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A B S T R A C T

We introduce a simple and practical technique to untangle and improve hexahedral (hex-
) meshes. We achieve that by enabling the deformation of the boundary surfaces during
the untangling process, which provides more space to reach a valid solution. To improve
the element quality, an angle optimization strategy is proposed, which has much simpler
formulation than the existing method. The deformed volume after optimization is then
pulled back to the original one using an inversion-free deformation. In contrast to the
current methods, we perform the untangling and quality improvement within a few lo-
cal regions surrounding elements with undesired quality, which can effectively improve
the minimum scaled Jacobian (MSJ) quality of the mesh over the existing method. We
demonstrate the effectiveness of our methods by applying it to the hex-meshes gener-
ated by a range of methods.

© 2017 Elsevier B. V. All rights reserved.

1. Introduction1

Hexahedral (or hex-) meshes, are commonly employed by2

many critical applications that require to solve volumetric par-3

tial differential equations. This is mostly due to its naturally em-4

bedded tensor product structure, larger tolerance for anisotropy5

and less numerical stiffness, compared to unstructured meshes6

(e.g., tetrahedral (or tet-) meshes). These preferred properties7

enable the convenient imposition of a simulation basis with a8

higher derivative smoothness between elements of the mesh,9

and the handling of large deformation during simulations.10

However, given any input models, generating hex-meshes11

with good quality elements while conforming to the surface12

configuration remains an ongoing challenge. The initially com-13

puted hex-meshes, produced by the state-of-the-art methods,14

such as the polycube mapping or frame-field based methods,15

often contain inverted elements (i.e., elements with a negative16

local volume at one or more of its corners), which cannot be17
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e-mail: gchen16@uh.edu (Guoning Chen)

directly applied for finite element calculations [1]. Therefore, 18

there is a need for hex-mesh improvement to eliminate the in- 19

verted elements and regulate the element shapes [2] while pre- 20

serving surface features. 21

A number of techniques have been proposed to untangle and 22

improve hex-meshes with inverted elements without changing 23

their connectivity [2, 3, 4, 5, 6, 7]. However, none of them 24

is guaranteed to produce inversion-free hex-meshes. Recently, 25

Livesu et al. [8] introduced an untangling method that optimizes 26

the cone-shapes around the individual edges of the hex-mesh to 27

ensure a positive volume for the tetrahedra around the edges. 28

The formulation of their energy function contains several terms 29

that optimize different geometric characteristics of the mesh. 30

However, the optimization is performed globally with varying 31

weights that prefer elements that already have a good shape. 32

While this strategy helps retain the elements with good quality 33

(i.e. by fixing them), it may prevent the improvement of ele- 34

ments with less optimal quality. 35

In this work, we propose a local untangling and improve- 36

ment framework so that the optimization is performed only 37

around inverted elements or elements with quality below a user- 38
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specified minimum value (i.e., minimum scaled Jacobian [9],1

or MSJ). In our local framework, the focus is on improving2

those elements with undesired quality (i.e., good quality ele-3

ment may become slightly worse), which relieves the stiffness4

in the global optimization caused by the elements with good5

quality, allowing the MSJ quality to be further improved. In the6

meantime, we introduce a new angle-based distortion energy7

that characterizes different optimization goals (e.g., orthogo-8

nality and straightness) via a unified formulation, largely sim-9

plifying the setup and solving of the system. Furthermore, to10

facilitate the search of a valid solution to our optimization, the11

boundary surface is relaxed if needed. However, relaxing the12

surface constraint may lead to a large surface distance between13

the boundary of the output mesh and the original surface. To ad-14

dress that, we perform an inversion-free deformation that grad-15

ually pulls the surface back to its original one while still guaran-16

teeing an inversion-free outcome. Note that this inversion-free17

deformation is only performed after the untangling process. For18

the improvement of MSJ, this pull-back process is not applied,19

as it may worsen the MSJ – against the goal of MSJ improv-20

ing. Instead, we directly project the surface back to the original21

one after improving the MSJ of an inversion-free mesh. Af-22

ter improving the MSJ to a user desired level, we perform a23

Laplacian-like smoothing to improve the average scaled Jaco-24

bian (ASJ) of the mesh. Our framework is simple to imple-25

ment and can handle more challenging inputs than the existing26

methods. In average, our method takes 2 minutes for a mesh27

with 10k-20k elements. We have applied our method to over 8028

meshes generated by the polycube-based methods, octree-based29

method, and frame-field based method , respectively, to demon-30

strate its effectiveness. All our results have been submitted as31

the supplemental material, and a reference implementation will32

be released upon acceptance.33

2. Related Work34

In this section, we review the most relevant literature for the35

creation and optimization of hex-meshes.36

Hex-meshing. Considering its importance to finite ele-37

ment simulation [10], a large amount of effort has been ded-38

icated to the generation of valid all-hex meshes. These meth-39

ods range from the early sweeping and paving [11, 12], grid-40

based [13, 14, 15, 16] and octree-based methods [17, 18, 19, 20]41

to the polycube-based [21, 22, 23, 24] and frame-field based42

approaches [25, 26, 27, 28]. A recent survey [29] provides a43

detailed look at the advances in this direction. Despite these44

many existing hex-meshing techniques, most initial hex-meshes45

generated with these approaches need to undergo a quality opti-46

mization process to substantially improve their quality for prac-47

tical use. Our method can be used to optimize the initial meshes48

produced by a variety of these methods.49

Hex-Mesh Optimization. Since it is a necessary step50

in the meshing pipeline, an equally large amount of work for51

the improvement of the hex-mesh quality has been proposed.52

There are two different strategies to improve the mesh quality.53

The first strategy adopts various smoothing (e.g., the Winslow54

smoothing [30]) and optimization methods (e.g., via the geo-55

metric flow [31]) to optimize the mesh without changing its 56

connectivity, while the second strategy requires the modifi- 57

cation of the mesh connectivity to achieve the desired qual- 58

ity improvement, such as the padding process [18, 32] typi- 59

cally used in the polycube-based methods. Other methods, like 60

the singularity alignment [33] and polycube domain simplifica- 61

tion [34, 35] have been proposed to optimize the structure of 62

the hex-meshes. Our method belongs to the first group. 63

In order to optimize the quality of a hex-mesh, a quality met- 64

ric has to be identified for the optimizer to improve upon the 65

mesh. According to a Sandia Report by Stimpson et al. [9], 66

there are more than a dozen quality metrics for hex-meshes. 67

Most of these quality metrics measure the difference between a 68

given hexahedron and a canonical cube via either angle distor- 69

tion, length ratio or tensor distortion. Although there is not a 70

comprehensive study on the effectiveness of these metrics [36], 71

the scaled Jacobian metrics are the most commonly used met- 72

rics in the meshing and simulation communities. Intuitively, 73

the Jacobian metric measures the solid angle distortion at the 74

corners of a hexahedron. If the solid angles at the corners are 75

all 90◦, the scaled Jacobian achieves the optimal value of 1. It 76

is well-known that a hexahedron can be decomposed into eight 77

overlapping tetrahedra. It may be natural to use various tet- 78

mesh optimization techniques [37, 38] to optimize these indi- 79

vidual tetrahedra. It is also worth noting that many simplicial 80

and polygonal map optimization techniques [39, 40, 41] can 81

also be applied to optimize tet-meshes. However, as already 82

shown in the work by Livesu et al. [8], simply optimizing the 83

tetrahedra associated with the corners of a hexahedron may not 84

improve its quality. Fu et al. [42] introduced an advanced MIPS 85

method for computing locally injective mappings, which can 86

be used to substantially improve the quality of a couple hex- 87

meshes. However, only a few simple hex-meshes with no in- 88

verted elements were used in their testing. It is unclear how 89

general this can be when applied to other hex-meshes with a 90

substantially lower quality. 91

Besides that, many other hex-mesh optimization techniques 92

exist. As reviewed by Wilson [43] and Livesu et al. [8], these 93

techniques generally focus on untangling inverted elements 94

(i.e., with negative scaled Jacobian) and improving the aver- 95

age element quality. Knupp introduced techniques to untan- 96

gle the inverted elements [2] and improve the overall quality of 97

the hex-mesh [3], which later have been integrated into the fa- 98

mous Mesquite library [4]. Specifically, the Mesquite library 99

attempts to simultaneously untangle and improve the hex-mesh 100

by minimizing an `1 function. However, since it optimizes one 101

vertex at a time, the performance of Mesquite is slow when ap- 102

plied to hex-meshes with a large number of inverted elements. 103

Later methods resort to local Gauss-Seidel approaches to itera- 104

tively untangle and smooth meshes [5, 6, 7]. Besides the Gauss- 105

Seidel optimization strategies, non-linear optimization has also 106

been applied to improve the hex-mesh quality [43]. Other opti- 107

mization techniques for specific types of hex-meshes also exist, 108

such as the quality improvement method for octree-based hex- 109

meshes by Sun et al. [44]. Like many existing approaches, our 110

method can handle hex-meshes generated by different methods 111

(Section 4). 112

Recently, Livesu et al. [8] introduced the edge cone descrip-1
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tor that indirectly measures the distortion of the hexahedra via a2

set of tetrahedra around each mesh edge. Based on this descrip-3

tor, a non-linear energy function is defined globally. To solve it,4

a local-global strategy is applied. As shown by the authors, this5

approach can untangle meshes that previous methods may fail6

to untangle. Therefore, we consider this method state-of-the-art7

and compare our method with it in this paper.8

3. Methodology9

Similar to many mesh optimizers, given an input mesh with10

a valid all-hex connectivity, our method first corrects the in-11

verted elements, then improves the overall mesh quality. We12

also allow the boundary vertices to move out of the original13

volume if a valid solution cannot be found during untangling.14

This relaxation alleviates the difficulty of untangling elements15

at the concave areas of the surface. However, different from16

most methods, we directly measure the distance of the angles17

between pairs of connected edges from their respective ideal18

angles, leading to an intuitive and unified distortion energy for-19

mulation. In summary, our method consists of the following20

key steps (Fig. 1).21

Compute target surface. In this step we improve the qual-22

ity of the surface and associate surface vertices with the features23

detected from the input mesh (Section 3.1).24

Untangling. We detect all inverted elements based on their25

scaled Jacobians. A local optimizer coupled with a surface26

relaxation strategy is then used to untangle those inverted el-27

ements iteratively until an inversion-free outcome is obtained28

(Section 3.2).29

Inversion-free volume deformation. Due to the relaxation30

of surface constraint, after the above untangling process, the31

boundary surface of the output inversion-free hex-mesh may32

be far away from the original surface. We then perform an33

inversion-free deformation to pull the current surface back to34

its original one procedurally (Section 3.3). This step is optional,35

most models do not need this step.36

Improve MSJ. Even though the mesh is currently inversion-37

free (i.e., all elements have positive scaled Jacobian), its MSJ38

may still be too low for practical use. To further improve the39

MSJ, we adopt the above untangling process but with a larger40

target MSJ (> 0) set by the user and perform the same local op-41

timization (Section 3.4). In other words, the above untangling42

process can be considered as an optimization with the target43

MSJ= 0.44

After achieving the target MSJ, the obtained hex-mesh may45

undergo a global optimization to improve its average element46

quality. However, this step is optional. In the following sub-47

sections, we provide more details on the individual steps.48

3.1. Compute Target Surface Ωt49

Two different scenarios are considered: 1) the input has50

a reference triangle mesh of the boundary, and 2) the in-51

put does not have a reference triangle mesh of the bound-52

ary. For the former, we first smooth and project the sur-53

face vertices to the surface of reference mesh, and then54

take the smoothed and projected mesh as the target surface 55

Ωt. For the latter, we consider the boundary of the input 56

mesh as the reference mesh to compute the target surface. 57

We first use a simple Lapla- 58

cian smoothing to improve 59

the surface (e.g., regulate the 60

boundary quad mesh) of the 61

input hex-mesh. Generally, we perform 20 iterations of smooth- 62

ing. Smoothing the interior vertices in the volume is optional. 63

We then project the smoothed surface to the reference mesh. To 64

do so, we use a perpendicular ray to project a vertex v to all 65

planes of triangle facets on the reference mesh. Specifically, a 66

quad facet has 4 overlapping triangle facets. If the intersect- 67

ing point p is inside the triangle (i.e., the u, v parameters of its 68

barycentric coordinates satisfy u ≥ 0, v ≥ 0, u + v ≤ 1), we add 69

it to a set S . Finally, we select the intersecting point p that is 70

the closest to v as the projected point. Via this projection, we 71

obtain the target surface Ωt. 72

For classifying the boundary vertices, we rely on a user- 73

specified angle threshold θ. If the dihedral angle between two 74

facets sharing a common edge e is smaller than θ, we classify 75

the vertices of e as on the sharp feature L. If a vertex is adjacent 76

to more than 2 sharp edges, then we consider it as a corner C. 77

We mark other surface vertices as regular. During the optimiza- 78

tion, a corner could only move within a very small ball, a vertex 79

of sharp edge could move along the feature line, and a regular 80

vertex could move along the tangent plane. See the Eq.(7) for 81

more detailed discussion on how to use this classification. 82

3.2. Untangling 83

Our untangling process is performed locally. We first de- 84

tect all the inverted elements based on their scaled Jacobians. 85

We then define a local region surrounding each inverted ele- 86

ment. For those inverted elements that form a cluster (i.e., con- 87

nected with each other), a larger region will be identified. In 88

our implementation, the local region is defined as the union of 89

the two-ring neighborhood surrounding each inverted element. 90

The reason of considering a two-ring neighborhood is that one- 91

ring neighborhood might not provide sufficient information for 92

the subsequent target edge length computation (i.e., Eq. (8)). If 93

the mesh contains a large portion of inverted elements (e.g., the 94

fandisk model in Figure 6), a larger neighborhood will be con- 95

structed to enclose these elements. During the optimization, 96

the boundary vertices of this local region are fixed. To untan- 97

gle the elements within this local region, an energy function is 98

used to compute the distortion of the individual elements from 99

a canonical cube. In general, any proper distortion energy func- 100

tion can be used here, including the edge cone descriptor [8]. 101

However, we opt for an variant of the edge cone descriptor 102

inspired by the recently introduced local frame description [45] 103

due to the following reasons. First, it is intuitive and easy to 104

implement. Second, it will be shown that all different energy 105

terms can be unified under the same representation. In the next, 106

we describe our distortion energy. 107

3.2.1. Distortion Energy 108

Given an all-hex mesh H that contains the sets of vertices1

v ∈ V, edges e ∈ E, facets f ∈ F and hexahedral cells h ∈ H.2
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(a) inputH (b) target surface Ωt (c) local region around
inverted elements

(d) untangled meshH ′ (e) inversion-free defor-
mation Ĥ

(f) result

Fig. 1. We optimize a hex-mesh (a) with multiple inverted (red) elements. We first obtain a target surface (b) by aligning boundary vertices to features. We
then produce an inversion-free mesh (d) with large surface distance error via optimizing the local regions (c) using a soft constraint on the surface. Next,
we use inversion-free deformation to pull the surface of (d) back to the one obtained in (b) and obtain an inversion-free mesh (e). Using a hard constraint
on the surface, we further optimize the mesh to improve its MSJ with low surface distance error (f).

Let v denote the coordinates of vertex v. Our goal is to minimize3

the following energy.4

min
v

E(v) = EO(v) + ES(v) + ER(v) (1)

(a) e0 ⊥ e1 − e4, e1 ‖ e3, e2 ‖ e4 (b) e0 ⊥ e1 − e5, ei ∦ e j, i , j

Fig. 2. The relationship of neighboring edges. e0 in (a) is a regular edge,
while e0 in (b) is irregular. Different colors indicate different parameteri-
zation directions.

Orthogonality term. Consider a set of edges ei adjacent to ver-5

tex v, the ideal configuration of two edges that are following6

two different parameterization directions should be as orthogo-7

nal as possible (e.g., edge e0 versus the other edges as shown in8

Figure 2(a)). This leads to the orthogonality energy.9

EO(v) =
∑
ei∈E

∑
ei∩e j=v

ei⊥e j

<
~ei

||~ei||
,
~e j

||~e j||
>2 (2)

where ei ⊥ e j indicates that the two edges are on two different10

parameterization directions that are orthogonal to each other.11

~ei and ~e j are the edge vectors associated with edges ei and e j,12

respectively, pointing outwardly from the center vertex v. That13

is, ~ei = vi − v.14

Straightness term. Similarly, we can define the straightness en-15

ergy among the connected edges that are following the same 16

parameterization direction as follows. 17

ES(v) =
∑
ei∈E

∑
ei∩e j=v

ei‖e j

(<
~ei

||~ei||
,
~e j

||~e j||
> +1)2 (3)

This energy attempts to make the connected edges that are fol- 18

lowing the same parameterization direction as straight as possi- 19

ble (e.g., the gray edge pair e1 and e3 and the green pair e2 and 20

e4 in Figure 2(a)). 21

Irregular edge term. The above straightness term cannot han- 22

dle the irregular edges whose values are not 4. Consider e0 with 23

valence 5 in Figure 2(b). In this case, the orthogonality between 24

e0 and the rest of the edges around v still holds. However, it is 25

impossible to define the straightness among edges e1−e5 due to 26

the irregularity. To address that, we define an energy as the dif- 27

ference between their pairwise angles and their respective ideal 28

angles. 29

ER(v) =
∑
ei∈E

∑
ei∩e j=v

ei 6⊥e j

ei∦e j

(<
~ei

||~ei||
,
~e j

||~e j||
> −â)2 (4)

where â = cosθ̂i j, θ̂i j is the ideal target angle between edge 30

vectors ~ei and ~e j. For instance, the ideal angle between edges 31

e1 and e2 is 2π
5 , while the ideal angle is 4π

5 between e1 and e3 in 32

Figure 2(b). 33

Unified energy. In fact, all the above energy terms can be de-
fined as the difference of the angles between pairs of edges from
their respective ideal angles. This leads to the following unified
expression of all above energy terms

Ẽ(v) =
∑
ei∈E

∑
ei∩e j=v

(<
~ei

||~ei||
,
~e j

||~e j||
> −â)2 (5)
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where â = cosθi j, θi j is the ideal target angle between edge 34

vectors ~ei and ~e j. If ei and e j are following two orthogonal1

parameterization directions, their ideal angle is π/2, thus â = 0;2

if ei and e j follow the same parameterization direction, their3

ideal angle is π, thus â = −1; if ei and e j are edges around an4

irregular edge (e.g., Figure 2(b)), their ideal angle is (k + 1) 2π
n5

where n is the valence of the irregular edge and k is the number6

of edges between ei and e j when traversing from ei to e j.7

In fact, optimizing this angle based distortion energy function8

is equivalent to optimizing the cone descriptor with the advan-9

tage of no need to estimate the valid normal direction for each10

cone. That is, if all angles around a mesh edge achieve their re-11

spective ideal angles, the associated tetrahedra around this edge12

also have optimal configuration as indicated in Figure 2.13

Boundary Handling. To achieve surface conformity, we use the14

same strategy introduced in [8] that allows the boundary ver-15

tices move along the surface. Specifically, the boundary ver-16

tices are constrained to stay on their respective tangent planes,17

feature lines, or corners, based on their classification:18

EB(v) =
∑
v∈S

β||~n · (v − v̄)||2 (6)

+
∑
v∈L

(α||v − v̄ − a~t||2 + a2)

+
∑
v∈C

α||v − v̄||2

Here v̄ is the reference (or closest) surface position for each19

vertex v, v is the current position of v, ~n is the surface normal20

at position v̄, ~t is the feature tangent at v̄, and a is an auxiliary21

variable added to the system to enable feature constraints. α22

and β are two coefficients that are used to control how strong23

the boundary constraint is. The larger these two coefficients,24

the more penalty will be applied to vertices that leave the target25

surface. In default, we set α = β = 1000 for all our experiments.26

During the untangling process, these two coefficients will be27

updated according to the outcome of the preceding iteration.28

Combined energy. By combining the above energy defined in29

the interior and on boundary of the volume, respectively, we30

solve for the following optimization problem:31

min
v
E(v) = EB(v) + Ẽ(v) (7)

3.2.2. Numerical Solution32

Equation (7) is not a quadratic function, which means that it33

is impractical to solve it directly. If we use the nonlinear solver,34

it will converge at a very slow speed. To address this, we use35

a local-global like scheme, in which we use the local (or cur-36

rent) values for some variables. Specifically, in the local step,37

we fix ||~ei||, ||~e j||and ~e j in Equation (5) (i.e., they are treated as38

constant with their current values). Also, to determine whether39

a uniform-size element is enforced or not, we use ξ ∗ ||ẽ|| as the40

target length for edge e if ||~e|| ≤ ξ ∗ ||ẽ|| (otherwise, ||~e|| is used).41

ξ is a user-input parameter and ||ẽ|| is the average surface edge42

length. In our experiments, we use ξ ∈ [0.2, 0.6]. A detailed43

discussion on the effect of ξ is provided in Section 3.5. 44

Using this method we can construct an over-determined lin- 45

ear system Ax = b. To minimize the energy (7), we iteratively 46

solve the linear equation AT Ax = AT b. The solver is termi- 47

nated once it achieves the target MSJ (e.g. > 0 for the untan- 48

gling). 49

To accelerate the above computation, we use the target length
||ê|| for each edge e in the first iteration. The target length can
be computed by minimizing the following quadratic energy.

ERegularization =
∑
ei∈E

∑
ei‖e j

ei∩e j=v

(||êi||−||ê j||)2 +
∑
ei∈E

∑
ei‖e j

ei∩e j=∅

ei∪e j∈h

(||êi||−||ê j||)2 (8)

The solution of AT Ax = AT b is an approximate solution. To 50

avoid overshooting, we decrease the step size 0 < τ < 1 linearly 51

for each iteration to update the locations of the interior vertices 52

gradually. 53

v = (1 − τ)vcurrent + τvsolution (9)

3.2.3. Untangling Pipeline 54

We now describe our untangling process. Given an input hex- 55

mesh H , we first scale its size w.r.t. its center 1
n
∑n−1

i=0 vi so that 56

its average edge length equals to l (we set l = 0.025 for all our 57

experiments). This rescaling step is crucial, which enables us 58

to use the same default α and β values for all different mod- 59

els. Otherwise, different values need to be selected based on 60

the element size of the input mesh. During the scaling, not 61

onlyH needs to be scaled, its target surface Ωt has to be scaled 62

to ensure the consistent boundary constraint for the boundary 63

handling. After this normalization, we then identify all inverted 64

elements and construct a local region for each of them. For all 65

these local regions, we perform the following iterative process 66

until H is untangled: we first compute target edge lengths in 67

these regions by solving Eq. (8), then set initial step size for up- 68

dating the vertex positions τ = 1. Next, we iteratively optimize 69

vertex positions by solving Eq. (7) using the aforementioned 70

local-global strategy until the maximal allowed iterations (20 71

by default) are reached. For each iteration, we check whether 72

the number of inverted elements is reduced within a region. If 73

not (likely due to the overshooting), the solution of this iteration 74

is discarded and τ is reduced. This process guarantees that the 75

number of inverted elements is monotonically reduced. After 76

locally optimizing the vertices within the region, if the outcome 77

mesh H ′ still contains inverted elements, we then decrease ξ 78

so that the uniform-size is not enforced. If ξ is too small (e.g., 79

≤ 0.2 in our implementation), we decrease α and β by half and 80

repeat the above process. Algorithm 1 provides the pseudo- 81

code of this untangling process. After optimizing the mesh, we 82

scale it back to its original space. 83

3.3. Inversion-free Volume Deformation 84

After the above untangling process with surface relax- 85

ation, the surface of the output untangled mesh H ′ may be 86

far away from the target surface Ωt (see the inset). Previ- 87

ous methods simply project this deformed surface onto Ωt. 88
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This simple projection does not 89

guarantee that the obtained mesh1

is still inversion-free. To address2

that, we formulate the above3

problem as a volumetric map-4

ping problem gt : H ′ → Ĥ ,5

where Ωt is the boundary of6

Ĥ . A number of inversion-free7

local injective mapping tech-8

niques [41, 42] can be used9

to achieve the above deforma-10

tion. In this work, we select11

the recently introduced SLIM12

solver [46]. To utilize the SLIM solver, we decompose each13

hexahedron of H ′ into eight tetrahedra (i.e., one tet for each14

corner). The AMIPS exponential energy [42] is used in our ex-15

periments, and 20 iterations are performed.16

Algorithm 1: Local untangle
Input: H , Ωt

Output: H ′
ScaleH and Ωt ;
Set α = 1000, β = 1000, ξ = 0.6 ;
while current MSJ ≤ 0 do

while not reach maximum global iteration (default 20)
do

Identify inverted elements I;
Extract local regions R (a copy fromH);
Classify surface vertices for R;
Compute target edge length by solving Eq. (8) for
R;
τ = 1;
while not reach maximum local iteration (default
20) do

τ = 0.9τ;
Solve Eq. (7) for R;
Save R;
R ← Update vertices. using Eq (9);
Project surface vertices of R to its original
surface;
if #invertedElements increased then

Recover the saved R;
end
Update the vertices of R;
if current MSJ > 0 then

outputH ′ ;
end
ξ = ξ − 0.1 ;
if ξ < 0.2 then

α = 0.5 × α, β = 0.5 × β, ξ = 0.6 ;
end

3.4. Improving MSJ17

Similar to the above untangling process. The improvement18

of the MSJ can be performed locally. In fact, the same process19

to the above untangling can be employed with only the modifi-20

cation of the target MSJ MS Jt, which is specified by the user. 21

Given this target MSJ, the optimizer will first identify the ele- 22

ments whose scaled Jacobian is smaller than MS Jt. A local re- 23

gion is then constructed for each identified element, which will 24

be used to perform the local improvement. In all our experi- 25

ments of improving MSJ, we avoid using α, β < 500 to control 26

distance error. In fact, most of the time we can achieve the tar- 27

get MSJ using α, β = 1000. The bigger α, β are, the stronger 28

the surface constraint is. In practice, if a larger MS Jt is set 29

(e.g., > 0.5), the optimizer will take longer time to converge. 30

Sometime, it may not even find a solution. Therefore, we sug- 31

gest to achieve this MS Jt procedurally. That is, we optimize 32

the mesh so that its MSJ is positive, then 0.1, 0.2, ..., until it 33

reaches a value above or close to MS Jt. This procedural strat- 34

egy is shown very effective in practice (Figure 10). 35

3.5. Discussion on User Parameters 36

Our approach allows four user-input parameters: (1) target 37

minimum scaled Jacobian MS Jt, (2) surface constraint α, β, (3) 38

angle threshold θ for sharp feature and corner identification, and 39

(4) edge length constraint ξ that controls whether a uniform-size 40

hex-mesh is preferred. 41

Effects of different α and β Figure 3 shows the untangling 42

results with different values of α and β. Figure 3(a) shows the 43

results with α = β = 1000. The output mesh has small sur- 44

face distance from the original surface. However, the untangler 45

fails to correct all inverted elements (see the red elements). Fig- 46

ure 3(b) is the result of the same input mesh with α = β = 100. 47

Note that the untangler successfully corrects all inverted ele- 48

ments. However, the surface distance from the original surface 49

is larger than the one shown in Figure 3(a). Generally, larger 50

α, β result in smaller distance error but lower MSJ; in the oppo- 51

site, smaller α, β lead to larger distance error but higher MSJ. In 52

our untangling process and MSJ improvement, the values of α 53

and β are automatically adjusted to find a desired solution. For 54

a large user-specified target MSJ MS Jt, due to the configura- 55

tions of the individual surfaces, smaller α and β may be used to 56

achieve MS Jt, which may lead to large surface error. Although 57

an inversion-free deformation can be applied to reduce the sur- 58

face error, it may worsen the MSJ at the same time. Therefore, 59

in our experiments, we do not allow the values of α and β to be 60

smaller than 500 during the improvement of MSJ, which also 61

ensures a small surface distance error. However, the user may 62

choose to lower the values of α and β to achieve even better 63

MSJ with the possible larger surface error. 64

Effects of different θ. Parameter θ is used to control the extrac- 65

tion of surface features. Figure 3(e) and 3(f) show the effect of 66

different θ. In general, the larger θ is, the more surface features 67

will be detected, thus more constraints will be applied to the 68

surface vertices. In practice, we set θ = 165◦. Nonetheless, the 69

accurate detection of surface sharp features is non-trivial and 70

tends to be very sensitive to noise. Addressing this is beyond 71

the scope of this work. 72

Effects of different ξ. As briefly mentioned earlier, parameter 73

ξ is used to control whether a mesh with uniform-size elements 74

(i.e., with constant edge length) is desired or not. In particular, 75
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the larger ξ is the stronger the constraint on uniform-size ele- 76

ments. For instance, in Figure 3(b) and 3(c), both α and β are1

set as 100, while ξ is 0.4 in 3(c) and 0.2 in 3(b). For the ξ = 0.4,2

the untangler fails to correct all inverted elements. This shows3

that enabling some variation in the element size will in fact help4

enhance the success rate of untangling. Similarly, in the MSJ5

improvement, a larger ξ will constraint the optimizer from find-6

ing a good solution (Figure 4(b) and 4(c)).7

(a) α, β = 1000, ξ = 0.2, θ = 165◦ (b) α, β = 100, ξ = 0.2, θ = 165◦

(c) α, β = 100, ξ = 0.4, θ = 165◦ (d) α, β = 100, ξ = 0.4, θ = 150◦

(e) Vertices classification, θ = 165◦ (f) Vertices classification, θ = 150◦

Fig. 3. (a) The output mesh has small surface distance from the original
surface with α = β = 1000. However, the untangler fails to correct all
inverted elements (red). (b) Untangler successfully corrects all inverted
elements. However, the surface distance from the original surface is larger
than the one in (a). (c) Larger ξ greatly impacts the untangler for this
model (cap) even using very small α and β. However, using a more relaxed
θ helps untangling (d). (e) and (f) show the detected surface features (in
black) with different θ values. Small θ results in less sharp feature lines
and corners

Note that among the above four parameters, the default val-8

ues for α, β and ξ (i.e. 1000, 1000, and 0.6) usually work well9

for the majority of the models, thus need not be adjusted. How-10

ever, in some cases, α, β and ξ still need careful selection in11

order to produce an ideal result, which we will show next.12

4. Results13

We have applied our untangling and MSJ improvement tech-14

nique to a number of hex-meshes produced by a variety of15

(a) MS J = 8e−5 (b) ξ = 0.8, failed (c) ξ = 0.6, failed

(d) ξ = 0.4,MSJ = 0.301 (e) ξ = 0.2,MSJ = 0.310

Fig. 4. This experiment fixes the parameters α = β = 1000, θ = 160◦,
targetMS J = 0.3 and make ξ varying. Large step of target MSJ or larger ξ
will make improvement fail. (b) fails with 315 inverted elements while (c)
fails with 275 elements. The volume of each element is mapped to red-to-
green to show the effect of using different ξ. The more constant the color,
the more uniform sized the elements are.

methods. Figure 9 provides the gallery view of our results.16

Note that the color coding is based on the volumes of the in- 17

dividual elements in the output mesh. The more constant the 18

color, the more uniform sized the elements are. The statistics 19

of our results is reported in Tables 1, 2, 3 and 4, respectively. 20

Specifically, we use the exact values of the parameters (e.g., 21

α, β, ξ, θ and iterations) as described in Algorithm 1 to generate 22

all the results shown in Tables 2, 3 and 4, as well as for all the 23

octree-based meshes. However, these values may not be the op- 24

timal ones for other meshes (e.g., the meshes in Tables 1). For 25

the meshes in Tables 1, we produce the results by customizing 26

the values of those parameters (see the scripts provided as the 27

supplemental material). 28

Comparison with the edge-cone technique. We apply our 29

method to optimize the dataset provided by the authors of the 30

edge cone technique [8]. Table 1 shows the comparison of the 31

two methods, where the results of our method are highlighted 32

with ∗. From the comparison, we see that our method produces 33

meshes with better MSJ in all cases. We also achieve better sur- 34

face errors for the majority of the meshes. However, the average 35

scaled Jacobians of our meshes are generally not as good as the 36

edge cone technique. This is mostly because we allow the vari- 37

ation of the element sizes to focus on the MSJ improvement. 38

Comparison with the AMIPS. Fu et al. [42] applied their local 39

injective mapping technique to further optimize a couple hex- 40

meshes that already have high quality. We apply our method 41

and the edge cone technique to optimize these meshes, respec- 42

tively. Table 2 compares the results of the three methods. From 43

this comparison, we see that our method is superior in improv- 44
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ing the MSJ of these meshes. We also achieve the best ASJ for 45

the RockerArm mesh.1

Table 1. Comparison with the edge cone technique. † denotes results of
edge-cones [8], * denotes ours. We use metro tools to compute Hausdorff
distance w.r.t. bounding box diagonal [47].

Model #hexes #flip Error MSJ ASJ
Armadillo† 29935 323 0.011262 0.14 0.9
Armadillo* 29935 323 0.019349 0.163 0.834
Block† 2520 31 0.004555 0.250 0.870
Block* 2520 31 0.002737 0.252 0.857
Bunny† 37734 1 0.007955 0.606 0.972
Bunny* 37734 1 0.006477 0.651 0.953
Bust† 5258 30 0.007404 0.114 0.922
Bust(Fig1)* 5258 30 0.008843 0.201 0.869
Bust* 5258 30 0.006795 0.183 0.865
Cap† 4420 50 0.009933 0.106 0.870
Cap* 4420 50 0.005320 0.114 0.775
Dancing† 35293 5 0.008480 0.354 0.942
Children* 35293 5 0.006905 0.582 0.931
Hanger† 4539 3930 0.002709 0.716 0.987
Hanger* 4539 3930 0.001486 0.723 0.974
Impeller† 11174 8857 0.000935 0.184 0.942
Impeller* 11174 8857 0.000493 0.192 0.934
KingKong† 159488 11 0.010483 0.268 0.967
KingKong* 159488 11 0.016948 0.500 0.954

Table 2. Comparison with AMIPS and edge cone. The first row of each
model shows the result by AMIPS [42]. † denotes results of edge-cone [8],
* denotes ours.

Model #hexes input MSJ MSJ ASJ
Fertility 10600 0.209 0.46 0.937
Fertility† 10600 0.209 0.478 0.951
Fertility* 10600 0.209 0.602 0.933
RockerArm 19870 0.196 0.550 0.923
RockerArm† 19870 0.196 0.556 0.937
RockerArm* 19870 0.196 0.700 0.939

Improve hex-meshes from polycube map. Next, we apply2

our technique to improve tens of hex-meshes generated from the3

polycube map database by Fu et al. [49]. The initial hex-meshes4

consist of varying numbers of inverted elements. Our technique5

successfully untangled all of these meshes and managed to im-6

prove their MSJ substantially. As a comparison, we also show7

the results of the improved elephant and bottle1 meshes pro-8

duced by the authors of the edge-cone technique. The com-9

parison shows that our method produces much higher-quality10

meshes for these two cases in all quality metrics. Note that the11

surface error of the elephant mesh produced by the edge-cone12

method is not measurable as the resulting mesh does not have13

the same scale as the input mesh. We also note that a padding14

process is applied during the generation of the initial polycube15

hex-meshes to push the surface singularities into volume. This16

ensures that degenerate cases (i.e., corner is located on the flat17

region of the surface) do not occur; otherwise, the meshes may18

not be able to untangle as already shown by Livesu et al. [8].19

Table 3. Stress Test. Fandisk is created by the frame field method, Kitty
is generated by the `1 − PolyCube [23], and airplane is obtained using
MeshGems [48]. #flip shows the number of inverted elements after the
artificial perturbation. * denotes our results. We use metro tools to com-
pute Hausdorff distance w.r.t. bounding box diagonal [47]. ’–’ means the
mesh has no reference surface to compute the Hausdorff distance error.

Model #hexes #flip Error MSJ ASJ
Fandisk 357 0 – 0.609 0.936
Fandisk* 357 286 0.004769 0.752 0.950
Kitty 7083 0 – 0.424 0.910
Kitty* 7083 3232 0.012656 0.652 0.937
airplane1 4972 0 – 0.030 0.838
airplane1* 4972 3510 0.004369 0.503 0.875

Table 4. The results on a set of meshes produced from the polycube map
database [49]. † denotes results of edge-cone [8], * denotes ours. We
use metro tools to compute Hausdorff distance wrt. bounding box diag-
onal [47]. ’–’ means the mesh’s surface is not in the same scale with the
input for computing the Hausdorff distance error.

.

Model #hexes #flip Error MSJ ASJ
airplane1* 17913 467 0.006257 0.731 0.959
bird* 16934 288 0.005774 0.732 0.961
cup1* 16862 40 0.006944 0.723 0.960
chair1* 20344 709 0.004720 0.690 0.941
horse* 44145 304 0.017018 0.600 0.944
blade* 14792 141 0.008885 0.650 0.946
kiss* 19976 247 0.014755 0.500 0.913
bottle1† 15478 127 0.008066 0.132 0.925
bottle1* 15478 127 0.009675 0.604 0.948
elephant† 46525 421 – 0.012 0.881
elephant* 46525 421 0.009899 0.500 0.915

(a) input mesh (b) output mesh

Fig. 5. Blade example(created by the Octree-based method)
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Improve hex-meshes generated by the octree-based method.20

We also apply our technique to improve hex-meshes generated1

using the MeshGems [48]–an octree-based method [19, 50].2

The initial hex-meshes consist of elements with very low scaled3

Jacobian (< 0.1). For most models, our method can improve4

their MSJ to be greater than 0.2. Figure 5 and Table 5 provide5

examples of the improvement of octree-based meshes. More6

details are in the supplementary document.7

(a) origin mesh (b) stress test input (c) stress test output

Fig. 6. Fandisk example(created by the framed field method)

(a) origin mesh (b) stress test input (c) stress test output

Fig. 7. Kitty example(created by the `1−PolyCube method)

(a) origin mesh (b) stress test input (c) stress test output

Fig. 8. airplane1 example(created by the octree-based method)

Stress test. In the stress test experiments, we untangle hexahe-8

dral meshes perturbed from the initial hex-meshes generated by9

the frame-field based, polycube based and octree-based meth-10

ods, respectively. Our method successfully untangles the per-11

turbed meshes and produces meshes with much better quality12

than the original ones (Figures 6, 7 and 8). Despite the meshes13

Table 5. The results on a set of meshes produced from MeshGems [48].
We use metro tools to compute Hausdorff distance w.r.t. bounding box
diagonal [47].’–’ means the there is no reference surface to compute the
Hausdorff distance error. i and o show the input and output, respectively

Model #hexes Error MSJ ASJ
birdi 4247 – 0.0313 0.820
birdo 4247 0.011580 0.553 0.868
bladei 10996 – 0.025 0.845
bladeo 10996 0.007911 0.312 0.868
blocki 1624 – 0.179 0.661
blocko 1624 0.016877 0.550 0.815
bonei 2751 – 0.154 0.781
boneo 2751 0.006475 0.207 0.794
dragonstand2i 23917 – 0.013 0.837
dragonstand2o 23917 0.004598 0.304 0.857
fish1i 9537 – 0.015 0.815
fish1o 9537 0.008377 0.308 0.845
gargoylei 41610 – 0.024 0.834
gargoyleo 41610 0.005247 0.200 0.849
kissi 18418 – 0.027 0.844
kisso 18418 0.005075 0.224 0.857
rockeri 16608 – 0.108 0.865
rockero 16608 0.007742 0.241 0.874

in our stress test contain large portions of inverted elements,14

they are generated with artificial perturbation. In the future, we 15

plan to further assess our optimization technique with meshes 16

containing large numbers of inverted elements in practice. 17

Performance study. As mentioned in Section 3.4, our im- 18

provement of MSJ is performed in several stages. The benefit of 19

this divide-and-conquer strategy is that the number of elements 20

that have quality lower than the current target MSJ remains 21

small each step, which facilitates our optimizer to quickly find 22

a solution. Figure 10 shows a timing plot of this gradual im- 23

provement process. The times spent on the individual stages 24

are shown as the histogram, and the orange curve shows the 25

accumulated time. As expected, more time will be needed to 26

achieve a higher MSJ as more elements will have quality lower 27

than the target MSJ. In general, our method takes about 2 min- 28

utes on average to process a mesh with 10− 20K elements. The 29

smaller the MSJ, the faster the computation will be as already 30

shown in Figure 10. 31

Fig. 10. Performance plot of our technique.
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Fig. 9. Result gallery. Elements with scaled Jacobian S J > 0.6 are transparent in the input (first figure for each model). Output meshes are colored using
element volume info (last figure for each model). Elements with S J < 0.6 are also showed in the output (e.g., the middle image for each model). We hope
to further improve these elements in the future work. If all elements of a mesh have S J > 0.6, we do not show its middle image (e.g., the airplane and cup
models).
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(a) input mesh (b) untangled mesh (c) SLIM deformation

Fig. 11. SLIM fails to map back the surface of dragon.

Failure case. Figure 11 shows a failure case where the SLIM 32

solver fails to map the deformed surface after MSJ improve-1

ment back to the target surface. This may be an issue of the2

SLIM solver that typically requires an accurate correspondence3

between the boundary vertices of the current mesh with those4

on the target surface, while our current projection based method5

may not be sufficiently accurate. In the future, we plan to exper-6

iment with other more robust inversion-free mapping technique7

and improve our surface correspondence calculation.8

5. Conclusion9

In this paper, we introduce a simple yet effective hex-mesh10

improvement technique. This technique is based on a new and11

intuitive angle based optimization strategy. To enable our op-12

timizer to find a valid solution, we allow the boundary surface13

to move out from the original volume, which will be mapped14

to the original surface with the inversion-free guarantee. To ac-15

celerate the computation, we perform the optimization within a16

local region surrounding the inverted elements or elements with17

quality lower than the user-specified threshold. Our method is18

easy to implement. We also discuss the effects of the different19

values of a number of parameters used in our framework to help20

users choose proper values for their needs. We have applied our21

method to a large number of hex-meshes generated with a vari-22

ety of methods to demonstrate its effectiveness.23

Limitations.. First, although our method produces meshes with24

higher MSJ for all the test meshes and better Hausdorff distance25

for the majority of meshes when compared to the state-of-the-26

art techniques, our method may not improve the average scaled27

Jacobian substantially. Again, this is due to the relaxation of the28

constraint on uniform element sizes. Also, our sub-optimal ASJ29

may also attribute to the selection of the parameter ξ. For most30

models, we find that ξ = 0.2−0.6 can produce ideal results. But31

for some models (e.g. Hanger), the result using ξ = 1.2 is bet-32

ter than the one obtained with other values of ξ. Nonetheless,33

the fixed value of ξ throughout the entire mesh may constrain34

the improvement of ASJ. Should the ξ of an edge be a func-35

tion with respect to its neighboring configuration, ASJ might36

be improved further. Second, to ensure an inversion-free out-37

come, the meshes generated with our method may have a sur-38

face distance larger than the user-specified error. Third, our cur-39

rent surface feature detection is sensitive to the user-specified40

angle threshold θ. A robust feature detection technique may41

be required to resolve this issue. Fourth, in the extreme case42

(i.e., a complete inverted mesh), our angle based energy will43

vanish. However, since we enforce the boundary constraint of44

non-inverted elements, such an extreme case will not occur. Fi-45

nally, our method for solving the non-linear energy minimiza- 46

tion problem is not a typical local-global scheme, which may 47

not converge to meet the required mesh quality. However, it 48

enables us to effectively minimize our angle distortion energy. 49

We plan to address these limitations in the future. 50
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