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Fig. 1. When paired with an automatic octree method, our simplification algorithm can automatically and robustly produce coarse hexahedral meshes,
starting from surface triangle meshes, which is tested on hundreds of models. Our method guarantees that all elements have positive scaled Jacobian and
that the maximal deviation from the original shape is bounded by a user-specified Hausdorff distance. We show such an example in the teaser (left), where
98% of the structural components have been removed, with minimal changes to the boundary representation, and producing meshes with high average and
minimum scaled Jacobians. Other meshing pipelines, such as [Fang et al. 2016], also benefit from our algorithm (right).

We introduce a robust and automatic algorithm to simplify the structure and
reduce the singularities of a hexahedral mesh. Our algorithm interleaves
simplification operations to collapse sheets and chords of the base complex of
the input mesh with a geometric optimization, which improves the elements
quality. All our operations are guaranteed not to introduce elements with
negative Jacobians, ensuring that our algorithm always produces valid hex-
meshes, and not to increase the Hausdorff distance from the original shape
more than a user-defined threshold, ensuring a faithful approximation of
the input geometry. Our algorithm can improve meshes produced with any
existing hexahedral meshing algorithm — we demonstrate its effectiveness by
processing a dataset of 194 hex-meshes created with octree-based, polycube-
based, and field-aligned methods.
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1 INTRODUCTION

Hexahedral (or Hex-) meshes are one of the most commonly used
volumetric discretizations for the computation of volumetric PDEs
[Ramos and Simdes 2006; Bourdin et al. 2007] due to their superior
numerical properties and their natural support of tensor-product
spline constructions [Li and Qin 2012]. In particular, hex-meshes
are favored over tetrahedral meshes since simulations performed
on hex-meshes can obtain a similar accuracy with a lower element
budget, reducing both memory consumption and computation time
[Benzley et al. 1995; Cifuentes and Kalbag 1992; Tadepalli et al.
2010]. In addition, hex-meshes with simple structures are favored by
applications, like isogeometric analysis [Hughes et al. 2005; Bazilevs
et al. 2006], in which basis functions with higher-order smoothness
can be fitted to ensure a more accurate computation and faster
convergence. Simple structures also facilitate the implementation
of multi-grid solvers to accelerate the computation [Leonard et al.
2000; Wada et al. 2006].

Despite the tremendous research efforts in the last three decades,
robust and automatic methods to produce valid, coarse hex-meshes
with a simple structure are still elusive.

Octree-based methods [Maréchal 2009; Ito et al. 2009] can only
create meshes with a high element count and complex structures.
Polycube [Gregson et al. 2011; Livesu et al. 2013; Huang et al. 2014;
Fang et al. 2016] and field-aligned [Li et al. 2012; Jiang et al. 2014]
methods are not robust when used to create coarse meshes, leading
to some inverted elements especially when the surface mesh is
complex and contains high-resolution details. In practice, the only
reliable way to obtain coarse meshes is the use of a user-assisted
method, such as [Sandia 2016]. This hinders the applicability of hex-
meshes, since a major manual effort is required in their generation.
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We propose a simplification algorithm to reduce the topologi-
cal (i.e., number of components and singularities) complexity of a
hex-mesh, while guaranteeing: (1) a topologically valid output, (2) a
positive scaled Jacobian for every element, and (3) the preservation
of sharp features and a maximal, user-defined Hausdorff distance
from the input surface. Topological validity is ensured by only per-
forming simplification operations that do not add or remove handles,
do not create non-manifold elements, and do not change the num-
ber of boundaries. Geometric validity is ensured by collapsing base
complex sheets or chords using a locally-injective volumetric defor-
mation enriched by a line-search strategy that prevents the solution
from going outside of the valid space. Geometrical fidelity is ensured
by only allowing operations that do not modify the boundary more
than a user-specified distance threshold.

Our algorithm is a perfect complement for octree-based methods
[Maréchal 2009; Ito et al. 2009], which are robust and automatic:
when paired with our simplification algorithm, they lead to the
first robust pipeline that can generate valid (i.e. with no flipped
elements), and accurate hexahedral meshes with coarse structures
for hundreds of models, without user-interactions (Figures 1 and
9). Other meshing pipelines based on polycubes or field-aligned
parametrization can also benefit from our approach, as demonstrated
in our experiments.

We provide our reference, open-source implementation in the
additional material, in addition to all our results. The attached code
can be used to reproduce all the results with standard parameters.
The simplification sequences for all figures are attached as short
mp4 movie clips.

2 RELATED WORK

We review the most relevant literature for the creation of hex-
meshes. Many of these techniques are based on corresponding meth-
ods previously developed for quadrilateral meshing — we restrict
our survey to volumetric meshing techniques, and we refer the in-
terested readers to [Owen 1998] and [Bommes et al. 2013] for an
overview of surface meshing techniques.

Paving and Sweeping. The first automatic hex-mesh generation
techniques are paving (i.e., inserting regular layers of cubes aligned
with a boundary quad mesh) and sweeping (i.e., extruding a partial
quad mesh) [Shepherd and Johnson 2008; Gao et al. 2016]. While
conceptually simple, they are extremely challenging to implement
robustly, and they tend to introduce an excessive amount of singu-
larities in the internal regions where the fronts meet (see Figure 12
for an example). Robust commercial implementations exist [Sandia
2016] and are currently widely used techniques, but often paired
with other methods. The special case of tubular models has been
considered in Livesu et al. [2016], where a skeleton is used to sweep
a regular hex-mesh in its interior.

Spatial Partitioning. The intersection between a regular spatial
subdivision and a mesh leads to a perfectly regular hex-mesh in
the shape interior, with all the singularities concentrated on its
boundary. Many methods have been proposed [Su et al. 2004; Zhang
and Bajaj 2006; Zhang et al. 2007], and the most popular ones use
adaptive grids (octrees) [Maréchal 2009; Ito et al. 2009; Zhang et al.
2013] to better approximate small features. The main limitation of
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these methods is that they concentrate all the singularities and low-
quality elements on the shape boundary, which is usually the most
interesting part in simulations. The upside is the high robustness of
these methods, making them the default standard for automatic hex-
mesh generation. Our algorithm enhances these methods, enabling
them to robustly produce coarse meshes with a simple topology as
we demonstrate in our test (Figure 9).

Polycube Deformation. Polycube methods [Gregson et al. 2011;
Livesu et al. 2013; Huang et al. 2014; Fang et al. 2016; Fu et al. 2016;
Li et al. 2013] deform a mesh into an axis-aligned polycube with
edges of integer length. A canonical, axis-aligned pure hex-mesh can
be created in the interior of the deformed mesh and warped using
the inverse deformation inside the original shape. These methods
better distribute the singularities on the boundary adapting them
to the input geometry, but are restricted to polycube singularities
and cannot introduce internal singularities, which are necessary to
keep the element distortion low [Nieser et al. 2011]. These methods
cannot guarantee to produce a valid polycube in the deformation
phase and thus fall short of guaranteeing to produce a valid hex-
mesh, limiting their practical applicability. Our method can further
simplify the topology of valid meshes generated by these methods,
as demonstrated in Figure 11.

Field-Aligned Parametrization. The most general and modern
approaches to hex-meshing are field-aligned methods [Nieser et al.
2011; Huang et al. 2011; Li et al. 2012; Jiang et al. 2014]. A volumetric
directional field [Vaxman et al. 2016] is used to guide a Poisson-
based volumetric parametrization, which induces a hex-mesh if two
conditions are satisfied: singularities should be placed at integer
locations and the parametrization should be locally injective. Since
these properties are not enforced by any of these methods, it is not
always possible to use them to generate a valid mesh. Heuristic
approaches that attempt to fix problems in the parametrization have
been proposed [Lyon et al. 2016], but they can only amend minor
problems and still fail for large and complex fold-overs. Generally,
the success chances of these methods are proportional to the mesh
resolution — the denser is the target mesh, the easier it is to param-
etrize, since the effect of the integer roundings becomes negligible
[Bommes et al. 2009]. Our technique can be paired with field-aligned
methods, allowing them to produce denser meshes, which are then
coarsened by our collapse operations (Figure 10).

Simplification. Simplification methods interleave local and global
coarsening operators to reduce the element count and singulari-
ties of existing quad meshes [Daniels et al. 2008, 2009a,b; Tarini
et al. 2010; Bozzo et al. 2010]. Similar methods have been proposed
for pure hex-meshes, using hexahedral sheets collapse operations
[Borden et al. 2002; Ledoux and Shepherd 2010] or altering the hex-
meshes via hexahedral duals [Tautges and Knoop 2003; Kowalski
et al. 2012]. Unfortunately, neither method can guarantee to reduce
the number of singularities and components in the base complexes
(Figure 2). We propose an algorithm that builds upon the same oper-
ations, but that directly focuses on simplifying the global hexahedral
structure and reducing the number of singularities. Also, we guaran-
tee no flipped elements be introduced, which cannot be guaranteed
previously.
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Fig. 2. Removing a hexahedral sheet (top, left) may not affect its structure
layout, while collapsing a hexahedral chord (top, right) may even increase
the complexity of the structure. In contrast, performing either a base complex
sheet (bottom, left) or a chord (bottom, right) removal on the global structure
of a hex-mesh will reduce the number of its components.

Singularity Alignment. A few techniques [Bommes et al. 2011;
Tarini et al. 2011; Myles et al. 2010; Gao et al. 2015] have been
proposed to reduce the complexity of the structure of a quad- or
hex-mesh by aligning singularities and removing unnecessary spi-
rals. However, without removing singularities, many meshes are
still too complex to be used (as shown in Figure 12). In addition,
none of them guarantees that no inverted elements are introduced
during alignment. In contrast, our technique can efficiently reduce
both singularities and components in the base complex without
introducing any inverted elements.

Quality Improvement. Many approaches have been proposed to
improve the geometric quality of hex-meshes while maintaining
their connectivity fixed [Knupp 2000, 2003; Brewer et al. 2003; Wil-
son et al. 2012; Ruiz-Gironés et al. 2014, 2015; Livesu et al. 2015].
Mesquite [Brewer et al. 2003] is a popular method that has been used
by many hex-meshing techniques [Gregson et al. 2011; Livesu et al.
2013; Huang et al. 2014; Fang et al. 2016] as a post-processing step,
due to its efficiency and ease of use. Recently, Livesu et al. [2015]
proposed an edge-cone optimization to untangle inverted elements,
while also greatly improving the quality of the other elements.
Both [Brewer et al. 2003] and [Livesu et al. 2015] strive to recover
from inverted elements, but they are not guaranteed to succeed and
might fail in challenging cases. Our method cannot recover from
inverted elements, and it assumes an inversion-free mesh as input.
The quality obtained by our method is comparable (and in some
meshes superior) to these techniques, in particular in presence of
sharp features (Figure 14).
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3 STRUCTURAL SIMPLIFICATION

Our algorithm simplifies the base complex [Gao et al. 2015] of a valid
hex-mesh, while guaranteeing to produce a mesh with a coarser
structure and with positive scaled Jacobians [Stimpson et al. 2007].

We extract base complex sheets and chords from the base complex
of the input mesh (Section 3.1), and collapse them using a locally
injective volumetric parametrization (Section 3.2). The collapse op-
erations are sorted to accelerate the computation (Section 3.4). The
top-ranked collapse operation is then checked to prevent it from
violating topological invariants, deleting features, or changing the
boundary more than a user-specified threshold on the Hausdorff dis-
tance (Section 3.3). Additionally, sheets and chords may be refined
(introducing only regular elements) to maintain the desired number
of hexahedral elements during the simplification. The algorithm
iterates through these steps until the desired complexity is achieved,
or whenever it cannot simplify the mesh further without violating
the filtering criteria (Section 3.6).

3.1 Sheets and Chords

To keep the paper self-contained, we briefly introduce the notion of
singularities, base complex, base complex sheets, and base complex
chords (refer to [Gao et al. 2015] for more details). The latter two
concepts are the extensions of the hexahedral sheets [Borden et al.
2002] and chords [Tautges and Knoop 2003] to the base complex.

Singularities. The singularities of a hex-mesh H are 1D curves,
each of which is composed of a sequence of connected irregular hex
edges with the same valence. The valence of a singularity is defined
as the valence of the hex edges it contains.

Base Complex. From a singularity with valence n, n separation
surfaces can be traced out and either meet with other singularities
or terminate at the surface boundary. These separation surfaces and
their intersections partition the volume domain V into topologically
cube-like components, which provides a coarse structural tessella-
tion of V. We refer to the above structure as the base complex 8 of
the hex-mesh H. The base complex contains all the singularities of
H. A component of the base complex is a topological cube or torus.
The faces of a component are collections of mesh faces, which we
will refer to as patches.

Base Complex Sheet. We denote two
base complex edges e; and e; in a patch
as parallel (e; || e;) if they do not share a
vertex (Figure 3(a)). The parallel edge set
of an edge e of a base complex is the set of
edges that are parallel to e or to any other
edge in the set. The red edges in the inset figure are a set of parallel
edges. Note that in the rest of the paper, solid lines indicate visible
lines, while dashed lines indicate occluded lines.

A base complex sheet is a collection of components that have
one or more edges in the same parallel edge set. Its dual complex
is a surface sheet composed of the dual patches (of the contained
components) that are perpendicular to the parallel edge set defining
this base complex sheet (Figure 4, middle). Figure 3 (middle) shows
an example base complex sheet extracted from the base complex
(left) of a bone mesh.
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Fig. 3. The base complex (left), a sheet (middle) and two chords (right) of a
bone mesh.

Base Complex Chord. Similarly, two
patches p; and p; belonging to the same
component are parallel if they do not share
a vertex. A parallel patch set of a patch p
is the set of patches parallel to it or to any
other patch in the set. The blue patches in the inset figure are a set
of parallel patches.

A base complex chord is a collection of components that have
one or more patches in the same parallel patch set. Figure 3(right)
shows two example base complex chords.

For brevity, we refer to the base complex sheet (or chord) as sheet
(or chord) in the rest of the paper. We show that by procedurally
collapsing sheets and chords, the base complex B can be simplified,
reducing the numbers of elements and singularities in the hex-mesh
H (Propositions 3.1 - 3.4 in Appendix A).

3.2 Sheets/Chords Removal

We propose a parametrization approach to collapse chords and
sheets. The interior of the hex-mesh is reparametrized onto itself
to contract the sheet/chord that we wish to collapse to zero vol-
ume. This strategy is more expensive than previous methods that
directly replace the sheet with its dual [Tautges and Knoop 2003] or
combinatorially connect the two sides of the sheet and optimize the
geometry afterward [Gao et al. 2015], but has the following major
advantages: (1) it guarantees to produce a valid hex-mesh without
inverted elements, (2) it distributes the distortion evenly over the
optimization domain, and (3) it naturally supports constraints to
preserve features.

Without loss of generality, we focus on collapsing sheets and
postpone the discussion of the chords to the end of this section.

Energy. Let H = (V, H) be the original hex-mesh, where V and H
denote the sets of vertices and hexahedra, respectively. We want
to compute the new positions of V such that (1) the space taken by
the sheet has zero volume, (2) the scaled Jacobian computed at each
hexahedron (which is not collapsed) is positive and optimized, and
(3) the new surface boundary is as close as possible to the original
one. We cast this problem as an energy minimization:

m‘;n E(V)=Ep(V)+ LET(V) + ALEB(V), (1)
where Ep(V) measures the geometric distortion of the hexahedra in

H, ET(V) encourages the new positions of the vertices on the two
side surfaces of the sheet to be on the dual surface sheet (Figure 4(b)),
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Fig. 4. A hex-mesh with a to-be-removed base complex sheet (highlighted
by the red silhouette) (left); the dual surface sheet of the base complex sheet
(middle), and the hex-mesh after collapsing (right). The green dots v; ; and
v;, 2 are a pair of points in the ith group that will be collapsed into a new

point ¥; (purple) on the dual sheet.

and Eg(V) measures the deviation of boundary vertices from the
original surface. The term Ep (V') diverges if V contains an inverted
element, infinitely penalizing any inversion. For all experiments,
we use Ay = 10° and A;, = 103.

Distortion Term. A hexahedron

has eight scaled Jacobians [Stimp- 4
son et al. 2007], each of which is
computed on the tetrahedron de- 4
fined by the three normalized out-
going edges from each of its eight
corners (see the tetrahedron associated with corner a in the inset).
We measure the distortion Dy (V) of each hexahedron as the sum of
the distortions of its eight tetrahedra D;(V).

Ep(V)= ) Dp(V)= )" > MDi(V) (2)

heH heH teh
2 —1/12
De(V) = el + 1 1Ig

where M; is the volume of a tetrahedron t and J; is the Jacobian of
the transformation of the tetrahedron t. After experimenting with
all the energies proposed in [Rabinovich et al. 2017], we found that
the best results, in terms of the quality of the elements, are obtained
with the symmetric Dirichlet energy [Smith and Schaefer 2015].
Instead of encouraging each tetrahedron to be similar to a perfectly
regular tetrahedron (as proposed in [Rabinovich et al. 2017]), we only
require the ideal shape to be a right-angled tetrahedron, without
constraining the length of its edges. Since a right-angled tetrahedron
has three of its dihedral angles to be 90°, we compute the target
shape as the tetrahedron of the corresponding corner of a cuboid,
which has the same size and approximately the same edge ratios
(see the inset). Specifically, the edge lengths in the three directions
of the cuboid are determined and rescaled according to the average
of the lengths of the four edges of the corresponding direction, i.e.,
we find the "ideal" cuboid, and encourage the mesh deformation
algorithm to realize it.

We compare our proposal with competing hex-mesh optimization
techniques in Section 4.

Zero Volume Term. The term E7(V) is a soft positional constraint
that encourages the two sides of a sheet/chord to collapse into its



dual sheet (Figure 4(b)). We define E7(V) as:

K K;

Er(v) =Y > lloi; - aill® 3

i=1 j=1

where K is the number of pairs (or groups) of collapsing points
(Figure 4(a)), K; is the number of points within a group. All the
points in the i*" group (e.g., the green dots in Figure 4(a)) will be
collapsed to a new point 9; (e.g., the purple dot) on the dual surface
sheet, as illustrated in Figure 4. v; j denotes the j* h point in the
ith group. Note that if some of the points v; ; fall on the boundary
surface, their opposite points will be collapsed onto them to preserve
the boundary.

Boundary Preservation. The last energy term Eg(V) allows ver-
tices to slide over the surface, constraining them to lie on sharp
features. Since we do not have manually annotated sharp features
for all our models, we classify as sharp features all the edges whose
dihedral angle is smaller than 140°degrees. We employ the strategy
introduced in [Livesu et al. 2015], i.e., classifying all the boundary
vertices into three types, i.e., corner vertices v € C, feature line
vertices v € L, and regular vertices v € S. These vertices are con-
strained to stay on their respective tangent planes, feature lines, and
corners, respectively:

Eg(V)= ) Il =dll*+ ) llo -6 - aid)||? @
veC veL
+ > i - 9)|[?
vES

Here, 0 is the closest surface position for each boundary vertex, Jl
is the feature line tangent at 0, g; is an auxiliary variable added to
the system for feature line constraints, and 7 is the normal at vertex
0. Note that, our formulation is different from [Livesu et al. 2015]
that minimizes a; at the same time to prevent a vertex from going
too far away from its original position, which may cause inverted
quads on the surface. We let a vertex on a feature line freely slide
along the feature curve to maximize the geometry quality while
surface element flips are avoided by the flip-avoiding line search
[Smith and Schaefer 2015].

Due to the linearization of the boundary constraints [Livesu et al.
2015], boundary vertices may leave their respective tangent planes
or feature lines and move further away from their respective refer-
ence positions on the original surface. Therefore, after each defor-
mation iteration, we update the surface correspondence information
by projecting the vertices back onto the original surface or onto the
features. Specifically, for a boundary vertex, we first re-compute
its reference position on the original surface using Phong projec-
tion [Kobbelt et al. 1999; Panozzo et al. 2013]. Since we maintain the
correspondences between the boundary vertices and the projected
triangles of the original surface for all the collapsing and deforma-
tion steps, for each re-projection procedure of a boundary vertex, we
can start a ring by ring, breadth-first-search (BFS) from its previous
corresponding triangle, which in most cases will succeed without
requiring a BFS. If the vertex is projected onto multiple triangles, we
select the one with the minimal Euclidean distance and a consistent
normal direction to its previous normal.
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Solver. Our input is a valid hex-mesh (i.e., all scaled Jacobians are
positive), and we use the SLIM solver [Rabinovich et al. 2017] to
minimize the energy in Eq.(1), which uses a flip-avoiding line search
[Smith and Schaefer 2015] to guarantee to produce a locally injective
map. Since both the zero volume and the boundary term are added
to SLIM as soft constraints, they compete with the distortion term,
slowing down the optimization. We experimentally observed that
SLIM is much faster when there are less soft constraints, and we thus
divide the optimization into two stages: first collapse the sheet/chord
(Eq.(1)), and then optimize for the distortion as described below.

Distortion Propagation. To distribute the distortion caused by
the collapse operations, we solve the following optimization

min E(V) = Ep(V) + A, E(V), ®)

which is similar to the energy minimization of Eq.(1), but without
the zero volume term. We use the same weight as Eq.(1).

Collapsing Sheets. A sheet is collapsed in two steps. We first
minimize Eq. (1) to squeeze the volume of the sheet. A sheet is
collapsed in two steps. We first minimize Eq. (1) to squeeze the
volume of the sheet. If the sheet can be successfully collapsed (i.e.,
not introducing inverted elements), we then minimize Eq.(5) to
distribute the distortion caused by Step 1. Otherwise, we continue
to collapse the next sheet. Note that after each iteration of solving
Eqgs.(1) and (5), we update the boundary vertex correspondences
using the aforementioned Phong projection to preserve surface
features.

Collapsing Chords. A chord is the crossing of two locally per-
pendicular parameterization directions, each of which corresponds
to a sheet. Collapsing a chord is achieved by moving one pair of
opposite edges toward each other so that the chord has zero volume.
Figure 5 illustrates this collapse operation in 2D. The two opposite
nodes (red) merge into one so that the quad reduces to a curve (i.e.
a diagonal of the original quad). This process requires the two pairs
of opposite edges have the same number of samples. For instance,
both pairs of the opposite edges in the left scenario in Figure 5 have
two samples (gray dots). In this case, we can collapse the chord
using the same deformation as for the sheets. Specifically, in the
zero volume term E7(V), the target positions of the vertices on the
side surfaces of the chord are vertices on the diagonal surface. When
the two sheets have different numbers of samples (e.g., one pair of
the opposite edges has three samples, while the other has two in
Figure 5(right)), we first collapse a sub-sheet (the blue shaded sheet
in Figure 5(right)) to make both sheets have the same number of
samples, and then perform the chord collapsing as shown in Fig-
ure 5(left). Note that, since collapsing a sub-sheet is equivalent to
shrinking the volume of the sheet where it is located, it will not
affect the structure of the base complex.

Local Region. Note that in our implementation, in order to im-
prove the computation performance, the above optimization is per-
formed in a local region surrounding the selected sheet/chord in-
stead of on the entire mesh. The local region consists of hexahedra
within the f-ring neighborhood of the to-be-collapsed sheet/chord.
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Fig. 5. 2D illustration of chord collapse. Two pairs of the opposite edges
(left) have the same number of samples. The four edges collapse to the
diagonal (i.e., the right figure in the left set of images). Two pairs of the
opposite edges (right) do not have the same number of samples (i.e., one
has two, while the other has three). A sub-sheet (blue) is then first collapsed
before collapsing the chord.
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Fig. 6. A dense input mesh (left) is simplified restricting the quality op-
timization on a local region around each collapsed region (right), or by
globally optimizing the quality over the entire mesh (middle). The local
approach is 8 times faster than the global one and produces comparable
results.

Using a small § will provide a massive performance boost, but
decrease the quality of the mesh (Figure 6). After a number of ex-
periments, we found that a good tradeoff between efficiency and
quality is to set § to be four times the sheet/chord thickness.

3.3 Filtering Criteria

Collapsing arbitrary sheets or chords might create non-manifold
meshes, change the Euler characteristic, lead to the loss of sharp
features, or introduce singularities of low valences (e.g. valence-
1 and valence-2). To avoid these problematic cases, we simulate
each collapse operation and discard those that violate any of the
following validity criteria.

Euler Characteristics. During the simplification, we maintain
the Euler characteristics (#V+#F-#E) for both the closed surface of
the hex-mesh and its corresponding base complex. A common case
prevented by this criterion is the filling of small holes.

Manifoldness. Removing a sheet (Figure 7(left)) or a chord (Fig-
ure 7(right)) may lead to non-manifold meshes, such as two compo-
nents on the surface sharing either a node or an edge. We prevent
these cases by only allowing operations that preserve manifoldness.

H -4
-

Edge Valence. During a collapse oper-
ation, many pairs of edges are collapsed
into single edges. Let e; and e be a pair
of edges that are collapsed into a single
edge e’. In normal situations, the valence
(i.e. the number of incident hexahedra)
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47474

Fig. 7. Removing a sheet (left) by collapsing the left and right surfaces
results in a non-manifold configuration where two components share an
edge; while collapsing the chord (right) leads to another non-manifold
configuration where two components share an edge.

of e’ is higher or equal to the minimum of the valence of e; and e;.
However, there are degenerate cases, where the collapse can poten-
tially generate nodes with lower valences. The inset figure provides
examples of 2D valence-1 (top) and valence-2 (bottom) vertex con-
figurations, which correspond to valence-1 and valence-2 edges in
3D, respectively. While these cases are topologically valid, they are
undesirable since they lead to elements with negative Jacobians. We
thus prevent all the collapses of pairs of edges for which:

Ter < min(ze,, 7e,)

where 7. denotes the valence of e. To enforce this criterion, the
valences of the edges after collapsing need to be computed.

Predicting Edge Valence. The valence of a new edge e’ created
by a collapse can be predicted without actually collapsing the sheet
or chord as

C'(e”) = (C(e0)—Cr(e0))U(C(e1)=Cr(e1))V...U(Clen)~Cr(en)) (6)

where C(e) is the set of the neighboring components of e in the base
complex before simplification, Cr(e) is the set of its neighboring
components being removed, and edge e’ is newly created due to the
collapsing of a group of edges {eo, €1, ..., en }. See Figure 4 (left) for
an example. Note that 9; is one end point of the edge e’. A more
detailed explanation and some examples on the valence prediction
are provided in the Appendix.

Boundary Conformity. Dur-
ing simplification, the sur-
face of the hex-mesh de-
viates from the original
boundary either when re-
moving a sheet or a chord
that represents protruding features of the model or when bound-
ary vertices move far away from the original surface during the
optimization. The former case happens when removing a sheet (or
chord) erases other sheets (chords), as illustrated in the inset. Re-
moving the chord represented by the blue parallel patches would
lead to the simultaneous collapse of the chord represented by the red
parallel patches. The surface parts of these sheets or chords (e.g., the
chord represented by the red patches) typically represent protruding
features of the model. To preserve features, we disallow the removal
of a sheet or a chord that would lead to the complete removal of
other sheets and chords. In particular, we prevent the collapse of a
sheet or a chord, if the two vertices that are about to be collapsed
into one (Figure 4) have one of the following three conditions: (1)
both of them are classified as corners (see the boundary preserva-
tion in Section 3.2); (2) they are located on two different surface




feature curves, and (3) they are on two different boundary patches.
To prevent the boundary vertices from moving too far from the
original surface, we use Metro [Cignoni et al. 1996] to compute the
Hausdorff distance between the resulting surface and the original
surface after each removal. If the ratio of the maximum Hausdorff
distance to the bounding boxes of both meshes is larger than a user-
specified threshold (we used 1% in all our experiments), we disallow
this removal. To reduce unnecessary computation, the Hausdorff
distance is only computed if the collapse operation satisfies all the
other criteria.

3.4 Ranking

Any sequence of collapses that satisfies the above filtering criteria
(Section 3.3) will lead to an inversion-free and manifold mesh with
the same Euler characteristic as the input. However, randomly se-
lecting sheets/chords to collapse may require many queries to find
an appropriate candidate without violating the filtering criteria.
To accelerate the selection of the appropriate sheets/chords to
collapse, we propose a simple yet effective heuristic to prioritize
sheets/chords according to the width of the sheets/chords. Let w be
the average length of all the parallel edges in the sheet (for a chord
it is the average length of the diagonal of all the parallel patches
in the chord). The smaller the w is, the higher the corresponding
sheet/chord is ranked and it will thus be tested first as a candidate
for the collapse operation. The reasoning behind this heuristic is
that collapsing a skinny sheet/chord has a higher chance to satisfy
the filtering conditions than a thick one, since the former requires
a smaller deformation. Figure 8 compares the result obtained with
random order (middle) and the one with our proposed width ranking
(right). While the two results are comparable (with a slight edge in
simplicity for the one on the right), the running time is drastically
reduced with our heuristic, that reduces it from 23.5 to 5.5 minutes.

23.5 mins 5.5 mins

MSJ: 0.02
ASI: 0.85
#B: 4319

MSJ: 045
ASI:0.93
#B: 151
HR: 0.97%

MSI: 0.5
ASI: 0,94
#B: 62
HR: 0.80%

Input Random Ranked
Fig. 8. A dense hex-mesh (left) is simplified by our algorithm without rank-
ing the simplification operations (middle), and using our heuristic ranking
based on the width of the sheets/chords (right). Note the major reduction

in the running time, from 23.5 to only 5.5 minutes.

3.5 Sheet Refinement

Note that in the above pipeline, after the collapsing of a sheet, a
sheet refinement process is performed to attain the same or similar
number of hex elements to a target number (e.g., the number of
elements in the input mesh or a user input number). We achieve
this as follows. We first rank the sheets based on the length of
hex-edges contained in the parallel edges of the base complex. The
higher the average, the higher the priority given. We then split
every hexahedron of the top-ranked sheets into two in the direction
perpendicular to the parallel edges of the sheets. Since the number

Robust Structure Simplification for Hex Re-meshing + 185:7

of elements will be doubled within the sheet, we can estimate how
many sheets need to be subdivided in order to achieve the target
number of elements. We perform this operation only if the resulting
elements are not inverted.

3.6 Summary

Given an all-hex mesh as the input, we extract its base complex and
simplify it by applying valid collapse operations, sorted by their
thicknesses. At a high-level, our algorithm iterates the following
steps until a termination criterion is reached. We use the Hausdorff
distance ratio ry, as the termination condition in all our experiments.
The user also specifies the desired element number as the ratio w.r.t
the input element number, r|f|.

(1) Extract all base complex sheets and chords from the base
complex (Section 3.1) and prioritize them according to their
thicknesses w (Section 3.4);

(2) Find a top-ranked valid sheet/chord and predict the edge
valence;

(3) Check the filtering criteria (except the Hausdorff distance
ratio) (Section 3.3). If satisfied, perform the collapse opera-
tion; otherwise, move to the next sheet/chord;

(4) Remove the sheet/chord using the locally injective volu-
metric reparametrization (Section 3.2). If a valid parameter-
ization is not found (i.e. inverted elements are introduced)
or the Hausdorff distance ratio after the collapse is larger
than ry, (Section 3.3), this operation is reversed and the
procedure (2-4) is repeated for the next sheet/chord until a
successful operation is performed;

(5) Perform sheet refinement on the hex-mesh (Section 3.5) if
the number of its contained hexahedra is below the user-
specified threshold.

Finally, we perform a global optimization to improve the quality of
the elements by minimizing Eq. 5.

4 EXPERIMENTS

We tested our simplification algorithm on a six-core i7 processor
clocked at 3.5 Ghz with 64 GB of memory, using a single thread
implementation. We limit the maximal number of iterations of the
SLIM solver to 5, which achieves a good tradeoff between quality
and computational cost. We use the same set of parameters (r, = 1%
and r|g| = 1.0) for all experiments and figures — the exceptions are
listed in the corresponding figure captions.

Quantitative Evaluation. Table 1 provides the statistics of a sub-
set of our tested meshes (the full database of 194 models and their
statistics are provided in the supplemental material). For both the in-
put and output meshes, we report the numbers of the hex elements
(#H), the numbers of base complex components (#B), the scaled
Jacobians in the format of minimum/average/standard deviation
(MSJ/AS]J/Std.). For each output mesh, we also provide the Hausdorff
distance ratio (HR) computed as the maximum Hausdorff distance to
the input mesh w.r.t. the bounding boxes of both the input and output
meshes, and the component reduction ratio (R) computed as (#B;, —
#Bout)/#Bin. HR is defined as max[d(S;, So), d(So,Si)]/Dpox(Si U
So), where S; and S, are the surface of the input and output hex-
meshes, d(X,Y) measures the Hausdorff distance [Cignoni et al.
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1996], Dp o (X) is the diagonal of the bounding box of X, respec-
tively. The timing information for the simplification of each model
is also reported. From these results, we see that most of the meshes
achieve significant simplification of their mesh structures (see the
column of R), and their Jacobian quality has also been improved
(see the decrease of the Std. for all models). The running time over
the entire dataset ranges from 0.03 minutes (#H = 2178 and #B = 7)
to 533 minutes (#H = 72041 and #B = 72041). The average running
time is 57 minutes. The running time for each model is included in
the additional material.

Octree-based Methods. Octree-based methods are ideal to gen-
erate the input meshes for our algorithm, since they can robustly
and automatically mesh complex surface models. To demonstrate
the robustness of our pipeline, we used [MeshGems 2015] to mesh
all the 106 models in the [Fu et al. 2016] database, which are then
simplified by our algorithm (Figure 9). On average over the entire
database, we obtained 86% complexity reduction, and 1100%/13%
MS]J/AS] improvements over the inputs, while maintaining a 0.92%
Hausdorff distance ratio.

MSJ: 0.03 MSJ: 0.45 MSJ: 0.03 MSJ: 0.44
ASJ: 0.87 ASJ: 0.96 ASJ: 0.84 : 0.
#B: 48075 #B: 382 #B: 18306 HR: 117

HR: 0.909

. . MSJ: 0.02 MSJ: 0.29

ngjé 8233 N3 093 ASJ: 0.84 ASI: 091

#B: 3661 #B: 200 #B: 9322 #B: 560
HR: 1.0% HR: 0

[} &
il [
I

i

MSJ: 0.12
ASJ: 0.81
#B: 18883

MSJ: 0.42 MSJ: 0.03 MSJ: 0.24
ASJ: 0.94 ASJ: 0.84 ASJ: 0.94
#B: 4 . #B: 53116 #B: 2122

H

AR IHEIEETITAY

T

Fig. 9. Simplified results (right) on meshes (left) generated with the octree-
based method [MeshGems 2015].

Frame-Field Methods. Our algorithm can simplify models created
by frame-field methods. We experimented with all the 15 models
provided by [Li et al. 2012] (Figure 10). Since our method only
collapses chords and sheets that satisfy the topological constraints,
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the surface features are nicely preserved in our outputs. On average
over all these meshes, our simplification algorithm achieved 60%
complexity reduction, and 1.2%/3% MS]J/AS] improvements over the
inputs, while maintaining a 0.6% Hausdorff distance ratio.

MSI: 035 MSJ: 0.12 MSJ: 0.18 MSJ: 0.73

ASJ: 091 EI ASI:0.92 D ASJ: 0.92 D ASJ:0.99 D
#B: 1352 #B: 156 #B: 878 #B: 152

g ( ’ Fl

152
HR: 0.95% HR: 0.29%

S
D——ay
— ‘bj».Q
\"u

. \
AEY

Fig. 10. Simplified results (right) on meshes (left) generated with the frame-
field based method [Li et al. 2012].

Polycube Methods. Our algorithm can also simplify the meshes
created by polycube methods. In Figure 11, we show the results of
the simplification, starting from meshes created by a variety of poly-
cube based methods [Gregson et al. 2011; Fang et al. 2016; Fu et al.
2016]. Results for all the 73 polycube hex-meshes including those
obtained from other polycube methods (i.e. polycut [Livesu et al.
2013], polycube simplification [Cherchi et al. 2016] and /1—polycube
[Huang et al. 2014]) can be found in the supplemental materials. On
average over all these meshes, our simplification algorithm achieved
59% complexity reduction, and 6%/4.3% MS]/AS] improvements over
the inputs, while maintaining a 0.37% Hausdorff distance ratio.

Comparison with [Gao et al. 2015]. The alignment method pro-
posed in [Gao et al. 2015] does not remove singularities, drastically
limiting the valid removal operations (Figure 12). In contrast, our
method produced simpler structures for all the models used in [Gao
et al. 2015] except the sculpture-A model (the complete statistics are
in the supplementary material). For the sculpture-A, the alignment
method reduces the number of components to 16 (Figure 13 (left)),
while our method with rp, = 1% reduces it to 23 (Figure 13 (mid-
dle)). However, by setting rj, = 3% we achieve better reduction ratio
(Figure 13 (right)) with comparable mesh quality. More importantly,
our method always produces elements with positive Jacobian, while
Gao et al’s method [2015] does not guarantee it. We have applied
Gao et al’s method to our entire dataset of 194 models and found
that it fails to produce a valid, inversion-free mesh for 91 of them
(47%). For instance, the isidore model shown in Figure 12 has in-
verted elements after performing Gao et al’s simplification. Table 2
provides the statistics of the geometric quality, structure simplicity,
and the timings for the models compared in Figure 12, which shows
that our algorithm has comparable computational efficiency to [Gao
et al. 2015].

Comparison with [Brewer et al. 2003] and [Livesu et al. 2015].
We show the superiority of our proposed distortion minimization
(Eq.(2)) with the popular Mesquite [Brewer et al. 2003] and the
state-of-the-art geometric optimization by Livesu et al. [2015] on all
the 194 models. For each model, we optimize its geometric quality
without simplifying its structure by minimizing the distortion propa-
gation energy (Eq.(5)). The optimization terminates when Hausdorff
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Table 1. Statistics of the input and output meshes of the representative models shown in the paper. #H stands for the hex element number, #B is current
number of base complex components, ASJ and MSJ are the average and minimum scaled Jacobian. Std. is the standard deviation of the distribution of scaled
Jacobians (in percentage) of all elements in a mesh. HR indicates the Hausdorff distance, and R is the percentage of reduction. Please refer to the supplemental

document for the statistics of all models we have experimented with.

Models Input Output

#H #B MSJ/AS)/Std. | #H #B MSJ/AS)/Std. HR (%) R Time (m)
airplanel (Figure 9) 4972 3661 0.03/0.84/2.45 4685 200 0.45/0.93/0.84  0.89 95% 10.2
airplane2 (Figure 8) 6118 4319 0.02/0.85/2.49 6154 62 0.55/0.94/0.65  0.80 99% 11.0
chair1 (Figure 9) 11686 9322 0.02/0.84/2.03 10314 560 0.29/0.91/0.84  0.97 94%  46.1
cup (Figure 9) 48341 48075  0.03/0.87/1.96 40144 382 0.45/0.96/0.41  0.90 99%  227.0
deckel (Figure 9) 53658 53116  0.03/0.84/3.50 48822 2122  0.24/0.94/0.96 1.0 96%  504.1
elk (Figure 1) 24916 23609 0.013/0.82/3.49 | 15156 324 0.43/0.95/0.58  0.96 98%  87.0
kiss (Figure 9) 18418 18360  0.03/ 0.84/2.27 15492 1174  0.44/0.94/0.68 1.0 94%  47.6
toy1 (Figure 9) 18947 18883  0.12/0.81/2.60 12972 481 0.42/0.94/0.61  0.89 97%  32.9
fertility (Figure 10) 13584 1352 0.35/0.91/0.77 8060 156 0.12/0.92/2.24  0.95 88% 11.9
impeller (Figure 10) 11174 878 0.18/0.92/1.07 11496 152 0.73/0.99/0.1 0.29 83% 5.7
armadillo (Figure 11) | 78376 5960 0.27/0.91/0.64 57567 549 0.29/0.97/0.32  0.99 91% 2953
bunny (Figure 11) 81637 1324 0.14/0.93/0.71 71440 153 0.43/0.98/0.21  0.93 88%  110.7
carter (Figure 11) 64911 1101 0.22/0.94/0.78 51100 141 0.28/0.97/0.38  0.98 87%  38.7
dragon (Figure 11) 114178 12488  0.16/0.92/0.74 89348 1927  0.28/0.96/0.33 1.0 85%  348.2
pegasus (Figure 1) 120344 9745 0.23/0.94/0.55 94492 1573  0.33/0.97/0.34 1.0 84% 316.4

Table 2. Comparison with [Gao et al. 2015]. #H stands for the hex element number, #B is current number of base complex components, AS) and MSJ are the
average and minimum scaled Jacobian. Std. is the standard deviation of the scaled Jacobians (in percentage) of all elements in a mesh. HR indicates the

Hausdorff distance, and R is the percentage of reduction.

Models Input [Gao et al. 2015] Ours
#H  #B MSJ/AS)/Std. | #H  #B MSJ/AS)/Std. HR(%) R  Time(m) | #H  #B  MSJ/ASJ/Std HR(%) R  Time (m)
3torus 4654 3706 0.33/0.87/1.47 6586 3033 0.29/0.89/1.29 0.53 18% 14 4208 71 0.62/0.94/0.47  0.82 98% 8
isidore 21695 21679 0.02/0.83/2.73 21542 21526  -0.11/0.83/2.80 0.26 0.7% 85 13744 1103  0.36/0.95/0.66 1.0 95% 45
joint 17784 83 0.73/0.98/0.07 15450 59 0.74/0.98/0.05 0.17 29% 12 19422 17 0.66/0.99/0.05  0.10 80% 7
angel_1 14068 1284 0.47/0.92/0.61 14728 698 0.30/0.92/0.72 0.53 47% 18 11891 211 0.52/0.96/0.40  0.99 84% 24
dancing children | 35293 5482 0.14/0.87/1.13 | 37978 1458 0.19/0.88/1.17 1.09 73% 39 30121 998 0.30/0.95/0.50 1.0 82% 65
gargoyle 25669 7563 0.20/0.91/0.82 28368 1920 0.21/0.91/0.87 1.18 75% 42 22524 805 0.14/0.96/0.46  0.98 89% 30
“ﬁ;}i @:3&54 “ﬁ;é fl‘iléoil achieved 0.21/0.04, 0.16/0.03, and 0.02/0.01 higher MS]/ASJ over the

MSIJ: 0.28
ASJ: 0.97
#B: 141
HR: 0.98%!

MSJ: 0.43
ASJ: 0.98
#B: 153
HR: 0.93%
(1

MSJ: 0.27
ASJ: 091
#B: 5960

MS]J: 0.29
MSJ: 0.16 ASJ: 097
ASJ: 0.92

#B: 12488

#B: 549
HR: 0.99%

Fig. 11. Simplified results (right) on meshes (left) generated with a variety
of polycube approaches, including bunny by volumetric polycube [Gregson
et al. 2011], armadillo by efficient polycube [Fu et al. 2016], carter and
dragon by [Fang et al. 2016], respectively.

distance ratio is larger than 1% or the MS] is not increasing any-
more, or after a maximum 10 iterations has passed. On average, we

input, the results from Mesquite and Livesu et al. [2015], respec-
tively. Since both Livesu et al. [2015] and our optimization moves
boundary vertices, we compared the Hausdorff distance ratios of the
results for both methods, where, on average, our algorithm achieved
0.02% closer to the original surface inputs. Figure 14 compares our
method to Mesquite and Livesu et al. [2015] on an impeller hex-
mesh, where our result has a much higher quality than the one opti-
mized by Mesquite and achieves comparable MS]/AS] with Livesu et
al. [2015]’s with a considerably smaller surface deviation error. We
also want to emphasize that our method is fundamentally different
from the two methods we compare with: [Brewer et al. 2003] and
[Livesu et al. 2015] optimize the shape of hexahedra with a fixed con-
nectivity and have the advantage of being able to deal with flipped
elements, while our approach modifies the mesh connectivity to
improve both the global structure and the element quality of the
input mesh, but cannot recover from inverted elements.

Parameters. There are two user-controllable parameters in our
current pipeline, i.e., the Hausdorff distance threshold rj, and the
desired number of elements in the output mesh with respect to the
input mesh r|g7|. Figure 15 shows the results of simplifying a bunny
mesh with the Hausdorff distance thresholds 0.1%, 0.3%, 1%, 3% and
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Fig. 12. Comparison with the results optimized by [Gao et al. 2015]. For each model, the input mesh is shown on the left, results from [Gao et al. 2015] is in
the middle, while our result is on the right. From this comparison, we see that our method achieves much simpler structure for all models, while still preserving

the surface features and the positivity of scaled Jacobians.

MSJ: 0.64 MSJ: 0.63

Alignment Our method 7, = 1% Our method rj, = 3%

Fig. 13. Comparison with [Gao et al. 2015] for the sculpture model. By
choosing a different rj, values, our method achieves better reduction of the
mesh structure (right) while having better Jacobian quality than the result

(left) of [Gao et al. 2015].

10%, respectively. As expected, the larger this threshold is (i.e. al-
lowing the loss of small surface features), the simpler the obtained
structure will be. At the same time, the Jacobians of the mesh (es-
pecially minimum scaled Jacobian) may drop due to the distortion
caused by the simpler structure. A small threshold might prevent
the collapse of any sheets or chords, not allowing our algorithm
to simplify the structure (Figure 15, top-middle). Note that, our al-
gorithm is greedy, and the filter is applied independently to every
operation —it is thus possible that a feasible solution (obtained by
combining multiple operations) with a simpler and coarser structure
exists, but our algorithm might fail to find it.
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HR:0.73% 4 HR: 0.16%

Fig. 14. Comparison with other optimization techniques. From left to right,
it shows the input and the results of Mesquite [Brewer et al. 2003], the
edge cone [Livesu et al. 2015] approach, and our approach, respectively. The
orange lines in the magnified views are the reference line from the input
mesh. The closer the corresponding segment of the boundary to this orange
line, the better the surface is preserved.

Given an input mesh that has |H| elements, the desired element
number in the output mesh is r|g| X |H|. In our pipeline, after each
valid simplification, the element number is checked against the de-
sired number. If the current element number is smaller than the
desired number, the refinement is performed. This may affect the
number of components that can be removed due to the Hausdorff
distance threshold. Figure 16 shows the results of the simplification
of the rockerarm mesh with different element number ratios (i.e.
rig| = 1.0 (middle) and r|g7| = 0.001 (right), respectively). A small
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Fig. 15. The Hausdorff distance threshold is a filter applied on all simplifi-
cation operations, which inhibits those changing the surface more than the
user desires. A high threshold will produce a simple and coarse structure
(bottom-right), while a low threshold will preserve small surface details
(top-middle).

#H:16608
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Input ~ . P = 0.001

Fig. 16. Simplification results with different element number ratio with
respect to the input meshes.

rg| reduces the number of elements, but also limits the simplifica-
tion. We thus propose to reduce the number of elements only as a
postprocess (Figure 17).

Hex-mesh Coarsening. Our method can remove hexahedral el-
ements by collapsing hexahedral sheets [Borden et al. 2002]. In
particular, we first simplify the structure of a hex-mesh and then
continue to remove its hexahedral elements by first tagging all the
hexahedral edges as singularities to treat the individual hexahedral
sheets as base complex sheets and then applying our simplification
pipeline on the mesh. Figure 17 demonstrates this coarsening pro-
cess on a hand model provided in [Cherchi et al. 2016]. Specifically,
the second to the left image shows the mesh after the structure
simplification, while the two right ones are meshes with reduced
number of hexahedral elements. Note that, we achieved significant
element reduction, i.e., from 32060 (input) to 30 (output).
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#H: 32060 #H: 29028 #H: 2989 #H: 30
MSJ: 0.46 MS]J: 0.26 MS]J: 0.33 MSJ: 0.41
ASJ: 0.97 ASJ: 0.97 ASJ:0.93 ASJ: 0.81

HR: 2.57% HR: 4.73%
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Fig. 17. Hex-mesh coarsening of a hand model. From the left to the right,
it shows the input, output after structure simplification, hexahedral sheet
removal after 150 iterations, and the output of hexahedral sheet removal,
respectively. Note that the output mesh contains only 30 elements while
still preserving the topology and to some extent the geometry of the input.

5 LIMITATIONS AND CONCLUDING REMARKS

We introduce a robust and effective algorithm to simplify the global
structure of a hex-mesh. Our simplification collapses base com-
plex sheets and chords, while redistributing the distortion using a
volumetric parametrization approach. The filtering of the sheets
increases the geometric fidelity, producing coarse meshes that resem-
ble the input mesh and preserve its geometric features. We expect
our contribution to have large practical impacts, since it enables
to automatically create hundreds of hex-meshes when paired with
automatic octree-based methods, and can be used as a coarsening
post-process for all existing hex-meshing methods.

Our algorithm preserves sharp features if they are given as input
— however, it is difficult to detect them automatically. Our simple
dihedral angle thresholding method (which we used for all results)
fails on mild features, that are then potentially lost during the sim-
plification if they are smaller than the Hausdorff distance threshold.

Our current implementation of the solver is single-threaded, and
is slow to process meshes with dense structures. Possible speed-ups
can be achieved by: (1) collapsing several sheets/chords in parallel
and choosing the one with the highest quality, and (2) using a parallel
solver (e.g. [PARDISO 2017]) in the SLIM oprimization.

An interesting direction for future work is the extension of our
method to hex-dominant meshes [Gao et al. 2017], which have been
gaining popularity due to their superior flexibility and adaptivity.
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A APPENDIX

Proposition 3.1 The number of parallel edge sets of a base complex
B is no more than |Bg|/4 (|Bg| is the number of base complex
edges), so is the number of the base complex sheets in B.

Sketch of Proof: For an edge e; € Eﬁ and Eﬁ # (0, the number of

its adjacent components is larger than or equal to 1; otherwise, the
base complex is not manifold. Therefore, the number of edges in
E¢ is at least 4. Since each base complex edge uniquely belongs to

one parallel edge set, the number of the parallel edge sets contained
in a base complex is at most |BEg|/4. A parallel edge set uniquely
identifies a base complex sheet, hence, the number of base complex
sheets is at most |Bg|/4. [

Proposition 3.2 Removing any base complex sheet from a base
complex B monotonically reduces the number of components in B.

Sketch of Proof: Consider the connectivity changes only. Remov-
ing a base complex sheet S is equivalent to discarding its middle
part while collapsing the two side surfaces into one (same for the
Mobiiis case). In this sense, the component set CS is removed, and
no new components are created. [

Proposition 3.3 The number of parallel patch sets of a base com-
plex B is no more than |Bp|/2 (|Bp| is the number of patches in
B), so is the number of the contained base complex chords in 5.

Proposition 3.4 Removing any base complex chord from a base
complex 8 monotonically reduces the number of components in 8.

Sketch of Proof: Removing a base complex chord C is equivalent
to discarding its middle part while collapsing the four side surfaces
diagonally into two surfaces. Therefore, there are two diagonal
collapsing directions for removing C. In either case, the component
set CC is removed, and no new components are introduced. CJ

Propositions 3.1-3.4 together guarantee that iteratively remov-
ing any base complex sheet or chord from a base complex will
progressively simplify the base complex within a finite number of
iterations.

Predict edge valence. A 2D analogous example is shown in Fig-
ure 18. Consider removing the blue patch p; diagonally, e.g., collaps-
ing the two yellow nodes (Figure 18(a)) into one (Figure 18(b)). The
yellow node in Figure 18(b) is newly created and its neighboring
patch set can be exactly computed as [{p1, p5 } —{p1 }]U[{p1, P2, p3} -
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{p1}] = {p2,p3, ps}- The valences of edges that are affected by the
collapsing can be similarly computed.

42

Fig. 18. Given a 2D structure (left), removing its colored patches leads to
valence changes of some of its nodes (right), where nodes (left) with the
same color belong to the same collapsing group. The valences of all the
nodes (right) are exactly the same as the results computed by Equation 6.

For edges that are connected to those to-be-collapsed edges, they
can be considered as newly created edges that are collapsed to them-
selves. Thus, Equation 6 can be used to update their valences. For in-
stance, the green node of the blue patch p; in Figure 18(a) is collapsed
to itself after collapsing p;. Its valence can then be updated using
Equation (6) as [{p1,p3, ps, p5} — {p1}1 Y [{p1, 3. pa,ps} — {p1}] =
{p3, ps, p5}. In fact, Equation 6 can be generalized to compute the
valences of all low-dimensional elements (e.g., vertices, edges, and
faces) of a 2D and 3D mesh after simplification as long as the col-
lapsing groups are known. Here, all the elements in a collapsing
group will be replaced by a new element in the simplified structure.
Figure 18(a) illustrates the collapsing of groups of nodes in 2D (e.g.,
the nodes of the green patches). In this case, all blue nodes, all red
nodes, and all purple nodes collapse into one node, respectively.
Furthermore, Equation 6 does not require the resulting simplified
mesh to be all quad or all hex. For example, after the collapsing
of those groups of nodes in Figure 18(a), two triangle patches are
resulted (i.e., the red patches in Figure 18(b)). The valences of those
involved edges can still be accurately computed using Equation (6).
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