method, 668

we perform a comparison of the compliance predicted by 669

homogenization with the compliance of lattice structures 670

by a full-resolution finite element analysis. To this end, 671

the computational domain of the six lattice structures in 672

Figure 13 is discretized by a finite element resolution of 673

4096×2048, and analyzed using a geometric multigrid elas- 674

ticity solver [66]. The voids among lattices are approximated 675

by a weak ersatz material with a (relative) Young’s modulus 676

of 10−2. The comparison is summarized in Table 1. The 677

difference in compliance is between 2.89% and 6.46%. This 678

demonstrates that our lattice compilation introduces little 679

error to the predicted performance from homogenization- 680

based optimization. We note that homogenization theory 681

assumes infinite periodicity of the cells, while for fabrication 682

the compiled lattice has a finite physical size. This effect has 683

been evaluated and reported in e.g. [6], [67]. Furthermore, 684

we notice that the compiled lattices exhibit a small number 685

of triangles. This also partially explains the discrepancy 686

since pure rectangles are assumed in homogenization. 687

TABLE 1: The difference in compliance predicted by ho-
mogenization and a full resolution analysis, for the lattice
structures shown in Fig. 13.

a b c d e f
Homo. 418.33 282.62 239.97 332.81 277.27 232.64
Full res. 444.78 300.15 255.48 323.18 292.66 241.94
Diff. 6.32% 6.20% 6.46% 2.89% 5.55% 4.00%

6.2.3 Computational performance 688

Table 2 presents statistics of 3D model complexity and 689

computational performance. The experiments were run on a 690

standard desktop PC equipped with an Intel Xeon E5-1650 691

v3 processor (12 cores) running at 3.5 GHz, 64 GB RAM, and 692

an Nvidia GTX1080 graphics card with 8 GB memory. The 693

optimization and compilation together take less than 1 hour 694

even for complex models such as the chair and femur. 695

The group of columns 2-8 is related to lattice optimiza- 696

tion. From the cantilever and bridge examples, it can be 697

observed that with increasing design flexibility the com- 698

pliance (Jcom) decreases. This agrees with the 2D tests in 699

Figure 12. The increased design flexibility is also reflected 700

by an increase of time associated with updating stiffness 701

matrices, which is counted in TFEA. The optimization time 702

of the gradient-based solver for ϕ and α, TOpt, increases 703

accordingly as well. 704
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Fig. 7: Optimized 2D lattice structures for a prescribed freeform shape (a) and a rectangular design domain (b and c). The
optimized lattice structures possess spatial variations in orientation, porosity, and anisotropy.

Fig. 8: 3D lattice structures optimized from cuboid design domains, showing spatial variations in orientation, porosity and
anisotropy. The design options are: (left) fixed α = 1 with design variables R and ϕ, (middle) design variables R, ϕ, and α
with αx = αy = αz , (right) full flexibility. With the increased design flexibility, the compliance reduces from left to right:
110.84→ 96.03→ 85.85 (cantilever), 230.52→ 177.86→ 149.96 (bridge).

The resolution of optimized fields is refined by a regular705

subdivision (1 element → 23 elements), followed by tri-706

linear interpolation of the fields. While our lattice compi-707

lation algorithm takes a general graph as the input, in our708

implementation, we use triangle meshes and tetrahedral709

meshes which are purely for the convenience of computing710

vertex normal. This step costs 45∼70 seconds (cantilevers,711

Figure 8) to 4 minutes and 26 seconds (chair, Figure 1). The712

refinement generates a large number of vertices (#vertex)713

organized as tetrahedral elements (#tet), supplied to the714

lattice compilation. The compiled lattice has as many as715

305k struts, for the femur model. Timings for pre-processing,716

i.e. building data structures (Tpre), local parameterization717

(Tposy), and graph extraction (Textr) are reported.718

In the last two rows, the optimized fields are refined719

twice (1 element → 43 elements). This creates highly de-720

tailed lattice structures as shown in Figure 14.721

6.3 Comparison and Discussion 722

Comparison with solid structures from density-based 723

topology optimization [34] A 2D simply supported beam 724

is optimized using our method and the classic density- 725

based approach – Solid Isotropic Material with Penalization 726

(SIMP). The lattice and solid structure generated by our 727

method and SIMP, are shown in Figure 15 a) and b), respec- 728

tively. The physical sizes are 294.8×74.2×60 mm3, and the 729

struts have an in-plane thickness of 0.8 mm, which is twice 730

the nozzle size. They were fabricated by a Ultimaker S5 731

printer using flexible TPU material. While the digital models 732

were designed using the same fraction of solid material, 733

with 3D printing the lattice structure is heavier (52 grams 734

vs. 46 grams) due to the delicate tool-path. 735

The load condition of the 3D printed specimen is shown 736

in Figure 15c. It is supported at the two ends on the bottom, 737

while a downward force is applied on the top middle. To 738

avoid out-of-plane buckling of these thin specimens, two 739
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Fig. 9: Optimized 3D lattice structures for prescribed curved shapes. The optimized lattice structures possess spatial
variations in orientation. The two samples are taken from inside the femur.

Fig. 10: Optimized lattice structures fabricated by 3D printing.

TABLE 2: Statistics of 3D model complexity and computational performance. The timing is reported in minutes.

Model Resolution #Ele. Vol. #It. Jcom TFEA TOpt #vertex #tet #strut Tpre Tposy Textr TTotal

3D cantilever (Fig. 8a) 100× 50× 50 250k 0.2 60 110.84 3.11 0.85 0.89m 5.0m 48k 1.80 5.28 0.33 11.36
3D cantilever (Fig. 8b) 100× 50× 50 250k 0.2 60 96.03 3.97 1.62 1.65m 9.62m 87k 1.75 9.98 0.70 18.03
3D cantilever (Fig. 8c) 100× 50× 50 250k 0.2 60 85.85 5.83 2.65 1.62m 9.41m 25k 1.83 6.50 0.57 17.38

Bridge (Fig. 8d) 200× 38× 88 644k 0.1 60 230.52 15.13 1.88 1.18m 6.54m 63k 1.41 7.09 0.47 25.97
Bridge (Fig. 8e) 200× 38× 88 644k 0.1 60 177.86 16.76 3.80 2.02m 11.57m 111k 2.84 13.58 1.14 38.12
Bridge (Fig. 8f) 200× 38× 88 644k 0.1 60 149.96 21.10 6.29 1.89m 10.77m 35k 2.40 8.29 0.72 38.79

chair (Fig. 1) 140× 100× 200 1.8m 0.1 60 193.5 30.92 5.03 3.32m 18.60m 178k 4.15 18.66 1.87 60.63

femur (Fig. 9) 140× 93× 182 696k 0.5 6 163.4 0.99 0 5.86m 14.26m 305k 12.36 35.50 5.94 54.79
dragon (Fig. 9) 200× 90× 143 461k 0.5 6 99.4 1.12 0 4.09m 23.31m 200k 5.09 24.84 2.88 33.92

3D cantilever (Fig. 14) 100× 50× 50 250k 0.2 60 110.84 3.11 0.85 6.65m 38.50m 351k 7.19 33.44 6.25 50.84
Bridge (Fig. 14) 200× 38× 88 644k 0.1 60 230.52 15.13 1.88 8.64m 49.63m 462k 12.50 56.56 14.35 100.42

wooden plates (with open square windows for observation)740

are placed to clamp the specimen (Figure 15d). The clamp-741

ing plates are placed with a gap of 62 mm, slightly larger742

than the thickness of the specimen.743

The force-displacement plots for multiple tests are744

shown in Figure 15e. The forces on the solid structure745

increase more steeply than on the porous structure, meaning746

that the solid structure from SIMP has a higher stiffness.747

However, the forces on the solid structure turn down after748

they reach a peak of about 62 N. This is due to the (in-749

plane) buckling of the compressed bars. In contrast, the750

lattice structure can support a maximum force that is twice751

larger before it buckles. This is due to the increased effective752

cross-section area of the substructures. This test, in agree-753

ment with previous physical tests on 3D printed isotropic 754

infill [68], confirms the significance of lattice structures for 755

buckling stability. We note that directly accounting for buck- 756

ling stability in topology optimization is more expensive 757

than just compliance minimization, due to the less intu- 758

itive definition of the buckling mechanism and demanding 759

eigenvalue problems [69]. Lattice structures, although not 760

directly optimized for maximal buckling load, have a very 761

good behaviour against buckling. 762

Comparison with bone-like porous structures [12] Wu 763

et al. proposed a density-based approach to design bone- 764

like porous structures using constraints on local material 765

volume [12]. Figure 16 compares the porous structure and 766

the lattice structure, generated with the same boundary con- 767
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Fig. 11: 3D printed femur with supports.

ditions (see Fig. 2a) and the same fraction of solid material.768

The porous structure was optimized with a local volume769

fraction of 0.36, leading to a total volume fraction of 0.288.770

We then run lattice optimization with this total volume771

fraction, with the design options of rotation and scaling.772

The bone-inspired infill was optimized with a finite element773

resolution of 400× 200, while the lattice was obtained with774

a simulation resolution of 80× 40.775

The convergence in compliance is plotted in Figure 17.776

The compliance of bone-like infill and conforming lattice777

is 184.64 and 177.29, respectively, meaning that the lattice778

structure is stiffer. Lattice optimization converges much779

faster, and since it runs on a lower resolution, this leads780

to a significant speed up. The optimization of lattice took 1781

minute and 7 seconds (60 iterations), while the optimization782

of bone-like infill cost 40 minutes (1000 iterations). Both 2D783

tests are performed in Matlab.784

Discussion of Arora et al. [43] Arora et al. proposed a785

method to construct a graph with its edges aligned with786

stress directions from simulation of the solid shape [43].787

This approach does not explicitly optimize the porosity nor788

anisotropy. It relates to the option in our method with fixed789

ϕ and α (cf. Figures 12a and 13a). The result in Figure 12f has790

demonstrated that with optimized porosity and anisotropy,791

the compliance reduces by 44.39%. We note that under792

the option of fixed ϕ and α, after aligning the lattice, our793

method re-calculates stress directions and update the lattice794

orientation. This leads a minor but noticeable decrease in795

compliance than aligning the lattice with stress directions796

from the solid shape (420.58→ 418.90).797

Our lattice compilation approach is scalable, for exam-798

ple, the number of struts is more than two orders of mag-799

nitude larger compared with examples shown in [43]. This800

allows to design highly detailed lattice structures. Figure 14801

shows optimized lattice structures with 462k struts (bridge)802

and 351k struts (cantilever).803

7 CONCLUSIONS804

In this paper we have presented a novel method to design805

conforming lattice structures by homogenization-based806

topology optimization and field-aligned parameterization.807

It can compute not only an optimized lattice structure that808

occupies certain subregions of regular design domains but809

also lattices that spread over prescribed (curved) shapes. 810

The optimized lattice structures conform with principal 811

stress directions and the boundary of the (optimized) shape. 812

Our method is scalable and allows to optimize highly de- 813

tailed lattice structures, which can be fabricated by 3D print- 814

ing. Numerical analysis on different design options confirms 815

the importance of aligning anisotropic lattice with internal 816

stress directions and the importance of lattice gradation 817

in porosity and anisotropy. The compiled lattice structure, 818

by full resolution finite element analysis, has a compliance 819

very close to the compliance predicted by homogenization- 820

based optimization. By physical tests we demonstrate that 821

the optimized lattice structure can support a buckling load 822

twice as large as topology optimized solid structures, at the 823

price of a slight decrease in stiffness. Besides quantified 824

structural performance, the optimized conforming lattice 825

structures look remarkably appealing. 826

Future work Our method generates lattice structures par- 827

ticularly optimized for mechanical properties. It provides 828

options to steer the optimization by configuring the design 829

variables, and to adapt the output graph resolution in lattice 830

compilation. For designs with lattice spreading across the 831

entire design domain, it is found that the generated lattice, 832

in certain areas where the stress is small, is less regular, e.g. 833

around top right and bottom right corner in Fig. 13 (c), and 834

near the boundary at the back of the pig in Fig. 7. This is 835

attributed to the fact that principal stress directions, and 836

consequently the optimal orientation field, do not coincide 837

with the boundary (see the visualization of the orientation 838

field in Fig. 12c). A potential solution to this problem is 839

to incorporate explicit constraints on the orientation field, 840

i.e. enforcing an alignment of the orientation field with the 841

prescribed boundary in stress minimal regions. 842
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APPENDIX 851

Denoting a 3× 3 rotation matrix by 852

R =

 l1 l2 l3
m1 m2 m3

n1 n2 n3

 , (12)

the 6×6 rotation matrix for the elasticity tensor in engineer- 853

ing notation is written as 854

R =

(
A B
C D

)
, (13)

with 855

A =

l21 m2
1 n2

1

l22 m2
2 n2

2

l23 m2
3 n2

3

 , (14)
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J = 277.27Compliance: J = 332.81 J = 232.64

Compliance: J = 418.33 J = 239.97J = 282.62
Design variables: R
Constants: ϕ = 1 and α = 2.56

R and α (αx = αy)
ϕ = 1

R, αx and αy

Design variables: R and ϕ
Constants: α = 1

ϕ = 1

R, ϕ and α (αx = αy) R, ϕ, αx and αy

a) b) c)

d) e) f)

Fig. 12: Visualization of optimized 2D fields corresponding to different design options.

Fig. 13: Compiled lattice structures from the optimized, locally-defined lattice configuration (cf Fig. 12).

Fig. 14: Optimized lattice structures composed of 462k struts (bridge) and 351k struts (cantilever).

B =

2m1n1 2n1l1 2l1m1

2m2n2 2n2l2 2l2m2

2m3n3 2n3l3 2l3m3

 , (15)

C =

l2l3 m2m3 n2n3

l3l1 m3m1 n3n1

l1l2 m1m2 n1n2

 , (16)

and 856

D =

m2n3 +m3n2 n2l3 + n3l2 m2l3 +m3l2
m3n1 +m1n3 n3l1 + n1l3 m3l1 +m1l3
m1n2 +m2n1 n1l2 + n2l1 m1l2 +m2l1

 . (17)
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