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Fig. 1. A selection of the ten thousand meshesin the wild tetrahedralized by our novel tetrahedral meshing technique.

We propose a novel tetrahedral meshing technique that is unconditionally
robust, requires no user interaction, and can directly convert a triangle soup
into an analysis-ready volumetric mesh. The approach is based on several
core principles: (1) initial mesh construction based on a fully robust, yet
e�cient, �ltered exact computation (2) explicit (automatic or user-de�ned)
tolerancing of the mesh relative to the surface input (3) iterative mesh
improvement with guarantees, at every step, of the output validity. The
quality of the resulting mesh is a direct function of the target mesh size and
allowed tolerance: increasing allowed deviation from the initial mesh and
decreasing the target edge length both lead to higher mesh quality.

Our approach enables �black-box� analysis, i.e. it allows to automatically
solve partial di�erential equations on geometrical models available in the
wild, o�ering a robustness and reliability comparable to, e.g., image pro-
cessing algorithms, opening the door to automatic, large scale processing of
real-world geometric data.
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1 INTRODUCTION
Triangulating the interior of a shape is a fundamental subroutine in
2D and 3D geometric computation.

For two-dimensional problems requiring meshing a domain, ro-
bust and e�cient software for constrained Delaunay triangulation
problem has been a tremendous boon to the development of robust
and e�cient automatic computational pipelines, in particular ones
requiring solving PDEs. Robust 2D triangulations inside a given
polygon boundary are also an essential spatial partitioning useful
for fast point location, path traversal, and distance queries.

In 3D, the problem of robustly triangulating the interior of a given
triangle surface mesh is just as well, if not more, motivated. While
tremendous progress was made on various instances of the problem,
it is far from solved by existing methods. While pipelines involving
3D tetrahedralizationof smooth implicit surfaces are quite mature,
pipelines using meshes as input either are limited to simple shapes or
routinely fallback on manual intervention. The user may have to ��x�
input surface meshes to cajole meshers to succeed due to unspoken
pre-conditions, or output tetrahedral meshes must be repaired due to
failure to meet basic post-conditions (such as manifoldness). Existing
methods typically fail too often to support automatic pipelines, such
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as massive data processing for machine learning applications, or
shape optimization. In many cases, while meshing may succeed, the
size of the output mesh may be prohibitively expensive for many
applications, because a method lacks control between the quality of
approximation of the input surface and the size of the output mesh.
Even when such controls are present, hard-to-detect features of the
input mesh may not be preserved.

In this paper, we propose a new approach to mesh domains that
are represented (often ambiguously) by arbitrary meshes, with no
assumptions on mesh manifoldness, watertightness, absence of self-
intersections etc. Rather than viewing mesh repair as a separate
preprocessing problem, we recognize the fact, that �clean� meshes
are more of an exception than a rule in many settings.

The key features of our approach, based on careful analysis of
practical meshing problems, and shortcomings of existing state of
the art solutions are:

� We consider the input as fundamentally imprecise, allowing
deviations from the input within user-de�ned envelope of
size� ;

� We make no assumptions about the input mesh structure, and
reformulate the meshing problem accordingly;

� We follow the principle that robustness comes �rst (i.e., the
algorithm should produce a valid and, to the extent possi-
ble, useful output for a maximally broad range of inputs),
with quality improvement done to the extent robustness con-
straints allow.

� While allowing deviations from the input, which is critical
both for quality and performance, we aim to make our algo-
rithm conservative, using the input surface mesh as a starting
point for 3D mesh construction, rather than discarding its
connectivity and using surface sampling only.

Our method is explicitly designed to output �oating point coordi-
nates, but at the same time is strictlyclosedunder rationals allowing
it to �t neatly into robust, exact rational computational geometry
pipelines.

We empirically compare both the performance and robustness of
state-of-the-art methods and our novel method on a large database
of 10 thousand models from the web [Zhou and Jacobson 2016].
To foster replicability of results, we release a complete reference
implementation of our algorithm, all the data shown in the paper,
and scripts to reproduce our results.

Our method �while slower� demonstrates a signi�cant improve-
ment in robustness and quality of the results on a number of quality
measures, when applied to meshes foundin the wild.

2 RELATED WORK
Tetrahedral mesh generation has remained a perennial problem,
both for computational geometers and practitioners in graphics,
physics and engineering ([Carey 1997; Cheng et al. 2012; Owen
1998]). We are speci�cally interested in methods that areconstrained
to output a 3D tetrahedral mesh whose 2D surface closely matches
an input surface. We categorize related work with respect to the
high-level methodology employed. We place special emphasis on
methods with reproducible results thanks to their openly acces-
sible implementations. One confusion during comparisons is that

most existing software implementsmultiplealgorithms, triggered
discretely (and somewhat discreetly) by input �ags or parameters
(e.g.,TetGen or CGAL). Our comparisons are done in best faith and
using default parameters where applicable; when controls similar to
the ones used in our method are available, we tried to choose them
in a similar way.

Background Grids.In 3D, a regular lattice of points is trivial to
tetrahedralize (e.g., using either �ve, six, or 12 tetrahedra per cube).
To tetrahedralize the interior of a solid given its surface,grid-based
methods �ll the ambient space with either a uniform grid or an
adaptive octree. Grid cells far from the surface can be tetrahedralized
immediately and e�ciently using a prede�ned, combinatorial stencil,
with excellent quality. Trouble arises for boundary cells.

Molino et al. [2003] propose the red-green tetrahedron re�ne-
ment strategy, while cells intersecting the domain boundary are
pushed into the domain via physics-inspired simulation. Alterna-
tively, boundary cells can be cut into smaller pieces [Bronson et al.
2012]. Labelle & Shewchuck [2007] snap vertices to the input sur-
face and cut crossing elements. This method provides bounds on
dihedral angles and a proof of convergence for su�cientlysmooth
(bounded curvature) isosurface input. Doran et al. [2013] improves
this method to detect and handle feature curves, providing an open
source implementation,�artet [Bridson and Doran 2014] with
which we thoroughly compare.Averageelement quality tends to be
good: for volumes with high volume-to-surface ratio, most of the
mesh will be �lled by the high-quality stencil. Near the boundary,
grid-based methods struggle to simultaneously provide parsimony
and element quality: either the surface is far denser than the interior
making volume gradation di�cult to control or the surface is riddled
with low-quality elements.

Delaunay.The problem of tetrahedralizing aset of pointsis very
well studied [Cheng et al. 2012; Sheehy 2012]. E�cient, scalable
[Remacle 2017] algorithms exist to create Delaunay meshes.

When the input includes surface mesh constraints, the challenge
is to extend the notion of a Delaunay mesh in a meaningful way.
In two dimensions, constrained Delaunay methods provide a satis-
factory solution. In contrast to 2D, the situation in 3D is immedi-
ately complicated by the fact that there exist polyhedra that cannot
be tetrahedralized without adding extra interior Steiner vertices
[Schönhardt 1928].

The simple and elegant idea ofDelaunay re�nement[Chew 1993;
Ruppert 1995; Shewchuk 1998] is to insert new vertices at the center
of the circumscribed sphere of the worst tetrahedron measured by
radius-to-edge ratio. This approach guarantees termination and pro-
vides bounds on radius-edge ratio. This approach has been robustly
implemented by many [Jamin et al. 2015; Si 2015], and, in our exper-
iments, proved to be consistently successful. However, robustness
problems immediately appear if the boundary facets have to be
preserved.

More importantly, even in situations when the method is guar-
anteed to produce a mesh with bounded radius-to-edge ratio, it
does not �unlike the 2D case� guarantee that quality measures rel-
evant for applications are su�ciently good. The notorious �sliver�
tetrahedra satisfy the radius-to-edge ratio criteria. Thus, unavoid-
ably, Delaunay re�nement needs to be followed by various mesh
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improvement heuristics: exudation [Cheng et al. 2000], Lloyd relax-
ation [Du and Wang 2003], ODT relaxation [Alliez et al. 2005], or
vertex perturbation [Tournois et al. 2009]. Our approach also relies
on a variational-type mesh improvement (Section 3.2).Conforming
Delaunay tetrahedralization[Cohen-Steiner et al. 2002; Murphy et al.
2001] splits input boundary by inserting additional Steiner points,
until all input faces appear as supersets of element faces. Even with
additional assumptions on the input, this process may require im-
practically many additional points and tetrahedra. In contrast,con-
strained Delaunay tetrahedralization[Chew 1989; Shewchuk 2002a;
Si and Gärtner 2005; Si and Shewchuk 2014] proposes to relax the
Delaunay requirement for boundary faces so fewer Steiner points
are needed. The popular open source softwareTetGen [Si 2015] is
based on constrained Delaunay tetrahedralization, enforcing inclu-
sion of input faces in the mesh.

Restricted Delaunay tetrahedralization[Boissonnat and Oudot
2005; Cheng et al. 2008] completely resamples the input surface to
obtain better tet quality while generating a good approximation
of the domain boundary at the same time. The softwareDelPSC
and CGAL 3D tetrahedral meshing module [Dey and Levine 2008;
Jamin et al. 2015] is based on this approach. Engwirda [2016] uses
an advancing front method as a re�nement and point placement
strategy for constructing a restricted Delaunay mesh.

Variations of these methods are di�cult to implement robustly, as
in their original form they require exact predicates that go beyond
the typically available set, so a careful reduction to the robustly
implementable operations is needed. This may account for a per-
centage of failures that we observe.

A conceptual feature of many restricted Delaunay meshers (using
meshes as input) is that they do not allow any slack on the bound-
ary geometry, thus requiring heavy re�nement in certain cases to
achieve acceptable quality, for any target tetrahedron size. However,
tetrahedra incident at features are invariably excluded from quality
improvement.

In contrast, our algorithm by design, admits practical robust im-
plementation, and, also by design, allows the surface to change
within user-speci�ed bounds, which greatly reduces unnecessary
over-re�nement due to surface irregularities.

The state-of-the-art method based on restricted Delaunay re�ne-
ment, [Jamin et al. 2015], is highly robust for important classes of
inputs (smooth implicit surfaces) and yields high-quality meshes.
However, as we demonstrate in the results section, if the input is
polygonal, it cannot be easily reduced to the problem of meshing
an implicit surface, due to nonsmoothness, and the need for feature
preservation. Currently, [Jamin et al. 2015] and related methods pre-
serve features using the protection ball method: spheres are placed
on feature points and weighted Delaunay meshing and re�nement
are performed, treating ball radii as point weights. This approach
requires explicit detection and representation of feature lines; in its
current form, it results in reduction of robustness and in some cases
over re�nement.

Variational meshing.The duality between Delaunay meshes and
Voronoi diagrams, leads to avariationalor energy-minimizing view
of the meshing problem. Centroidal Voronoi Tessellation energy
minimizers can leverage Lloyd's algorithm of BFGS optimization

to produce regular or adaptive meshes with well spaced vertices
[Du and Wang 2003], though this does not guarantee good element
quality [Eppstein 2001]. An alternative is to minimize the �Optimal
Delaunay Triangulation� energy [Alliez et al. 2005; Chen and Xu
2004], for better element quality. These algorithms require an initial
starting point (which cannot be generated starting from noisy input
geometry), in order to stay near any input surface constraints. Our
method is designed to generate this valid starting point, and it then
uses a variant of these methods, which is designed to work with a
hybrid kernel, to improve quality.

Other variational mesh improvement methods exist [Gargallo-
Peiró et al.2013; Klingner and Shewchuk 2007; Misztal and Bærentzen
2012], but all require and depend heavily on the initial base mesh. In
contrast, we propose a complete meshing algorithm. Our �rst step
generates a base mesh that complements our choice of mesh im-
provement strategy later on. The result is unprecedented robustness
and element quality.

Tetrahedral meshing is a hard problem. The strategies found in
the literature span a wide range of ideas, from the use of machine
learning to predict hard cases [Chen et al. 2012] to the various
advancing front methods to generate initial meshes [Alauzet and
Marcum 2013; Cuillière et al. 2012; Haimes 2015]. The quality of
advancing front outputs can be deceptive: problems are pushed
into the interior. Even if the exterior looks perfect, quality in the
interior may be arbitrarily poor. We found no reliable advanced
front methods suitable for our full-scale comparison.

Surface Envelope.Explicit envelopes have been used to guarantee
a bounded approximation error in surface reconstruction. Shen et al.
[2004] convert a polygon soup into an implicit representation using
a novel interpolation scheme, where a watertight� -isosurface can be
extracted for surface approximation purposes. Mandad et al. [2015]
create an isotopic surface approximation within a tolerance vol-
ume using a modi�ed Delaunay re�nement process followed by an
envelope-aware and topology-preserving simpli�cation procedure.
Our approach uses a similar, implicit,� -envelope to ensure that the
tracked surface does not move too far from the input triangle soup.

3 METHOD
We start by de�ning our problem more precisely. As input we assume
a triangle soup, a user-speci�ed tolerance� , and a desired target
edge length̀ . The goal is to construct an approximately constrained
tetrahedralization, that is, a tetrahedral mesh that (1) contains an
approximation of the input set of triangles, within user-de�ned� of
the input, (2) has no inverted elements, and (3) edge lengths below
user-de�ned bound̀. Mesh quality is optimized while satisfying these
constraints.We call a meshvalid if it satis�es the �rst two properties.

The resulting tetrahedralization can be used for a variety of pur-
poses; most importantly, we can use any de�nition of the interior
of a set of triangles to extract a tetrahedralized volume contained
�inside� the input triangle soup.

Throughout this paper, we use the termsurfaceto refer to collec-
tions of faces, not necessarily manifold, connected, or self-intersection
free. Our algorithm tackles this problem in two distinct phases: (1)
the generation of a valid mesh, disregarding its geometric quality,
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Fig. 2. A diagram illustrating the pipeline of our algorithm in 2D. The points of the original input segments (le�) are triangulated using Delaunay triangulation
(second le�). Each line segment is then split by all triangles that intersect it, constructing a BSP-tree (third le�). Each of the resulting convex polygons (colored
blue) is divided into triangles by adding a point at its barycenter and connecting it to the vertices of the polygon (third from the right). Local operations are
used to improve the quality (second from the right), and finally winding number is used to filter out the elements outside of the domain (right).

representing its coordinates with arbitrary-precision rational num-
bers and (2) improvement of the geometric quality of its elements
and rounding the coordinates of the vertices to �oating point num-
bers, while preserving the validity of the mesh. Decoupling these
two sub-problems is the key to the robustness of our algorithm and
it is in contrast with the majority of competing methods, which
attempt to directly generate a high-quality mesh.

The �rst phase relies only on operations closed under rational
numbers, i.e., the entire computation can be performed exactly if the
vertex coordinates are rational, sidestepping all robustness issues
(but increasing the computational cost). The second phase uses a
hybrid geometric kernel (inspired by [Attene 2017]), allowing us to
switch to �oating point operations whenever possible to keep the
running time sensible (Section 3.4). Our algorithm is thus guaranteed
to produce a valid mesh (Phase 1), but we cannot provide any formal
bound on its quality (Phase 2): in practice, the quality obtained with
our prototype on a dataset of ten thousandin the wild models is
high (Section 4).

Overview.The algorithm creates a volumetric Binary Space Par-
titioning (BSP) tree, containing one plane per input triangle and
storing its coordinates as exact rational numbers. By construction,
the resulting convex (but not necessarily strictly convex) cell decom-
position is conforming to the input triangle soup, and a tetrahedral
mesh can be trivially created by independently tetrahedralizing
each cell (Section 3.1). The volumetric mesh is not only created
inside the model, but also around the model, �lling a bounding
box slightly larger than the input. This allows us to robustly deal
with imperfect geometry that contains gaps or self-intersections,
postponing the inside/outside segmentation of the space to a later
stage in the pipeline. The quality of the mesh is then optimized
with a set of local operations to re�ne, coarsen, swap, or smooth
the mesh elements (Section 3.2). These operations are performed
only if they do not break a set of invariants that ensure the validity
of the mesh at each step. The �nal mesh is then extracted using
winding-number �ltering [Jacobson et al. 2013], which is robust to
imperfect, real-world input (Section 3.3).

3.1 Generation of a Valid Tetrahedral Mesh
The robust generation of a valid tetrahedral mesh that preserves the
faces of an original triangle soup is challenging, even ignoring any
quality consideration. Real-world meshes are often plagued by a zoo
of defects, including degenerate elements, holes, self-intersection,
and topological noise [Attene et al. 2013; Zhou and Jacobson 2016].
Even manually modeled CAD geometry cannot be exported to

Fig. 3. Self-intersections in the input (le�) are automatically handled by
our meshing algorithm (right).

a clean boundary format, since the most common modeling op-
erations are not closed under spline representation [Farin 2002;
Sederberg et al. 2003], unavoidably leading to small �cracks� and
self-intersections. Cleaning polygonal meshes or CAD models is
a longstanding problem, for which bullet-proof solutions are still
elusive [Attene et al. 2013]. We thus propose to use the input ge-
ometry as is, and rely on a robust geometrical construction to �ll
the entire volume with tetrahedra, without committing to the exact
topology or geometry of the boundary at this stage, and postponing
this challenge to a later stage in the pipeline, after all degeneracies
have been removed.

BSP-Tree Approach.We build an exact BSP subdivision, using
in�nite-precision rational coordinates, and only relying on opera-
tions closed under this representation. An illustration of the pipeline
in 2D is shown in Figure 2: we use a 2D illustration since it is di�cult
to visualize the e�ect of operations on tetrahedral meshes in a static
�gure. In contrast to the surface-conforming Delaunay tetrahedral-
ization [Si 2015], for which designing a robust implementation is
challenging (Section 2), the unconstrained version can be robustly
implemented with exact rational numbers [Jamin et al. 2015]. We
thus create an initial, non-conforming tetrahedral meshM , whose
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vertices are the same as the input triangle soup, using the exact
rational kernel in CGAL [Jamin et al. 2015].

The generated tetrahedral mesh does not preserve the input sur-
face, making it unusable for most downstream applications. To
enforce conformity, we use an approach inspired by [Joshi and
Ourselin 2003], but designed to guarantee a valid output. We con-
sider each triangle of the input triangle soup as a plane, and intersect
it with all the tetrahedra inM that contain it. In other words, we
consider each tetrahedron as the root of a BSP cell, and we cut the
cell using all the triangles of the input geometry intersecting it. This
computation can be performed entirely using rational coordinates,
since intersections between planes are closed under rationals, en-
suring robustness and correctness even for degenerate input. This
polyhedral mesh is converted into a tetrahedral mesh taking advan-
tage of convexity of the cells: we triangulate its faces, add a vertex
at the barycenter, and connect it to all the triangular faces on the
boundary. Since the only operation necessary is an average of vertex
positions, the barycenter can be computed exactly with rationals.
As long as at least four input vertices are linearly independent, then
all convex cells will be non-degenerate, i.e., the resulting tetrahedra
connected to the barycenter will also be non-degenerate (though
perhaps poor quality). The output mesh isvalid and exactly con-
forming to the input triangle soup. Self-intersections in the input are
naturally handled by this formulation: they are explicitly meshed,
splitting the corresponding triangles accordingly (Figure 3).

3.2 Mesh Improvement
Given a valid tetrahedral mesh represented using rational numbers,
we propose an algorithm to improve its quality, and round its ver-
tices to �oating point positions, while preserving its validity. We
follow the common greedy optimization pipeline based on local
mesh improvement operations [Dunyach et al. 2013; Faraj et al.
2016; Freitag and Ollivier-Gooch 1997], but with four important
di�erences:

(1) We explicitly prevent inversions using exact predicates (Va-
lidity Invariant 1).

(2) We track the surface mesh during the operations, and we only
allow operations that keep them within an� distance from
the input triangle mesh (inspired by a similar criteria used
for surface meshing by [Hu et al. 2017]) (Validity Invariant 2).

(3) We directly penalize bad elements in all shapes using a con-
formal energy which has been recently introduced for mesh
parametrization [Rabinovich et al. 2017].

(4) We use a hybrid geometric kernel to reduce the computation
time while ensuring correctness and termination, using �oat-
ing point whenever possible and relying on exact coordinates
only where it is strictly necessary.

Invariant 1: Inversions.We disallow every operation introducing
inverted tetrahedra whose orientation is negative, using the exact
predicates in [Brönnimann et al. 2017] for both rational and �oat-
ing point coordinates. This ensures an output without inversions,
since the algorithm starts from an inversion-free tetrahedral mesh
produced by our BSP-tree construction (Section 3.1).

Fig. 4. An oversized� ( b
100, with b being the bounding box diagonal) creates

a tetrahedral mesh (2nd row) that fails to capture the features of the input
triangle mesh (1st row). Reducing� to b

300 and b
3000 increases the geometric

fidelity (3rd and 4th row).

Invariant 2: Input Surface Tracking and Envelope.By construction,
the tetrahedral mesh produced in Section 3.1 contains an exact
representation of all input triangles, in the form of a collection of
faces of the tetrahedra. That is, the tetrahedral mesh contains one
(or more) tetrahedra whose faces exactly match any given input
triangle. We call this collection of faces theembedded surface, and
all operations performed on the tetrahedral mesh keeps track of it.

To bound the geometric approximation error introduced during
the mesh improvement procedure, we only accept operations that
keep the faces of the embedded surface at a distance smaller than
a user-de�ned� . Intuitively, this can be depicted as anenvelopeof
thickness� built around the input triangle soup. We ensure that the
embedded surface is always contained in the envelope at all times
by disallowing any operation breaking this invariant (Figure 4).

Quality Measure.As a measure of quality to optimize, we use the
3D conformal energy recently explored in [Rabinovich et al. 2017],
which is well-correlated with many common measures of quality
(we evaluate the results on a number of measures). It is expressed
as:

E =
X

t 2T

tr (JTt Jt )

det(Jt )
2
3

(1)

whereJt is the Jacobian of the unique 3D deformation that trans-
forms the tetrahedront into a regular tetrahedron. This energy is
oblivious to isotropic scaling, but naturally penalizes needle-like
elements, �at and fat elements, slivers, and prevents inversions since
it diverges to in�nity as an element approaches zero volume. It is
also di�erentiable [Rabinovich et al. 2017], and can be e�ciently
minimized using Newton or Quasi-Newton iterations [Kovalsky
et al. 2016; Rabinovich et al. 2017].
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Fig. 5. Overview of the local mesh improvement operations. For face swap-
ping, our algorithm uses 3-2, 4-4, 5-6 bistellar flips [Freitag and Ollivier-
Gooch 1997], where 3-2 flip is illustrated here.

Fig. 6. A low quality triangle mesh exported from a CAD model with Open-
Cascade (top) is automatically converted into a high-quality tetrahedral
mesh by our algorithm (bo�om), without requiring any manual cleanup.

Local Operations.We use four local operations for mesh improve-
ment [Faraj et al. 2016; Freitag and Ollivier-Gooch 1997]: edge split-
ting, edge collapsing, face swapping, and vertex smoothing (Figure
5). These operations only a�ect a local region of the mesh, and can
thus be performed e�ciently. We propose an asymmetric optimiza-
tion scheme: coarsening and optimization operators are applied only
if they improve the mesh quality, while the re�nement operator is
applied until a prede�ned edge length (user-controlled) is reached,
or whenever a region is locked due to the lack of enough degrees
of freedom. The rationale behind this strategy is that we want to
avoid over-re�nement in regions where it is not necessary to im-
prove quality, and we thus add additional vertices only to match the
user-provided density or locally if they are necessary to improve
the quality. This strategy allows us to produce high-quality meshes
even if the input surface has low quality (Figure 6).

We optimize the mesh using 4 passes: (1) splitting (re�ning),
(2) collapsing (coarsening), (3) swapping, and (4) smoothing. We
store a target edge length value at the vertices of the tetrahedral
mesh, initialized with the user-speci�ed desired edge length` . In (1)
each edge whose length is larger than4

3 [Botsch and Kobbelt 2004;

Fig. 7. A mesh generated with the BSP-tree approach is processed by our
iterative mesh optimization algorithm. The quality might decrease during
the iterations due to the local refinement ignoring quality, but it quickly
improves a�er additional passes of collapsing, swapping, and smoothing.

Dunyach et al. 2013] times the average of the target edge lengths
assigned to its endpoints is split once, and the average is assigned
to the new vertex. After (1), the target edge length assigned to a
vertexv is divided by 2 if there is a low-quality tetrahedron (E > 8,
Equation 1) within its`v ball, and multiplied by 1.5 otherwise. To
ensure that the user-speci�ed density is always reached, we limit the
length by the user-speci�ed parameter` . To prevent unnecessary
over-re�nement in problematic regions, we cap below the length
by � . In (2), we collapse an edge if its length is smaller than4`

5 . In
(3), we swap faces if they improve the quality. In (4), we smooth
all vertices individually minimizing the average of Equation 1 over
their one-ring, using Newton's iteration. Only vertices roundable to
�oats are smoothed, the others are skipped. All these operations are
performed only if they do not break any of the invariants described
above, and if they increase the mesh quality (with the exception of
(1)). In each pass, we use a priority queue to decide the orders of the
operations (longest edge �rst for (1) and (3) and shortest edge �rst
for (2)), except for (4) where the vertices are processed in random
order. For (4), we use analytic gradient and Hessian. In Figure 7, we
show the e�ects of the mesh improvement step.

The mesh improvement process stops when either the maximum
energy is su�ciently small (default: less than 10) or the maximum
number of iteration is reached (default: 80 iterations).

3.3 Interior volume extraction
Note that until this point, our algorithm has not attempted to de�ne a
closed surface bounding a volume: the result of the previous stage is
a construction of the approximately constrained tetrahedralization,
with a possibly nonmanifold, disconnected and open embedded
surface.

We use the method proposed in [Jacobson et al. 2013] to address
possible imperfections in the embedded surface, by de�ning an
inside-outside function that can be used to extract an interior volume
associated with the mesh.

We calculate the winding number of the centroid of each tetrahe-
dron with respect to the embedded surface. If the winding number
of the centroid of an element is smaller than 0.5, we consider it out-
side of the surface and drop it before exporting the mesh. Note that
this technique must be applied only after mesh optimization due to
numerical reasons: the computation of the winding number cannot
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Fig. 8. Any gap or hole in the input geometry (top) is automatically filled
by our algorithm (bo�om), generating an analysis-ready tetrahedral mesh.

be performed in rational numbers and it is numerically unstable
close to the surface (where we care the most), due to the use of
trigonometric functions.

As a result of this step, both small gaps and large surface holes
will be �lled according to the induced winding number �eld (Figures
8 and 11). Consequently, if the input mesh has holes, our algorithms
produces a tetrahedral mesh whose surface is not completely inside
the � envelope, since the triangles used for hole �lling may be
outside.

3.4 Technical Detail
Hybrid Kernel.Implementing the mesh optimization with only

exact rational numbers to store the position of the vertices is not
practical for two reasons: (1) the size of the rational representa-
tion grows every time a vertex is modi�ed (dramatically increasing
the computation time as the algorithm proceeds, especially in the
smoothing step), and (2) rational operations are not supported di-
rectly in hardware, and are much slower than �oating point oper-
ations. We implemented our algorithm using an hybrid geometric
kernel, similar in spirit and design to [Attene 2017]. For each vertex,
we store its coordinates in exact rational numbers only if any of
the incident tetrahedra invert after rounding its vertices to �oat-
ing point representation. This has two major bene�ts: it avoids the
growth of the rational representations, since it trims their length
as soon as it is possible to round a vertex, and reduces the memory
consumption. Note that this does not a�ect the correctness of the
algorithm since problematic regions containing almost degenerate
elements will continue to use an exact rational representation.

Voxel Stu�ng. While guaranteed to produce a valid mesh for
any input, the algorithm described in Section 3.1 can (and will)
generate poorly-shaped initial cells whose size is di�erent from
what the user prescribed, requiring extensive cleanup in the mesh
improvement step. To reduce running times, we found it bene�cial
to preemptively add some proxy points in a regular lattice inside
the bounding box of the input triangle soup. To avoid creating
degenerate cells, we remove proxy points that are within� (� >
� , default:� = b

40) from the surface. These points are passed to
the Delaunay tetrahedralization algorithm (Figure 9), producing
a superior starting point that requires fewer local operations to
reach a usable quality. In addition to reducing the timing in the
optimization stage, this step also localizes the BSP construction
around the input surface. We experimentally found that setting the
grid edge length tob

20 provides the highest bene�t, withb being the
length of the diagonal of the bounding box.

Fig. 9. Voxel stu�ing produces a tetrahedral mesh (middle) of quality com-
parable to a direct BSP-tree construction (right), but reduces the running
times from 3292.3 seconds to 2476.6 seconds.

Fig. 10. A heavily tessellated bridge model from Thingi10k (top, le�), is
simplified by our algorithm, while keeping the surface in the envelope (top,
right), and then converted into a tetrahedral mesh (bo�om).

Input Simpli�cation.The BSP-tree construction potentially in-
troduces a quadratic number of intersections with respect to the
number of faces. This only happens in rare pathological cases and
it is not an issue for the majority of real-world models, but we did
�nd two problematic ones over ten thousand in Thingi10k [Zhou
and Jacobson 2016] (one of which is shown in Figure 10). In these
two models, this issue is su�ciently severe to make the BSP tree
mesh larger than 64GB, making our implementation crawl due to
memory swapping. We propose a preprocessing step that, while not
changing the upper bound complexity of our algorithm, resolves
this issue on all meshes we tested it with. The preprocessing tries to:
(1) collapse all manifold edges of the input triangle soup, accepting
the operations that do not move the surface outside of the envelope
and (2) improve the quality of the mesh (in terms of angles) by �ip-
ping edges, still keeping the surface in the envelope. This procedure
simpli�es regions with low curvature, and e�ectively reduces the
number of vertices introduced by the BSP tree. We were not able
to construct a synthetic case that breaks this procedure when a
realistic� is provided. We used this procedure for all our results,
since it improves performance also on non-pathological meshes.
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Fig. 11. For an input model with open boundaries (top, le�, red lines), we
add a reprojection in the smoothing step to preserve them (top, right). To
improve the surface quality, we apply Laplacian smoothing to the output
faces used to fill the open regions (bo�om).

Open Boundaries.If the surface contains an open boundary, using
only the surface envelope is not always su�cient to ensure a good
approximation of the input triangle soup: while unlikely to happen,
the boundary is free to move anywhere inside it, potentially moving
away from the open boundary, while staying inside the envelope. We
address this problem, tracking the open boundaries and reprojecting
its vertices back to it in the smoothing step (Figure 11). We consider
an edge an open boundary if only one triangle is incident to it.

Envelope Test.Our algorithm heavily relies on testing whether a
triangle is contained inside the mesh envelope or not to ensure that
the embedded surface stays within the envelope during optimization
(Section 3.2). An exact solution would be prohibitively expensive for
our purpose [Barto¬ et al. 2010; Tang et al. 2009], and we thus use a
conservative �oating point approximation. Since the approximation
error is bounded, our method guarantees that none of the output
surface points is outside the envelope.

We implicitly construct the envelope by measuring point-to-mesh
distance to the unprocessed input mesh, accelerated by an AABB tree
[Lévy 2018; Samet 2005]. To check if an embedded surface triangle
face is inside of the envelope, we sample this face using a regular
triangular lattice withd as the length of the lattice edge. We also
add additional samples on the edges of the face, ensuring a maximal
sampling error ofd=

p
3 (Figure 12, left). The triangle is considered

inside if all the samples are closer than̂� = � � der r (der r = d=
p

3),
which is aconservativeenvelope. Since the maximal sampling error
is bounded byder r , this ensures a correct result, up to �oating point
rounding. This construction allows us to control the computational
cost: a smalld means denser sampling and more computational
cost but leads to a wider envelope, allowing our algorithm more
�exibility in relocating the vertices. Our experiments showed that
d = � (�̂ = (1 � 1=

p
3)� ) is a good compromise.

However, the discrete nature of the sampling introduces a subtle
problem: our envelope check is conservative, but not consistent, i.e.
reallocating samples on a face of embedded surface by editing its

Fig. 12. A triangle face sampled using a triangular la�ice has all samples
inside the conservativê� -envelope can have points outside the envelope by
at mostd=

p
3 (le�). Spli�ing the triangle into two changes the sampling

pa�ern (right), and some samples on one of its sub-faces are now outside
the conservative envelope (marked in red).

vertices could make it erroneously classi�ed as outside, since some
samples might land outside the conservative envelope�̂ (but not
outside the user-speci�ed envelope� ) (Figure 12, right). This could
prevent the optimization algorithm for improving the quality of
some regions, since operations might be rejected due to the exces-
sively conservative envelope check. This is a rare occurrence, we
observed it on only 3 models over 10k (0.03%).

We propose a robust, yet expensive, solution for these problem-
atic cases: observing that if there are locked elements, enlarging
�̂ by der r guarantees that all elements will be free to move again,
we increase the sampling density to
make enough space for enlarging the en-
velope, so that locked regions are freed
without violating the user-speci�ed en-
velope� . Letk an integer representing
the current stage (the initial stage is de-
noted byk = 1). In stagek: we (1) set the
sampling distance todk = d=k, (2) run
the algorithm, and then (3) enlarge the
envelope fork � 1 times byder r =k each
time during the geometric optimization
(see inset). If a model is still invalid (i.e.
the output contains no unroundable vertex) after the geometric
optimization in stagek, we then enter into stagek + 1, rerun the
algorithm with a denser sampling, and repeat this procedure until
it succeeds.

Across the Thingi10K dataset, 9997 models producedvalid out-
puts after stage 1, and the remaining 3 models succeed after stage 2.
Since enlarging envelope gives more freedom for moving vertices
and cleaning surface, this method can also help to improve qual-
ity to some degree: we got 99.98% output tetrahedral meshes have
minimal dihedral angle larger than 1 degree withk = 2, while this
percentage is only 99.52% withk = 1.

4 RESULTS
We implemented our algorithm in C++, using Eigen for linear al-
gebra routines, CGAL and GMP for rational computations. The
source code of our reference implementation is available at https:
//github.com/Yixin-Hu/TetWild.

Robustness and Performance.We tested our algorithm and a se-
lection of competing methods over the entire Thingi10k dataset
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Table 1. Statistics for the datasets in the paper.

Model Input Output
Id Fig. #V #V Angle AMIPS Time(m)

255648 3 91550 61506 4.8/41.3 16.1/4.1 48.8
134705 4 66045 2208 5.6/41.4 11.5/4.1 3.0
134705 4 66045 11341 11.7/46.4 7.8/3.7 10.3
134705 4 66045 470742 10.3/47.3 11.4/3.7 168.5
114029 6 123565 118347 10.3/45.4 9.2/3.7 47.2
376252 7 980051 31734 11.1/45.8 8.0/3.7 10.9
62526 8 7818 25773 8.9/43.7 9.6/3.9 17.7
38416 9 120172 87648 10.2/46.3 8.0/3.7 44.6

996816 10 76111 12663 0.02/45.0 1625.4/4.0 747.7
48354 11 10945 21211 10.5/45.8 8.0/3.7 3.4

486859 15 14629 15011 10.0/45.3 9.3/3.7 5.3
42155 15 24646 7248 13.3/45.4 7.3/3.7 2.1
78481 15 298370 11385 12.7/46.4 7.9/3.7 3.9

551021 15 174066 51011 10.2/46.1 9.4/3.7 16.5
488049 15 23036 3574 13.0/43.2 7.8/4.0 1.3
47076 15 768 5491 9.7/44.7 9.6/3.8 1.0

964933 16 148 4991 10.0/44.5 8.3/3.8 1.2
1036403 17 87046 46220 10.5/45.1 8.1/3.8 20.3
1036403 17 87046 202846 12.4/50.1 7.7/3.5 162.7
252683 18 906835 34721 10.0/44.5 8.2/3.8 14.1
252683 18 906835 119087 10.1/46.4 8.0/3.7 113.4
78211 19 320 2042 11.3/34.2 9.9/4.6 0.5
78211 19 320 8661 9.3/43.5 10.1/3.9 14.2
63465 20 592 6238 14.1/44.9 8.2/3.8 0.9
76538 21 14169 10098 12.0/44.9 7.9/3.8 3.9

1065032 22 48506 27362 8.5/45.4 9.4/3.8 9.2
1036658 23 4244 3713 12.3/43.7 7.9/3.8 1.4
Bunny 24 11247 38326 7.7/43.8 9.3/3.9 7.2
Bunny 24 11247 87359 9.9/43.0 8.1/4.0 20.8

1505037 25 19218 37782 10.2/44.2 8.0/3.9 16.8
Note:From left to right: Thingi10k model ID, �gure where it appears, number of input
vertices, number of output vertices, dihedral angle (min/avg), AMIPS energy (Equation

1) (max/avg), running time in minutes.
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Fig. 13. Comparison of running time.

[Zhou and Jacobson 2016]: we show a few examples in Figure 15,
report aggregate statistics in Table 2, running times in Figure 13, and
output mesh quality in Figure 14. We also report detailed statistics
for all models shown in the paper (with the exception of Figure 1)
in Table 1. We selected their parameters to make the comparison as
fair as possible, and we provide all parameters used in the additional
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Fig. 14. Comparison of generated mesh quality on Thingi10k dataset. For
each so�ware, we show the distribution of 6 common quality measures of
all tetrahedra in 1000 randomly sampled meshes generated from Thingi10k
dataset. �ality measures: dihedral angle, inscribed/circumscribed sphere
radius ratio, conformal AMIPS energy, and normalized Shewchuk's gradient
error estimate factor ([Shewchuk 2002b]).

material. CGAL. We compared our method with [Jamin et al. 2015]
in 3 scenarios: (1) CGAL with polyhedral oracle with feature protec-
tion, (2) CGAL with polyhedral oracle without feature protection,
and (3) CGAL with implicit surface oracle. (1) and (2) are run using
the standard implementation inside CGAL, enabling and disabling
feature protection (Section 2), respectively. For (3), we passed an
implicit function based on the winding number calculation, used in
our �ltering. We provide a signed distance �eld as oracle (computed
with the AABB tree in [Jacobson et al. 2016]), and use the winding
number [Jacobson et al. 2013] to decide its sign. In all cases, we have
observed lower robustness compared to our algorithm. The qual-
ity is slightly better for our algorithm. CGAL with the polyhedral
oracle is on average 3 to 4 times faster than our algorithm, while
CGAL with implicit oracle is much slower: nearly a third of the
inputs timed out after 3 hours (Table 2). We show a more detailed
comparison of the quality (measured using 6 di�erent criteria) in
Figure 16.Tetgen [Si 2015] is an order of magnitude faster than
our method, but cannot process around half of Thingi10k. It pro-
duces meshes with a quality consistently lower than ours, despite
introducing more elements.DelPSC[Dey and Levine 2008] su�ers
from robustness problems, successfully processing only around 38%
of Thingi10k. The quality is consistently lower than ours.Quartet
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Fig. 15. Comparison with state-of-art tetrahedralization algorithms. The number close to each model is the minimal dihedral angle.
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Table 2. Comparison of code robustness and performance on the Thingi10k dataset

Software Success rate Out of memory(>32GB) Time exceeded(>3h) Algorithm limitation Average time(s)
CGAL (explicit, w features) 57.2% 5.4% 15.7% 21.7% 160.2
CGAL (explicit, wo features) 79.0% 0.0% 0.0% 21.0% 11.7
CGAL (implicit, wo features) 55.7% 0.0% 32.6% 11.7% 997.3

TetGen 49.5% 0.1% 1.7% 48.7% 32.3
DelPSC 37.1% 0.0% 31.1% 31.7% 174.8
Quartet 87.2% 0.0% 0.0% 12.8% 15.3
MMG3D 56.2% 1.2% 10.8% 31.8% 2182.3

Ours 99.9*% 0.0% 0.1% 0.0% 360.0
Note:The maximum resource allowed for each model are 3 hours and 32GB of memory. *Our method exceeds the 3h time on 11 models. If 27 hours of maximal running time are

allowed, our algorithm achieves 100% success rate.

Fig. 16. (Top): With the same meshing parameters (� = b=2000and ` =
b=20), CGAL's algorithm with and without feature protection (top row) used
more than 4 and 7 times the number of tets than ours (second row right)
respectively. When using roughly the same number of tets, CGAL's result
(second row le�) struggles to preserve sharp features. (Bo�om): Histograms
of various tet quality measures for all tets generated from CGAL and our
algorithm. The do�ed lines indicate the ideal quality values computed on a
regular tetrahedron. Note that our results (bo�om row) have be�er quality
in all measures.

[Bridson and Doran 2014] is the most robust competing method,
with a success rate of 88%. It unfortunately struggles to preserve
thin features, and often uses a much higher element count than our
method.

Parameters.Our algorithm requires two parameters: the target
edge length̀ , which controls the density of the output mesh, and the
maximal Hausdor� distance bound� , which controls the geometric

Fig. 17.` controls the density of the output mesh. Input (top),` = b=20
(middle) and` = b=150(bo�om).

faithfulness of the result. For all our experiments (except where
noted otherwise) we used̀ = b=20and � = b=1000, whereb is
the length of the diagonal of the bounding box of the input. The
parameter̀ controls the mesh density directly (Figure 17), while�
does it indirectly. Prescribing a small� forces the algorithm to re�ne
more to enforce the tighter bound. Providing a larger� allows our
algorithm to get close to the user-prescribed lenghts (Figure 18).

Spatially Varying Sizing Field.By replacing the uniform target
edge length̀ with a spatially varying function` (p), our algorithm
can be extended to create graded meshes. Figure 19 illustrates a
result with target edge length smoothly varying from coarse to �ne
in a single model. Note that the output mesh quality remains high
despite the large change in the sizing �eld.

Surface Repair.Our algorithm can be used as an e�ective mesh
repair tool for closed surfaces by creating a tetrahedral mesh of
their interior, and then extracting its boundary. Self-intersections
are robustly resolved when constructing the BSP-tree, degeneracies
are removed by the mesh improvement step, surface gaps/holes are
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Fig. 18.� bounds the maximal distance between the input and output mesh.
Input (le�), � = b=1000(middle) and� = b=3000(right).

Fig. 19. Example for spatially varying sizing field using background mesh.
Input (le�), output tetrahedral mesh without sizing control (middle), and
output tetrahedral mesh with sizing field applied (right).

Fig. 20. A self-intersecting triangle soup, is cleaned using meshfix by re-
moving the base. Our algorithm instead creates a tetrahedral mesh of its
interior, whose boundary corresponds to a clean triangle mesh of the pawn.

�lled based on generalized winding number, and the output surface
is trivially the boundary of a valid volume. While computationally
more expensive than alternative methods that only work on the
surface, our technique can robustly handle extremely challenging
cases. In Figure 20, we compare our method to MeshFix [Attene
2010] on a self-intersecting chess pawn.

Fig. 21. We test our generated tet meshes by solving a harmonic PDE using
finite element method with linear elements. For each model in Thingi10K, we
compare the computed solution with the ground truth (radial basis functions
with kernel 1=r centered at the red spheres). We show the absolute max
error, relative max error, and relativeL2 error histograms (log scale) in the
bo�om row.

Fig. 22. Our algorithm can be used to bootstrap quadrilateral remeshing.

Finite Element Method Validation.We demonstrate that our al-
gorithm can be used as a black box to solve PDEs on the entire
Thingi10k dataset. We normalize all our output meshes to �t in
the unit cube and create an analytic volumetric harmonic function
by summing 12 radial kernels (1=r ), placed randomly on a sphere
centered at the origin of radius1:5b. This function is sampled on the
boundary of the mesh and used as a boundary condition for a Pois-
son problem, solved using [Jacobson et al. 2016]. We successfully
solve this PDE over all models, and we report a sample solution
and the histograms ofL2 andL1 errors with respect to the analytic
solution evaluated on the internal nodes in Figure 21.

Structured Meshing.Structured meshing algorithms [Bommes
et al.2012] usually rely on an existing clean boundary representation
of the geometry (triangle meshes in 2D and tetrahedral meshes in
3D) to generate a structured mesh. Our algorithm can be used to
convert triangle soups into meshes suitable for remeshing. We show
an example of quadrilateral meshing using [Jakob et al. 2015] in
Figure 22 and of hexahedral-dominant meshing [Gao et al. 2017] in
Figure 23.
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Fig. 23. Our algorithm can be used to bootstrap hex-dominant remeshing.

Fig. 24. Our algorithm is robust to geometrical noise. The numbers denote
the minimal dihedral angle of output meshes.

Noise Stress-Test.We stress test our method under geometrical
noise (Figure 24), by randomly displacing its vertices using Gaussian
noise. Even in this extreme case our algorithm produces meshes
close to the noisy input and have a large minimal dihedral angle.

Meshing for Multimaterial Solids.Our algorithm naturally sup-
ports the generation of tetrahedral meshes starting from multiple
enclosed surfaces by simply skipping the �ltering step (Section 3.3),
as shown in Figure 25.

5 LIMITATIONS AND CONCLUDING REMARKS
Our algorithm handles sharp features in a soft way: they are present
in the output, but their vertices could be displaced, causing a straight
line to zigzag within the envelope. While this is acceptable for most
graphics applications, extending our algorithm to support exact

Fig. 25. The volume around a complex mechanical piece is automatically
meshed by our algorithm, preserving the surface of the embedded object.

preservation of sharp features is an interesting research direction
that we plan to pursue. We demonstrated that our algorithm can be
used as a mesh repair tool, but it is, however, limited to closed sur-
faces: extending it to support mesh repair over shells is an interesting
and challenging problem. Our single threaded implementation is
slower than most competing methods: since most steps of our al-
gorithm are local, we believe that a performance boost could be
achieved by developing a parallel (and possibly distributed) version
of our approach.

To conclude, we presented an algorithm to computeapproximately
constrained tetrahedralizationsfrom triangle soups. Our algorithm
can robustly process thousands of models without parameter tuning
or manual interaction, opening the door to black-box processing of
geometric data.
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