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Fig. 1. Example yarn-level models generated from input 3D surfaces using our fully automatic pipeline.

We introduce the first fully automatic pipeline to convert arbitrary 3D shapes
into knit models. Our pipeline is based on a global parametrization remesh-
ing pipeline to produce an isotropic quad-dominant mesh aligned with a
2-RoSy field. The knitting directions over the surface are determined using
a set of custom topological operations and a two-step global optimization
that minimizes the number of irregularities. The resulting mesh is converted
into a valid stitch mesh that represents the knit model. The yarn curves
are generated from the stitch mesh and the final yarn geometry is com-
puted using a yarn-level relaxation process. Thus, we produce topologically
valid models that can be used with a yarn-level simulation. We validate
our algorithm by automatically generating knit models from complex 3D
shapes and processing over a hundred models with various shapes without
any user input or parameter tuning. We also demonstrate applications of
our approach for custom knit model generation using fabrication via 3D
printing.
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1 INTRODUCTION
Knitted garments are common in our daily lives, going from socks
and T-shirts to winter clothing and accessories, and are thus ubiqui-
tous in movies and games. There are two good reasons for favoring
knitting over its alternatives: knitted fabrics easily stretch and the
shaping techniques used in knitting allow producing complex 3D
surfaces without any seams.

However, designing knitting pattern for a given 3D surface is still
an open problem. Knitting patterns are currently designed using a
high level of expertise and numerous iterations of trial and error
to figure out how one could knit a particular 3D shape. That is
why most knitting patterns used today are merely derivations of
a limited number of well-known and well-understood shapes. In
computer graphics, stitch meshes [Yuksel et al. 2012] provide a
powerful interface for modeling knit garments. However, they still
require users to manually design the topology of the given (typically
low-resolution) input mesh. This requires the user to know exactly
how to knit the desired shape and prepare an inputmesh accordingly.
Therefore, it is extremely difficult and time consuming to design
knitted models for complex and uncommon shapes, like the ones
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shown in Fig. 1, each of which would require numerous design
iterations by a knitting expert.

In this paper, we introduce the first automatic pipeline to deal with
this challenging problem: ourmethod takes a 3D surface as input and
the desired stitch size, and automatically produces a topologically-
valid yarn-level knit model. The resulting yarn-level model can be
either directly used in computer graphics applications with yarn-
level simulation or realized in the real world using 3D printing. The
challenge we are tackling is the design of a dense network of closed,
intertwined yarn curves which are not self-intersecting and hold
together thanks to the interlocked curves formed by knitted stitches.
The problem is inherently global, i.e. a change in one stitch can
affect not only its neighborhood, but the entire shape.

We use stitch meshes [Yuksel et al. 2012] as an intermediate step
in our pipeline. We begin by converting the input 3D shape into
an isotropic quad-dominant mesh with approximately uniform face
sizes using a two-fold rotational symmetry (2-RoSy) orientation
field. This process provides a good starting point that minimizes the
distortions of the final knit structure. Then, we automatically deter-
mine the knitting directions over the entire model surface using a
two-step global optimization process along with custom topological
operations. Finally, we subdivide the resulting mesh to generate a
valid stitch mesh. After the stitch mesh is ready, we can use it to
create the final yarn curves. Since the yarn-curves are topologically
valid, we can use them with yarn-level cloth simulations. Also, fab-
ricating them using 3D printing produces interlocked curves that
form flexible surfaces.

We show the effectiveness of our approach by automatically pro-
ducing yarn-level knit models for complex 3D shapes (Fig. 1) and its
robustness by generating stitch meshes from a large number of com-
plex 3D models. We also present yarn-level models automatically
generated using our pipeline and fabricated via 3D printing.

This paper does not address the problems of fabrication via knit-
ting and the models we generate are not guaranteed to be knittable.
Also, we assume that each stitch has a roughly square shape, while
in reality the height and width of a knitted stitch is often different.

2 BACKGROUND
Before we discuss the details of our method, we briefly overview
of modeling fabrics and knit structures as well as the stitch mesh
structure [Yuksel et al. 2012] that we use in our pipeline for repre-
senting the final yarn-level model. We also provide an overview of
prior works on quad-dominant remeshing.

2.1 Cloth Modeling
Much of the work in computer graphics involving cloth has been
aimed towards simulating woven fabrics using sheet-based repre-
sentations [Baraff and Witkin 1998; Breen et al. 1994; Bridson et al.
2002; Goldenthal et al. 2007; Grinspun et al. 2003; Volino et al. 2009].
The modeling approaches for sheet-based cloth mainly concentrate
on fitting garment models on virtual characters [Berthouzoz et al.
2013; Carignan et al. 1992; Decaudin et al. 2006; Guan et al. 2012;
Robson et al. 2011; Turquin et al. 2004; Umetani et al. 2011; Wang
et al. 2003]. 3D modeling approaches have also been used in virtual
garment prototyping [Luo and Yuen 2005; Volino and Magnenat-

Thalmann 2005]. To produce more complex cloth models, Mori and
Igarashi [2007] proposed a method for designing 3D plush toys by
sketching 2D patterns. More recently, cloth capturing methods using
multi-view systems [Bradley et al. 2008], single images [Daněřek
et al. 2017; Zhou et al. 2013], 3D scans [Chen et al. 2015], and motion
sequences [Pons-Moll et al. 2017] have been shown to successfully
produce virtual garment models.
Akleman et al. [2009] introduced a method for converting arbi-

trary quad-meshes into plain-woven structures using graph rota-
tion systems. While this approach is similar in spirit to our method,
the knit structures we produce have entirely different construc-
tions and requirements than plain-woven structures. 3D printing
is often paired with computational fabrication techniques. Meth-
ods to design and fabricate various structures, such as flexible rod
meshes [Pérez et al. 2015], ornamental curve networks [Zehnder
et al. 2016], and wireframe meshes [Wu et al. 2016] have been ex-
plored in prior work. Our method fits in this trend, allowing the
automatic design of 3D printable complex knit structures.
Knit structures are constructed by pulling yarn loops through

other yarn loops to form stitches. Shaping techniques, such as in-
creases that pull multiple yarn loops through one yarn loop or de-
creases that pull a yarn loop through multiple yarn loops, allow
forming complex 3D shapes without introducing seams. Due to the
properties of this construction, knit fabrics have low resistance to
stretching even if the yarn itself is not stretchable.

Therefore, more complex representations than sheet-based mod-
els are favored for knits. Nocent et al. [2001] used a continuummodel
for simulating knitted cloth. Kaldor et al. [2008; 2010] introduced
yarn-level simulation methods for animating knitted cloth models.
Cirio et al. [2014] presented a reduced-order model for handling
yarn interactions, which is extended to support knit cloth [Cirio
et al. 2015, 2017]. Jiang et al. [2017] used the material point method
for handling yarn-level interactions.

On the other hand, designing yarn-level models for knits has been
a challenging problem. Meißner and Eberhardt [1998] introduced
a system to simulate the knit construction process with a simpli-
fied yarn-level model. Peng et al. [2004] introduced a texture-based
method to add yarn-level details to surface appearance. Igarashi et
al. [2008a] introduced a semi-automatic method for generating knit
models from an input 3D shape, which is manually segmented into
multiple patches of disks or disks with holes. They also presented a
sketch-based modeling system for designing plush toys [Igarashi
et al. 2008b].McCann et al. [2016] recently proposed amethod to gen-
erate machine knitting instructions for knitting 3D models designed
by their custom interface, which is limited to simple primitives,
such as tubes and sheets. Yuksel et al. [2012] introduced the stitch
mesh modeling framework. Stitch meshes provide a mesh-based
representation of the yarn-level knit geometry and allow efficiently
designing complex 3D knit models with correct yarn-level topology,
such that they can be used with yarn-level simulations. However,
the stitch mesh modeling framework heavily relies on the topology
of the given input mesh, which must be manually constructed, such
that the edges align with the knitting directions. The pipeline we
introduce in this paper is based on the stitch mesh representation,
so we provide a more detailed overview below.
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(a) stitch mesh face (b) faces on a row (c) multiple rows
Fig. 2. Stitch mesh representation: (a) a typical stitch mesh face
and the corresponding yarn-level model, (b) stitch mesh faces on a row,
(c) multiple rows of stitch mesh faces representing interlocked stitches
on consecutive rows.

2.2 Stitch Meshes
The stitch mesh structure [Yuksel et al. 2012] is an abstraction of the
yarn-level geometry that provides a powerful interface for modeling
knit structures. Each stitch-mesh face corresponds to a stitch of
the knit structure, shown in Fig. 2a. These faces are placed side-
by-side along the course knitting direction, forming rows (Fig. 2b).
Consecutive rows are connected along the wale knitting direction
(Fig. 2c). Each stitch-mesh face has two wale edges that are aligned
with the wale knitting direction. Most stitch mesh faces are quads
with two wale edges and two course edges that are aligned with the
course knitting direction and separate the wale edges. The yarn
used for knitting the stitch represented by a face enters the face
from one of the wale edges, forms the stitch, and then exists the
face from the other wale edge (green yarn curves in Fig. 2a). The top
part of a yarn loop formed by the stitch in the previous row enters
and exits the face from the bottom course edge (green yarn curves
in Fig. 2a). Similarly, the loop forming the stitch of a face exits and
enters the face from the top course edge, connecting it to the next
row.
Stitch mesh faces can have more than four edges. Faces with

multiple top course edges are called increases, as they increase the
number of stitches on the next row. Similarly, faces with multiple
bottom course edges are called decreases. The stitch mesh structure
also permits faces with no bottom course edges or no top course
edges, but such faces must be placed with caution, since they do
not form stable stitches and placing them side-by-side may cause
the yarn-level model to unravel. That is why we entirely avoid
such faces in our framework. Yet, this limitation has no practical
consequence, since the yarn-level models including such faces can
be represented differently. For example, a triangular face next to a
quad face can also be represented by a face with five edges.

2.3 Structured Meshing
The generation of quadrilateral or quadrilateral-dominant meshes
has received a lot of attention in the last two decades. We restrict our
survey to the most recent works in global and local parametrization,

and we refer an interested reader to [Bommes et al. 2013] for a
complete survey.

Global parametrization methods [Alliez et al. 2002; Gu et al. 2002;
Khodakovsky et al. 2003; Marinov and Kobbelt 2006] flatten the sur-
face after cutting it into a topological disk, generate a regular lattice
on the plane, and then lift it back to the original surface, producing
a structured mesh. To control edge alignment, it is possible to solve
an optimization that strive to align the parametrization gradients to
a guiding field [Bommes et al. 2009; Ebke et al. 2014; Kälberer et al.
2007; Nieser et al. 2012]. Designing the guiding field is a difficult
problem on its own [Crane et al. 2010; Hertzmann and Zorin 2000;
Jiang et al. 2015; Knöppel et al. 2013, 2015; Lai et al. 2010; Palacios
and Zhang 2007; Panozzo et al. 2014; Ray et al. 2008], and we refer
an interested reader to the recent state-of-the-art report of Vaxman
et al. [2016]. These methods fix the singularities of the quadrilateral
mesh during the orientation field design, and they thus inevitably
introduce distortion in the parametrization (since the orientation
field is not integrable [Diamanti et al. 2014]), which results in quads
of varying size. While this is not problematic for most remeshing
applications, it is not acceptable for stitch meshes, since the size of
stitch has to be uniform.

Local parametrization methods [Gao et al. 2017; Jakob et al. 2015;
Ray et al. 2006; Sokolov et al. 2016] provide a radically different
approach, where a perfectly isometric parametrization is computed
locally for every vertex/triangle of a surface. Local inconsistencies
between neighboring parametrizations, which are unavoidable since
exact isometry is enforced, lead to the introduction of non-quad
elements or T-junctions, producing hybrid meshes composed of a
majority of isotropic quadrilateral elements. These meshes are ideal
for our purposes, since they contain minimal distortions and they
produce approximately uniform face sizes.

Our remeshing algorithm is heavily based on the Robust Instant
Meshing (RIM) quad-dominant meshing pipeline of Gao et al. [2017].
In RIM, the orientation field is encoded as a unit vector attached to
every vertex, which is unique up to an integer rotation. The position
field encodes a local isometric parametrization whose gradient is
aligned with the orientation field, i.e. it encodes a regular grid in
the tangent space. It is called position field, since the only available
degree of freedom is the origin of the grid (up to an integer trans-
lation), which is represented as a 3D point. The position field can
be visualized as a new set of 3D coordinates for the vertices of the
input triangle mesh, that are mapping each vertex to the position of
the closest vertex of the output quadrilateral mesh. RIM extracts the
final quad mesh by collapsing the edges of the input mesh, using
the position field to identify which edges should be preserved as
final edges of the quad-dominant mesh, which edges are diagonals,
and which edges should be collapsed.

3 OVERVIEW
Our pipeline begins with an input model. Unlike the stitch mesh
modeling framework, however, we do not rely on the topology of this
input model. Instead we begin with remeshing the model to produce
a quad-dominant mesh. Then, we perform a series of optimizations
and topological operations to generate the knitting directions over
the mesh. Finally, we perform a subdivision operation that produces
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(a) Input Model (b) Quad-dominant Mesh (c) Labeled Edges

Remeshing Labeling
K. Direction
Assignment

(d) Mesh with Knitting Directions (e) Stitch Mesh (f) Final Yarn-Level Model

Stitch Mesh
Generation

Relaxation &
Yarn Generation

Fig. 3. The overview of our pipeline: (a) an arbitrary input 3D model is converted into (b) an isotropic quad-dominant mesh with only quads
and triangles via remeshing. Then, (c) the edges of the mesh are labeled, and (d) knitting directions over the surface are determined (arrows showing
the wale knitting direction on each face). Finally, (e) a stitch mesh is generated and (f) the final yarn-level model is produced from the stitch mesh
via relaxation and yarn generation operations.

a valid stitch mesh, and the final yarn-level model can be easily
created from this stitch mesh. Fig. 3 demonstrates the individual
steps of our pipeline that are listed below:

• Remeshing: Starting with a given input model, We generate
an isotropic quad-dominant mesh that only contains triangles
and quads (Section 4).

• Labeling:We formulate a Mixed-Integer Programming (MIP)
problem and perform custom topological operations to label
each edge as a wale or course edge (Section 5).

• Knitting Direction Assignment: We determine the knit-
ting (wale) direction based on the edge labels by solving
another optimization problem (Section 6).

• Stitch Mesh Generation: The stitch mesh is formed via a
subdivision operation that considers the knitting directions
and edge labels (Section 7).

• Relaxation andYarnGeneration:Weperformmesh-based
relaxation and then generate the yarn-curves from the stitch
mesh (Section 8). The final yarn-level model is produced via
yarn-level relaxation.

This process allows us to produce a yarn-level knit model starting
with an arbitrary 3D shape. No user interaction is required at any
step. We describe each one of these steps in detail in the following
sections.

4 REMESHING
The requirements for producing valid stitch meshes are different
from traditional FEM applications. Stitch meshes are quad-dominant
meshes that must satisfy two requirements:

(1) Topology Requirement: It must be possible to separate the
faces into groups of rows, such that the knitting directions
are aligned along edges (Fig. 2c),

(2) Geometry Requirement: All faces must have approxi-
mately the same size.

The first requirement ensures the existence of a valid set of knitting
patterns for the faces, while the second models the physical con-
straint that the stitch size is constant and thus the stitch mesh faces
need to have a homogeneous size.
Stitch meshes contain two primary directions (course and wale)

that are roughly perpendicular to each other over the entire mesh.
Therefore, a 2-RoSy field, which produces a 2-colorable mesh [Lei
et al. 2017], provides a suitable topological construction for gener-
ating stitch meshes, where one of the primary directions is later
aligned with the field. A more typical 4-RoSy field, on the other
hand, leads to directional misalignments that require additional
topological operations to resolve them. However, 2-RoSy fields are
rarely used in other applications, since their singularities induce
large geometric distortions: a low-order 2-RoSy field singularity can
be approximated by 2 quads, which necessarily have flat angles, and
introduce large distortions in the neighboring regions. Fortunately,
this is not a problem for stitch meshes, since stitches near singulari-
ties naturally deform, making modern field-guided, quad-dominant
pipelines ideal for our purpose.
We extend the RIM [Gao et al. 2017] quad-dominant meshing

pipeline to produce meshes that satisfy (in a soft sense) the require-
ments of stitch meshes. Our method for orientation and position
field generation is identical to RIM, with the exception of using a
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2-RoSy symmetry instead of a 4-RoSy symmetry, which is a trivial
modification. RIM automatically adds T-junctions and triangles to
ensure a uniform mesh element size, which satisfies our geometry
requirement. The mesh extraction part is modified to restrict the
non-quad elements to be either pentagons (using T-junctions) or
triangles. We implemented this as a postprocessing step, which is
applied after the extraction procedure of RIM, using:

(1) For each triangle, we pick the edge whose opposite angle is
closer to 90 degrees (excluding the edges corresponding to
sharp features, identified by a negative dot product between
the normal of the two incident faces) andmark it as a diagonal,
encouraging the extraction algorithm to merge it with the
neighboring elements, if possible.

(2) We split each polygon with more than 5 sides by adding
the edge that is most aligned with the orientation field. The
splitting is done recursively until all subpolygons have less
than 5 sides.

These operations are interleaved with the extraction algorithm in
RIM, until no changes to the final mesh are made in one iteration.
To complete the pipeline, each pentagon (T-junction) is split into 3
triangles, connecting the T-junction with the two vertices on the
opposite side. As a result, at the end of our remeshing step we get
a quad-dominant mesh that contains a relatively small number of
triangles.

5 LABELING
Labeling helps us determine the knitting directions over the mesh
surface. Similar to stitch mesh modeling, our goal is to label each
edge as a wale edge or a course edge.
Our labeling process begins with representing each edge as two

half-edges, each belonging to one of the two faces sharing the edge.
Obviously, border edges that are used by a single face would only
have a single half-edge. We label each half-edge, following certain
rules that will allow us to define valid knitting directions over the
surface (Section 5.1). This process involves solving an optimization
problem that would minimize the number of edges with conflict-
ing half-edge labels. Thus, we find a valid half-edge labeling that
maximizes the number of edges with consistent half-edge labels.
Then, we assign the edge labels by resolving the half-edge label-
ing conflicts using simple topological modifications (Section 5.2).
Finally, we perform post-processing operations to ensure that we
have desirable final edge labels and mesh topology (Section 5.3).

5.1 Labeling Half-Edges
Our half-edge labelingmust follow certain rules, so that the resulting
labels define valid knitting directions over the surface. Thus, we can
only permit a limited number of configurations for labeling.

Each quad face must have two wale edges and two course edges.
Also, wale edges must be separated by course edges. Therefore, the
only acceptable combination of labeling for quad faces is the one
shown in Fig. 4a.

Our final stitch meshes do not contain triangles, but we do have
triangles at this intermediate step. When labeling triangles, we
cannot permit all edges of a triangle to be labeled as course edges,
because this would prevent building stitches within the triangle,

(a) (b) (c)
Fig. 4. Valid half-edge configurations for quad and triangle faces.
Course half-edges are colored as red and wale half-edges are colored
as green.

effectively turning the triangle into a hole. Similarly, we cannot
permit labeling all edges of a triangle as wale edges either, since this
would also prevent building stitches within the triangle. Therefore,
the only two labeling alternatives we can permit for triangles include
either one wale edge or one course edge, as shown in Fig. 4b-c.
Following these labeling rules for quads and triangles shown in

Fig. 4 as hard constraints, we label each half-edge in a way that
would minimize the number of edges with inconsistent half-edge la-
bels. We achieve this by representing the half-edge labeling problem
as a mixed integer programming problem.

Let ℓei0 and ℓei1 represent the labels of the two half-edges for the
edge ei with index i . We assign them integer values 0 or 1 to indicate
labels wale or course, respectively. These labels can also be accessed
using face indices, such that ℓfj0 , ℓfj1 , ℓfj2 , and ℓfj3 are the four half-
edge labels of a quad face fj with index j . Thus, if ei is the first edge
of fj and fj is the first face of ei , we can write ℓei0 = ℓ

fj
0 . Using this

notation, our optimization problem can be written as

minimize
n−1∑
i=0

(ℓei0 − ℓei1 )2

subject to

for each quad face fj , ℓ
fj
0 = ℓ

fj
2 , ℓ

fj
1 = ℓ

fj
3 , ℓ

fj
0 , ℓ

fj
1

ℓ
f j
k ∈ {0, 1}, k = 0, 1, 2, 3

and for each triangle face fj , 1 ≤ ℓfj0 + ℓ
fj
1 + ℓ

fj
2 ≤ 2

ℓ
fj
k ∈ {0, 1}, k = 0, 1, 2

where n is the number of non-border edges. Note that since ℓfj0
and ℓfj1 can only be 0 or 1, ℓfj0 , ℓ

fj
1 is modeled as ℓfj0 + ℓ

fj
1 = 1.

The constraints ensure that quad and triangle faces use one of the
valid half-edge configurations. We solve this optimization problem
using branch-and-bound that returns a solution with the minimum
number of edges that contain conflicting half-edge labels.
In most cases the resulting labeling would contain edges with

inconsistent half-edge labels, such that ℓei0 , ℓ
ei
1 for some edges ei .

In fact, around certain types of singularities, we are guaranteed to
have inconsistent half-edge labels. In particular, vertices with odd
valance that are surrounded by quad faces, such as the example
in Fig. 5, would have at least one edge with inconsistent half-edge
labels. Therefore, before we solve the optimization problem, we
triangulate the faces surrounding singularities containing vertices
with odd valence. This provides additional flexibility in assigning
half-edge labels around such singularities and makes it possible to
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(a) (b)

(c) (d) (e)

Fig. 5. Triangulation near singularities: (a) singularities con-
taining vertices with odd valance lead to (b) inconsistently labeled
half-edges; therefore, (c) we first triangulate the quads near such sin-
gularities to provide more flexibility during half-edge labeling, and
then (d) such triangles can be merged at the end of the labeling process.

label the half-edges around them consistently. At the end of the
labeling process, we can recover some of these triangulated quads
via our post-processing operations (Section 5.3).

5.2 Labeling Edges
After we label the half-edges, we can label all edges with consistent
half-edge labels. Edges with inconsistent half-edge label, however,
require topological modifications to the mesh. There are three al-
ternatives that are handled differently: an edge with inconsistent
half-edge labels might be between two quads, a quad and a triangle,
or two triangles.

Fig. 6. Triangulation of quad faces: (top) the two valid configu-
rations for labeling half-edges of triangles can be used for representing
(bottom) all possible configurations for labeling half-edges of quads.

If an edge with inconsistent half-edge labels is between two quads,
we label the edge as a course edge, then split the quad with the
wale half-edge label into two triangles. The alternative of labeling
the edge as a wale edge and splitting the other quad is also an
acceptable solution, but this would split the row on one side of the
edge (since neighboring quad faces sharing wale edges form rows),
so we prefer the other alternative. A quad can be split into two
triangles in two different ways along either one of its diagonals.
They produce similar results, so we randomly pick one diagonal.
Once we split a quad into two triangles, any possible half-edge
labeling configuration can be represented by combinations of the
two triangle labeling configurations we permit, as shown in Fig. 6.
Therefore, while assigning the half-edge labels for these two new
triangles, we make sure that they do not contain other edges with
inconsistent half-edge labels. Thus, we simply use the half-edge
labels on the other sides of their edges. An example of this operation
is shown in Fig. 7, where one of the quad faces sharing an edge

Fig. 7. Splitting quad faces: (left) if an edge with inconsistent half-
edge labels is between two quad faces, (right) the face with the wale
half-edge label is split into two triangles.

with inconsistent half-edge labels is split into two triangles and
the half-edge labels of the new triangles are assigned such that the
triangles do not contain edges with inconsistent labels.
If an edge with inconsistent half-edge labels is between a quad

and a triangles, we split the quad face. Again, we can use either
one of the diagonals for splitting the quad face. Similarly, we make
sure that the two new triangles do not contain other edges with
inconsistent half-edge labels.

Fig. 8. Rotating edges between triangle pairs: (left) if an edge
with inconsistent half-edge labels is between two triangles, (right) the
edge is rotated.

If an edge with inconsistent half-edge labels is between two tri-
angles, we rotate the edge, as shown in Fig. 8, and we label the
rotated edge as a course edge. Note that labeling the rotated edge
as a course edge is guaranteed to form two valid triangle configu-
rations on either side of the edge. This is because the shared edge
between two triangles can have inconsistent half-edge labels only
when the other half-edges of one triangle are labeled as course and
other half-edges of the other triangle are labeled as wale. Otherwise,
the optimization process for assigning the half-edge labels would
have resolved the inconsistency in half-edge labeling.

Note that none of these topological operations lead to new incon-
sistencies in half-edge labeling. Therefore, all edges can be labeled
in a single pass without the need for multiple iterations.

5.3 Post-Processing
Our post-processing operations involve pairs of neighboring trian-
gles. If the edge labels of a pair of neighboring triangles are such that
merging them into a quad by removing the common edge between
them would lead to a quad with an acceptable labeling configuration
(as in Fig. 4a), we merge the two triangles into a quad. An example of
this operation is shown in Fig. 9. This operation reduces the number

Fig. 9. Merging triangles: (left) if removing an edge between two
triangles would lead to a quad with valid labeling, (right) we merge
the two triangles.
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Fig. 10. Merging triangles after flipping the label of a course
edge: (left) two pairs of triangles separated by a course edge are labeled
such that (middle) flipping the label of the course edge allows (right)
merging the triangles into quad faces.

of triangles and unnecessary complexity in the final knit structure.
Such pairs of triangles commonly appear around singularities con-
taining a vertex with an odd valence, since we triangulate the quad
faces around such singularities before labeling the half-edges. Thus,
this operation can recover some of the quad faces around those
singularities. Yet, such pairs of triangle can appear on other parts
of the model as well. In particular, the triangulation process used
for labeling edges can also produce such triangle pairs, which are
converted to quads in this step.
In some cases flipping the label of a course edge between two

triangles can allow merging these triangles with other neighboring
triangles, as shown in Fig. 10. Therefore, we scan course edges
between pairs of triangles with at least one of them connected to
another triangle and check if flipping the edge label would allow
merging the nearby triangle into quads. If so, we flip the edge label
and merge the triangles.
Finally, we consider pairs of neighboring triangles sharing an

edge labeled as a wale edge. If both triangles of such an edge have
other edges labeled as wale edges and that merging them would
not lead to a quad face with a valid configuration, we flip the label
of the shaded edge to a course edge. The reason for this operation
becomes more clear after discussing the subdivision operation that
generates the final stitch mesh (Section 7). This is because if the
common edge label for this particular pair of triangles is kept as
a wale edge, the resulting stitch mesh would contain triangular
stitch-mesh faces that cannot always be safely eliminated, which
may result in unstable stitches that would unravel during yarn-level
simulation.

6 KNITTING DIRECTION ASSIGNMENT
After labeling the edges, we must determine the knitting directions
over the model surface. On each face the course and wale knitting
directions are aligned with the course and wale edges, respectively.
We can arbitrarily pick either one of the two possible course direc-
tions (i.e. left-to-right or right-to-left), since a stitch can be formed
using either direction. The choice for the wale directions, however,
is not arbitrary, since it determines which course edges of a face are
the bottom course edges and which ones are the top course edges.
We would like the wale direction to be uniform over the entire

model. This means that if an edge is treated as a bottom course edge
for one face, the other face sharing the edge should treat it as a top
course edge. This aligns the wale knitting directions for the two
faces. However, we cannot enforce this as a hard constraint, because
some shapes would require having mismatched wale directions
in certain places, depending on how the knit structure form the
surface. Therefore, we perform another optimization that provides
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Fig. 11. An example meta-graph: (left) mesh with separate rows
colored differently, and (right) its meta-graph.

a solution with the minimum number of course edges that are along
mismatched wale directions.
Note that in our labeling each quad face is assigned exactly two

wale edge and each triangle can have one or two wale edges. There-
fore, a group of edges connected with wale edges form a string of
faces that we call a row. Each row can either form a closed loop or it
can begin and end with two triangle faces, each with a single wale
edge. Each face belongs to a single row and neighboring rows are
separated by course edges.
One hard constraint for this optimization is that the wale direc-

tions of two neighboring faces sharing a wale edge must be aligned.
Otherwise, the resulting wale directions would not form a valid
stitch mesh. This means that the wale direction along each row
must be consistent. Therefore, instead of formulating the optimiza-
tion problem for determining the wale directions per face, we can
reduce the dimensionality of the problem by formulating it per row
of faces. We achieve this by building a meta-graph of the mesh, such
that each row of the mesh corresponds to a node of the meta-graph.
An example meta-graph generated from a mesh is shown in Fig. 11.
Two nodes of the meta-graph are connected to each other via undi-
rected weighted edges, if the rows that correspond to these nodes
have common course edges. The number of common course edges
determine the weight of the edge. Each node of the meta-graph
contains two halves: one half corresponds to the group of course
edges on one side of the row and the other half corresponds to the
group of course edges on the other side. Thus, the edges between
nodes connect one half of a node to one half of another node.
We formulate a similar mixed integer programming problem

on the meta-graph. The two halves of each meta-graph node are
labeled as either top or bottom, indicating that the course edges
corresponding to those halves are either top course edges or bottom
course edges. Let LMr

0 and LMr
1 represent the labels of the two

halves of a meta-graph node Mr with index r . We assign them
integer values 0 and 1 to indicate top or bottom labels, respectively.
The same indices can also be accessed using the edges of the meta-
graph, such that LEs0 and LEs1 are the labels of the two meta-graph
node halves that are connected by the meta-graph edge Es with
index s . Using this notation, we can write the optimization problem
that minimizes the number of course edges with mismatched wale
directions as

minimize
N−1∑
s=0

Ws
(
1 − (LEs0 − LEs1 )2

)
subject to For meta-graph nodeMr ,L

Mr
0 + LMr

1 = 1

LMr
k ∈ {0, 1}, k = 0, 1,
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where N is the number of meta-graph edges andWs is the weight
of the edge Es (i.e. the number of course edges between the two
rows). The constraint LMr

0 + LMr
1 = 1 ensures that the two halves

of the nodeMr are assigned different labels. We solve this problem
using branch-and-bound. Since the meta-graph contains a relatively
small number of nodes (as compared to the number of faces), this
optimization can be solved efficiently.

7 STITCH MESH GENERATION
The resulting mesh after assigning the knitting directions can be
directly used as a stitch mesh. However, it contains triangle faces,
which are undesirable. In particular, each triangle face with a single
wale edge, marking the beginning or ending of a row, would lead to a
knot in the yarn-level model. To avoid this, we perform a subdivision
operation, similar to Catmull-Clark subdivision [Yuksel et al. 2012],
which converts each quad face into four quads and each triangle
face into three quads.

(a) (b) (c)
Fig. 12. Subdivision rules for (a) quad faces, (b) triangle faces with
two wale edges, and (c) triangle faces with two course edges.

There are three cases to consider for labeling the new edges gen-
erated by the subdivision operation, as shown in Fig. 12. Quad faces
form four regular quads. Triangle faces, however, form two regular
quads and one special quad with a different labeling configuration,
where wale edges are not separated by course edges. We handle
these quad faces with different labeling configuration differently.
Triangles with two course edges form a special quad with one

bottom course edge and one top course edge. Such quads mark the
beginnings and endings of stitch mesh rows. Therefore, they are
handled differently than other stitch mesh faces when generating
the yarn curves, as explained in Section 8.
Triangles with two wale edges, however, form a special quad

with either two bottom course edges or two top course edges. Such
quads do not correspond to a valid stitch; therefore, we eliminate
them. We begin with triangulating these quads by splitting them
with a diagonal wale edge that forms two triangles, each with a
single course edge. Finally, we merge these two triangles with the
quad faces on either side, forming pentagons that represent either
increase or decrease type stitches. Note that our post-processing
after labeling edges (Section 5.3) ensures that there is always a quad
face next to these triangles, since we do not permit having two
triangles with two wale edges side-by-side, sharing a wale edge.
Fig. 13 shows an example row that is subdivided into a stitch

mesh. Special quad faces appear on either ends of the row as well as
the top center of the row, which are handled differently. Note that
after the subdivision operation, all rows of the resulting stitch mesh
form closed loops with no end points.

(a) (b)

(c) (d)
Fig. 13. Stitch mesh generation: (a) the faces on each row are
(b) subdivided into quad faces; (c) the face at the center with two
bottom course edges is triangulated; and finally (d) the triangles are
merged with the neighboring quad faces.

8 RELAXATION AND YARN GENERATION
Before we generate the yarn curves from the stitch mesh, we per-
form mesh-based relaxation [Yuksel et al. 2012] . While the initial
remeshing step provides a good starting point that results in faces
with approximately the same size over the entire model, due to the
topological operations we perform during labeling and stitch mesh
generation, an optional mesh-based relaxation step can provide
some minor improvement in unifying the edge lengths and mini-
mizing the deformation of quad faces. Fig. 14 demonstrates zoom in
view of “fertility” model before and after mesh-based relaxation.

(a) Before Relaxation (b) After Relaxation
Fig. 14. Mesh-based relaxation: (a) stitch mesh before mesh-based
relaxation, and (b) stitch mesh after mesh-based relaxation.

(a) (b) (c) (d)
Fig. 15. Stitch types: (a) regular quads, (b) increases, (c) decreases,
and (d) special quads.

The stitch mesh models we generate have four different types
of faces: (1) regular quad faces, (2) pentagon faces representing
increases, (3) pentagon faces representing decreases, and (4) special
quad faces marking row ends. For regular quad faces, we generate
yarn curves of a knit stitch (k), shown in Fig. 15a. Pentagon faces
representing increases use a knit followed by a purl that are pulled
through the same loop (kp), as shown in Fig. 15b. Pentagon faces
representing decreases use a knit stitch that is pulled through two
loops (d12k), as shown in Fig. 15c. Finally, special quads that mark
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STD 0.77 STD 0.36 STD 0.22 STD 0.13 STD 0.06

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

Fig. 16. Yarn-level knit structures generated from the “bunny” model with three different resolutions: 1.3K, 4K, 7K, 16K, and 48K stitches.

Fig. 17. Yarn-level knit structure for the Armadillo model with high-
curvature areas around the ears, the tail, the fingers, and the toes.

the end of the rows simply connect the yarn of the course edges
together and the wale edges together, as in Fig. 15d. Note that the
stitch mesh representation allows replacing these stitches with other
stitch types, if desired. However, this would require manual stitch
mesh editing, so we simply use the corresponding stitch type in
Fig. 15 for all faces.

9 RESULTS
Fig. 1 shows complex 3D models that are automatically converted
to yarn-level knit structures using our pipeline. Notice that the re-
sulting yarn-level models have uniform stitch sizes over the model
surfaces. Our pipeline supports high genus surfaces, as demon-
strated in Fig. 3f. We can also handle models with high-curvature
areas, such as the example in Fig. 17.
The surface details preserved in the final yarn-level model de-

pends on the resolution of the generated stitch mesh. Fig. 16 shows
the “bunny” model with five different resolutions. While all five
results are valid stitch meshes with uniform stitch sizes, only the one
with the highest resolution captures the small-scale details of the in-
put surface. Notice that representing small-scale surface details also
introduce additional singularities that are needed for shaping the
knitted model. On the other hand, using low-resolution remeshing
loses surface details during the remeshing step.

Yet, if the input model does not have small-scale features, a low-
resolution model generated using our framework can produce ac-

(a) (b) (c) (d)

Fig. 18. Low-resolution stitch mesh and the yarn-level model gener-
ated using the “sculpt” model: (a) the input shape, (b) the stitch mesh,
and (c-d) two views of yarn-level knit model.

ceptable results. An example low-resolutionmodel with a reasonably
complex shape is shown Fig. 18.
Even CAD models with sharp features can be processed by out

pipeline (Fig. 19): the sharp features of the input model are partially
smoothed due to the relatively low resolution of the yarn-level
model, but the overall shape is preserved. Notice that when using
an intrinsic orientation field (Fig. 19a), the knitting directions are
not aligned with the surface details [Huang and Ju 2016; Jakob et al.
2015]. Using an extrinsic orientation field instead (Fig. 19b) makes
the knitting directions of the final model follow the surface details
better, but it also introduces additional singularities to align the
orientation field with the model features. Therefore, the yarn-level
models in Figures 1, 3, 17, and 16 are generated using an intrinsic
orientation field.
Our pipeline can also be used with custom orientation fields, to

provide additional control over the final knitting directions. Fig. 20
shows the stitch meshes and the final yarn-level model generated
from the same input shape using both the intrinsic orientation
field and a custom orientation field, generated with a small set of
user-defined strokes. The stroke compete with the field smoothness,

(a) (b)

STD 0.23 STD 0.21

0.5 1 1.5 0.5 1 1.5

Fig. 19. Yarn-level “rocker arm”model generated using (a) an intrinsic
orientation field and (b) an extrinsic orientation field.
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(a) intrinsic orientation field (b) custom orientation field

STD 0.10 STD 0.09

0.5 1 1.5 0.5 1 1.5

Fig. 20. Stitch meshes and yarn-level knit models generated using
(a) the default orientation field, and (b) user-defined orientation field
with orientation constraints interactively drawn on the model surface.

leading to a small increase in the number of irregularities in the
knitting pattern.

Edge Lengths. We present the distribution of the stitch mesh edge
lengths after mesh-based relaxation as histograms in Fig. 16, 19,
and 20. The standard deviation (STD) of edge lengths mainly de-
pends on the mesh resolution after remeshing, rather than the type
of orientation orientation filed used. The variations on edge lengths
are mostly introduced due to singularities and stitch size variations
around singularities. Note that such variations on stitch sizes near
singularities also appear in real-world knitting.

Performance. The performance results of our pipeline for gener-
ating various yarn-level models that are presented in this paper are

0

5

10

15

0 4K 8K 12K 16K 20K

bunny

fertility

quad-dominant mesh face count

ha
lf-

ed
ge

 la
be

lin
g 

tim
e 

pe
r 

fa
ce

 (m
s)

Fig. 21. Half-edge labeling time per face for different quad-dominant
mesh resolutions. The final stitch meshes for the lowest and highest
resolution examples in the graph are shown on the right.

shown in Table 1. Notice that most of the steps in our pipeline can
be computed within several seconds to a few minutes, depending
on the size and complexity of the input model and the resolution
of the output model. However, after we generate the yarn curves,
the yarn-level relaxation step that produces the final yarn curve
shapes can take hours. Aside from the relaxation operations, the
most expensive component of our pipeline is the optimization we
use for labeling the half-edges. Fig. 21 shows half-edge labeling time
per face for different quad-dominant mesh resolutions, indicating
that computation time per face increases with mesh resolution and
it depends on the topological complexity of the mesh.

The two-step optimization for labeling and direction assignment
(Sections 5 and 6) is the key to the efficiency of our algorithm.
We experimented with an integrated optimization tackling jointly
both problems, and observed that the larger solution space of the
combined optimization dramatically increases the computational
requirements. On the 16K “bunny” model (Fig. 16), the combined op-
timization finished the 16GB of available memory after 40 minutes
of computation and started thrashing. In comparison, our two-step

Table 1. The computation performance measurements for the steps of our pipeline.

# Input # Mesh # Stitch Remesh Labeling K. Direction Stitch Mesh Mesh-based Yarn Yarn-level
Faces Faces Faces Assignment Gen. Relaxation Gen. Relaxation

Rocker Arm (Fig.19a) 62K 2,018 7,880 2 s 8 s 99 ms 593 ms 12 s 18 ms 2 hr
Rocker Arm (Fig.19b) 62K 2,037 7,790 2 s 4 s 127 ms 583 ms 9 s 22 ms 2 hr
Chinese Lion (Fig.1) 100K 3,495 13,606 4 s 19 s 198 ms 1,049 ms 18 s 39 ms 2 hr*
Kitten (Fig.1) 100K 3,690 14,460 4 s 16 s 124 ms 1,083 ms 16 s 37 ms 3 hr
Dragon (Fig.1) 104K 4,218 16,458 4 s 26 s 370 ms 1,234 ms 53 s 35 ms 4 hr*
Horse (Fig.20a) 134K 4,640 18,172 6 s 17 s 159 ms 1,297 ms 25 s 55 ms 2 hr
Horse (Fig.20b) 134K 4,655 18,160 6 s 18 s 306 ms 1,311 ms 45 s 52 ms 2 hr
Elephant (Fig.1) 299K 4,791 18,686 13 s 26 s 237 ms 1,421 ms 28 s 51 ms 2 hr
Fertility (Fig.3) 167K 4,979 19,490 8 s 32 s 192 ms 1,495 ms 46 s 54 ms 1 hr*
Armadillo (Fig.17) 280K 6,591 25,734 13 s 58 s 567 ms 1,963 ms 88 s 77 ms 2 hr*
Bunny (1.3K) (Fig.16) 111K 353 1392 4 s 2 s 45 ms 119 ms 6 s 4 ms <1 hr
Bunny (4K) (Fig.16) 111K 1059 4124 4 s 2 s 66 ms 315 ms 8 s 12 ms <1 hr
Bunny (7K) (Fig.16) 111K 1,821 7,090 4 s 2 s 131 ms 550 ms 10 s 19 ms 1 hr*
Bunny (16K) (Fig.16) 111K 4,003 15,704 5 s 16 s 147 ms 1101 ms 12 s 45 ms 2 hr
Bunny (48K) (Fig.16) 406K 12,195 48,096 37 s 84 s 399 ms 3526 ms 130 s 159 ms 3 hr*

The computation times are generated using a computer with Intel Core i7 6700HQ CPU @ 2.60 GHz with 16 GB RAM.
* Yarn-level relaxation timings are generated using a computer with Intel Core i7 3930K CPU @ 3.20 GHz with 32 GB RAM.
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Fig. 22. Stitch meshes generated by our fully automatic pipeline using an extrinsic orientation field.
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(a) [Gao et al. 2017]
115 inconsistencies

(b) 4-rosy
130 inconsistencies

(c) 2-rosy
52 inconsistencies

(d) 2-rosy with triangulation
22 inconsistencies

Fig. 23. Comparison of different methods for orientation field generation: and the number of inconsistent edge labels they produce after
half-edge labeling, showing (a) [Gao et al. 2017], (b) our method with a 4-RoSy field, (c) our method with a 2-RoSy field, and (d) our method with a
2-RoSy and triangulated singularities. Note that different methods create inconsistencies on the different parts of the model surface as highlighted,
but the 2-RoSy field leads to fewer inconsistencies, especially when combined with triangulated singularities.

Fig. 24. Example frames from a yarn-level simulation of a bunny
model deforming under gravity.

solution takes 24 seconds for half-edge labeling and less than a
second for knitting direction assignment. While it is possible that
the combined optimization could produce results with fewer mis-
matched knitting directions, our two-step optimization provides
superior computational performance and lower memory usage.

Robustness. We demonstrate the robustness of our pipeline by
automatically processing a collection of 104 models (Fig. 22). The
set includes models with high genus, sharp features, and thin parts,
and our algorithm generated a valid stitch mesh model with roughly
uniform face sizes for all of them models.

Remeshing and Labeling. We compare different methods for gener-
ating quad-dominant meshes in Fig. 23, measuring the quality using
the number of inconsistencies produced after labeling half-edges,
which correspond to irregularities in the stitch-mesh. Directly using
RIM [Gao et al. 2017] or our modified method with a 4-RoSy field,
we get a large number of inconsistent edge labels. Switching to a
2-RoSy field greatly improves the quality, but still struggles due to
the topology of the mesh near some singularities. Triangulating
the neighborhood of singularities before labeling the half-edges,
enlarges the solution space and allows our optimization to sub-
stantially reduce the number inconsistent edge labels. We used the
parallel Gurobi solver [Gurobi Optimization 2016] (with 8 threads)
to solve the MIP problems for labeling and direction alignment .

Fig. 25. An octopus wearing a knitted sweater: (left) simulated model
and (right) fabricated via 3D printing.

Simulation. We produce valid stitch meshes and, therefore, yarn-
level models with topologically correct knitted structures. All our
models can be directly used for yarn-level simulation. Fig. 24 shows
example frames from an animation of a bunny model deforming
under gravity computed using a yarn-level simulation. Notice that
all stitches remain intact during the simulation.

Fabrication via 3D printing. We show a 3D printed yarn models in
Fig. 25: the sweater is made of black nylon, and it has been printed
in nylon using Fused Deposition Modeling and a water-soluble
supporting material (Polyvinyl Alcohol). A clip documenting the
fabrication procedure using the “Ultimaker 3” [Ultimaker 2018]
printer is attached in the additional material. Since nylon is a stiff
material, the sweater is only mildly flexible and it does not collapse
under its weight. This fabrication method is affordable, enabling
the production of interesting decoration and lightweight physical
realizations of 3D shapes using commodity 3D printers.
We also prototyped a design pipeline for tailored gloves, com-

bining this fabrication method with a 3D scanning pipeline (David
3D Scanner [DAVID 2018]), shown in Fig. 26. First, the user’s hand
is scanned; then, a desired part is manually selected and enlarged;
finally, the model is automatically transformed into a yarn model
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(a) (b) (c)

Fig. 26. Our method used for designing a custom fitted glove: (a) the
hand model acquired using a structured light 3D scanner, (b) the
simulated model, and (c) 3D printed glove.

by our method and printed, leading to wearable nylon glove. The
comfort and flexibility of the final model depends on the material
used for printing.
Finally, we present a knit bunny model printed using selective

laser sintering (Fig. 27). The fabricated model is flexible and robust,
as shown in the supplementary video.

10 CONCLUSION AND FUTURE DIRECTIONS
We have introduced a fully automatic method for converting arbi-
trary 3D shapes into knit structures, starting with quad-dominant
mesh generation, followed by a two-step optimization process and
topological operations that generate a valid stitch mesh. We have
demonstrated the effectiveness of our approach with complex knit
models generated using our pipeline and the robustness of our
method by processing a large number of different 3D models. The
yarn-level models we produce are guaranteed to have valid knit
topologies and they are ready to be used with yarn-level simulations.
To our knowledge, this is the first fully automatic method that can
produce yarn-level knit model for arbitrary 3D shapes.

One important limitation of our approach is that fine-scale details
of the input surface may not be properly represented in the final knit
model, unless a high-enough resolution stitch mesh is generated.
Since we rely on stitch meshes, we share the limitations of the stitch
mesh representation. In particular, we cannot produce multi-layer
knit structures that are used for colored knitting patterns.
Even though we generate valid yarn-level models, they are not

ready to be fabricated via typical knitting operations. Extending
our approach to automatically produce knittable structures would
be an interesting direction for future work. In addition, Generating
machine knitting instructions for fabricating such models using
industrial knitting machines could greatly expand the potential
applications of our approach [McCann et al. 2016], but this may
require additional considerations to incorporate possible limitations
of knitting machines into our optimizations.
Our current remeshing method can generate isotropic quad-

dominant meshes by assuming each quad-shaped stitch face would
ideally be square. However, in reality the ratio between the width
and height of stitches can vary depending on the yarn type, the
needle size, and the details of the knitting operations. It would be an
interesting future direction to investigate variations of our pipeline
that generate rectangular stitch mesh faces with a user-specified
aspect ratio.

Fig. 27. A knitted “bunny” model generated with our pipeline and
printed using selective laser sintering.

Though our method allows custom orientation fields to be used
to provide additional control over the final knitting direction, au-
tomatically generating an optimal orientation field for minimizing
singularities or providing a better representation of the input shape
would be an interesting direction for future work. Our implemen-
tation does not support non-orientable surfaces, such as a Mobius
strip, but our approach can be easily extended to handle them.
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