Hexahedral Meshing with Varying Element Sizes Supplemental material

Kaoji Xu ${ }^{1}$, Xifeng Gao ${ }^{2}$, Zhigang Deng ${ }^{1}$, and Guoning Chen ${ }^{1}$
${ }^{1}$ Department of Computer Science, University of Houston, USA
${ }^{2}$ Department of Computer Science, New York University, USA

1 Models in our experiments

The following figures provide additional results of our method. Each figure shows the results of a model. The seven sub-images (from top to bottom, left to the right) in each figure correspond to the original mesh (with the extracted skeleton and segmentation), the magnified mesh with the scaling factor for each ROI, the polycubes of the magnified mesh, the output hex-mesh with our method, the hex-mesh generated by the MeshGems [1] (i.e., the octree-based approach), and the corresponding base complex of our hex-mesh and MeshGems' hexmesh, respectively. The red dots in the base complex visualizations are the corners of the hexahedral (or cuboidlike) components, and the cyan curves are the edges of the components. For the base complexes of those hexmeshes generated by the octree-based method, we do not show the corner points due to the excessive number of components. A detail statistics of all the generated hex-meshes can be found in Table 1.

References

[1] MeshGems: Volume meshing: Meshgems-hexa, 2015.
[2] Huang J., Jiang T. F., Shi Z. Y., Tong Y. Y., Bao H. J., Desbrun M.: 11-based construction of polycube maps from complex shapes. Acm Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 3 (2014).

Table 1: Statistics of the resultant hex-meshes. * denote the hex-meshes obtained using the original ℓ_{1} polycube [2]. ${ }^{\circ}$ shows meshes generated by the octree-base method [1]. \#Tet and \#Tri are the numbers of tetrahedra and triangles in the input meshes, respectively. \#Seg is number of the segments of each model. \#Scal is the maximum scaling factor for the magnification. \#Sin is the number of singularities. \#Com is the number of components in the base-complex. MSJ/ASJ represents the minimum and average scaled Jacobian, respectively. H Dis denotes the Hausdorff distance from the boundary of the hex-mesh to the input surface ($\%$ of the diameter of the bounding box of each model). S Time, P time and H time show the timing for segmentation, ℓ_{1}-polycube construction, and hex-mesh extraction. All timing information is obtained in a workstation with $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R}) \mathrm{CPU}$ E5-1620 v2 $@ 3.70 \mathrm{GHz}$ and 48 GB Memory @ 1866 MHz .

Model	\#Tet	\#Tri	\#Seg	\#Scal	\#Sin	\#Com	\#Hex	MSJ / ASJ	H Dis	S Time	P Time	H Time
bumpycube	-	39936	-	-	60	121	16937	0.266/0.905	2.65	-	18m27s	16s
bumpycube ${ }^{\circ}$	-	39936	-	-	3631	7516	7786	0.128/0.807	2.39	-	-	1.1 s
bear	98548	14626	8	2.2	188	467	7697	0.443/0.918	3.13	1.3 s	209m31s	55s
bear ${ }^{\circ}$	98548	14626	-	-	21394	37754	37818	0.160/0.804	2.26	-	-	1.2 s
bear*	10912	4588	-	-	140	104	10700	0.470/0.935	2.43	-	1 m 53 s	10s
bunny	24169	7098	3	2.0	60	77	14571	0.275/0.900	2.92	0.5s	6 m 27 s	19s
bunny ${ }^{\text {o }}$	24169	7098	-	-	46900	81556	81556	0.018/0.799	2.40	-	-	2.2
bunny*	169341	52302	-	-	190	273	37734	0.382/0.926	1.24	-	130s	-
chair	14163	7490	8	2.0	160	266	9659	0.274/0.918	1.81	0.6 s	2m43s	50s
chair ${ }^{\circ}$	14163	7490	-	-	12005	35223	41664	0.076/0.864	1.08	-	-	1.2 s
elephant	119321	24806	9	1.8	526	5827	23002	0.242/0.887	1.51	1.9s	193m10s	110s
elephant ${ }^{\circ}$	119321	24806	-	-	61248	100412	100412	0.015/0.800	0.90	-	-	2.3 s
elephant*	132796	21414	-	-	400	2842	171657	0.221/0.887	0.829	-	23m24s	-
horse	41831	7506	4	2.0	78	124	7523	0.259/0.876	6.14	0.5s	14m19s	21s
horse ${ }^{\circ}$	41831	7506	-	-	72295	118136	118136	0.011/0.766	5.08	-	-	2.3 s
kitty	4521	1946	2	2.0	80	129	7124	0.291/0.887	2.56	0.2s	36s	6s
kitty ${ }^{\text {o }}$	4521	1946	-	-	9031	15049	15049	0.125/0.784	3.18	-	-	1.1 s
kitty*	4951	2220	-	-	75	121	7083	0.424/0.910	2.29	-	36s	-
pipe	16285	4442	3	2.0	80	86	9045	0.419/0.933	1.59	0.2s	2m37s	12s
pipe ${ }^{o}$	16285	4442	-	-	1847	2656	5571	0.092/0.790	3.92	-	-	
pipe*	16285	4442	-	-	80	69	7168	0.258/0.925	1.45	-	2m32s	14s
robot	27606	9032	10	1.9	196	598	8013	0.254/0.941	1.80	0.6 s	6 m 30 s	25s
robot $^{\circ}$	27606	9032	-	-	23398	46362	47174	0.014/0.758	1.05	0.6 s	6 m 30 s	25 s
rod	70178	13818	4	1.5	48	66	11448	0.063/0.932	1.14	1.2 s	53m53s	48s
rod°	70178	13818	-	-	2949	6645	7403	0.016/0.774	4.07	-	-	1.1 s
rod*	79936	19806	-	-	80	122	11092	0.418/0.929	1.27	-	48 m	-

Figure 1: Bear

Figure 2: Bunny

Figure 3: Chair

Figure 4: Elephant

Figure 5: Horse

Figure 6: Kitty

Figure 7: Pipe

Figure 8: Robot

Figure 9: Rod

