
1502 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

A Simple Algorithm of Superpixel Segmentation
With Boundary Constraint

Yongxia Zhang, Xuemei Li, Xifeng Gao, and Caiming Zhang

Abstract— As one of the most popular image oversegmenta-
tions, superpixel has been commonly used as supporting regions
for primitives to reduce computations in various computer vision
tasks. In this paper, we propose a novel superpixel segmentation
approach based on a distance function that is designed to balance
among boundary adherence, intensity homogeneity, and compact-
ness (COM) characteristics of the resulting superpixels. Given
an expected number of superpixels, our method begins with
initializing the superpixel seed positions to obtain the initial labels
of pixels. Then, we optimize the superpixels iteratively based on
the defined distance measurement. We update the positions and
intensities of superpixel seeds based on the three-sigma rule. The
experimental results demonstrate that our algorithm is more
effective and accurate than previous superpixel methods and
achieves a comparable tradeoff between superpixel COM and
adherence to object boundaries.

Index Terms— Image preprocessing, image segmentation,
oversegmentation, superpixel.

I. INTRODUCTION

THE concept of superpixel was first introduced by
Ren and Malik [1] through the definition of the percep-

tually uniform regions using the normalized cut (NCuts) algo-
rithm. Superpixels group pixels into perceptually meaningful
atomic regions that can be used to replace the rigid structure
of the pixel grid in images. In this way, image primitives and
redundancy can be reduced greatly. Furthermore, for subse-
quent applications, it is more convenient and effective to com-
pute image features based on regions than pixels. In general,
superpixel segmentation algorithms are usually employed as
preprocessing steps of many computer vision tasks to improve
their performances, such as image segmentation [2], [3], object
recognition [4], [5], classification [6], [7], and tracking [8].

An automatic superpixel segmentation algorithm has been
researched intensively, such as NCut [1], mean shift [9],

Manuscript received July 10, 2015; revised September 27, 2015,
December 3, 2015, and January 23, 2016; accepted February 1, 2016. Date
of publication March 8, 2016; date of current version June 30, 2017. This
work was supported in part by the National Natural Science Foundation of
China (NSFC) under Grant 61332015, Grant 61373078, Grant 61472220,
and Grant 61572292 and in part by the NSFC Guangdong Joint Fund under
Grant U1201258. This paper was recommended by Associate Editor J. Lu.
(Corresponding author: Caiming Zhang.)

Y. Zhang and X. Li are with the School of Computer Science and Technol-
ogy, Shandong University, Jinan 250101, China (e-mail: sduzyx@gmail.com;
xmli@sdu.edu.cn).

X. Gao is with the Department of Computer Science, University of Houston,
Houston, TX 77004 USA (e-mail: xgao6@uh.edu).

C. Zhang is with the School of Computer Science and Technology,
Shandong University, Jinan 250101, China, and also with the Laboratory of
Digital Media Technology, Shandong University of Finance and Economics,
Jinan 250014, China (e-mail: czhang@sdu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2016.2539839

graph-based methods [10], Turbopixels [11], a simple liner
iterative clustering method (SLIC) [12], optimization-based
superpixels [13], [14], VCells [15], flooding-based super-
pixel generation approach (FCC) [16], and lazy random
walk (LRW) [17], [18]. However, each superpixel method has
its own advantages and drawbacks that may be suitable for
a particular application. For instance, if superpixels are to be
used to build a graph, an approach that can produce a more
regular lattice, such as NCut [1], could be a better choice.
While to segment an image, a method that generates supeprix-
els with better boundary adherence, such as SLIC [12],
is preferred. Although it is difficult to develop an algorithm
that is suitable for all applications, three characteristics, i.e.,
boundary adherence, uniform intensity of superpixels, and
compactness (COM) [19], should be considered in designing
a superpixel algorithm.

In this paper, we propose a new superpixel generation algo-
rithm, where the image boundaries are especially considered to
obtain superpixels with better boundary adherence. The main
contributions of this paper are as follows.

1) A boundary term is defined based on pixels and their
neighbors to make the edges of superpixels consistent
with object boundaries in images. Based on this, a new
distance measurement is proposed to control the homo-
geneity of intensity, COM, and boundary adherence of
superpixels.

2) A new strategy is employed to update the positions
and intensities of superpixel seeds. Only the highly
reliable pixels within one superpixel region are used for
updating the cluster center, which helps in relocating the
superpixel seed accurately and smoothly improving the
accuracy of segmentation.

II. RELATED WORK

A large amount of the literature on image superpixel gener-
ation algorithms have been published during the last decades,
and most of them are based on graphs, gradient ascent, or
k-means. We will give a brief review of these methods from
this angle in this section. For the convenience of complexity
comparison, we assume that all of these methods process an
image containing N pixels and generate K superpixels with
n iterations if necessary.

A. Graph-Based Methods

Graph-based approaches of superpixel generation model an
image as a graph taking pixels as nodes and the similarity
between neighboring pixels as edge weight. Superpixels are

1051-8215 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHANG et al.: SIMPLE ALGORITHM OF SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINT 1503

generated by minimizing an energy function defined on the
graph.

NCut [20] uses contour and texture cues to partition
a graph recursively, which consists of all pixels in the
images. It defines a cost function on the partition bound-
aries and generates regular and visually pleasing superpixels
by minimizing the function. However, the boundary adher-
ence of superpixels is poor. And the computational cost
is very expensive when the number of superpixels or the
size of images increases greatly. To improve the efficiency,
Felzenszwalb and Huttenlocher [10] proposed an alternative
graph-based approach to generate superpixels. It clusters pixels
as nodes of a graph and the edges of resulting superpixels
align to image boundaries well in practice. This algorithm
does not consider COM and superpixels are generated with
highly irregular shapes and size.

Moore et al. [21] proposed a method to generate super-
pixels, which conforms to a grid using a graph cut method to
find optimal paths or seams splitting images into small vertical
or horizontal regions. In this algorithm, an image boundary
map that influences the quality and speed of the output greatly
should be precomputed. The complexity of this algorithm is
O(N (3/2)logN) without taking the time of this preprocessing
step into account.

Veksler et al. [13] used a global graph cut optimization
method to generate superpixels. Superpixels are obtained
by stitching overlapping image patches together such that
each pixel belongs to only one of the image patch regions.
Liu et al. [22] formulated the superpixel generation problem
as an objective function of entropy rate on a graph. The
entropy rate can help to cluster pixels into compact and
homogeneous regions and also favor superpixels to overlap
with a single object on the perceptual boundaries.

Shen et al. [17] proposed a new superpixel segmentation
method using LRW. They apply LRW on an image to obtain
the probability of each pixel. Then, they get the initial
superpixels according to the probabilities and commute time
and optimize superpixels iteratively by an energy function
defined on texture measurement and the commute time. It can
preserve weak boundaries and segment complicated texture
regions very well. However, the complexity of this method is
about O(nN2), which is expensive.

B. Gradient Ascent Methods

Gradient ascent methods generate superpixels based
on gradients. Beucher and Lantuéjoul [23] proposed the
watershed approach based on an immersion analogy.
Beucher and Meyer [24] used it to segment images and
achieved a good performance. To improve the efficiency of
watershed method, linear complexity algorithms have been
proposed to compute it in [25] and [26]. The method in [26]
performs a gradient ascent step by starting from local min-
ima to produce watersheds, lines that separate catchment
basins. This method is fast with complexity of O(N log N),
while it does not consider COM. The resulting superpix-
els are often highly irregular in size and shapes and the
boundary adherence is poor. To overcome these problems,

Machairas et al. [27], [28] introduced a spatially regularized
gradient algorithm to generate superpixels with regular shapes
and achieved a tunable tradeoff between the superpixel regu-
larity and the adherence to object boundaries. The complexity
of this method is also linear with respect to the number of
pixels in an image.

Comaniciu and Meer [9] applied mean shift, an iterative
mode-seeking procedure for locating local maxima of a density
function, to find modes in the color or intensity feature
space and generate superpixels. However, this algorithm does
not constrain COM and generates superpixels with irregular
shapes. Its complexity being about O(nN2) makes it slow.

Similarly, the quick shift method [29] also uses a mode-
seeking segmentation scheme. It initializes the segmentation
by a median shift procedure. Then, each point in the feature
space is moved to the nearest neighbor for increasing the
Parzen density estimate. This algorithm can generate super-
pixels with good boundary adherence, while it is quite slow
with the complexity of O(nd N2) (d is a small constant). And
this method does not allow explicitly controlling the size and
the number of superpixels.

Levinshtein et al. [11] proposed the Turbopixels algorithm
to generate superpixels efficiently. This method uses a level-
set-based geometric flow evolution process from the uni-
formly placed seeds in images. In this paper, superpixels are
constrained to be compact and with regular size. However,
the boundary adherence is poor and the complexity of this
algorithm is high.

C. K -Means-Based Methods

K -means-based methods generate superpixels by starting
from a rough initialization of cluster centers and refining the
clusters till some convergence conditions are met.

Achanta et al. [12] presented the SLIC algorithm, adopting
k-means clustering approach to generate superpixels. It pro-
duces superpixels with regular size and shapes. The complex-
ity of SLIC is O(nN).

Wang et al. [30] proposed a structure-sensitive technique
to generate superpixels by exploiting the geodesic distance
in 2011. Recently, Wang and Wang [15] used the VCells
algorithm to generate superpixels with regular size and good
boundary adherence. It initializes a partition of an image
without consideration of image intensities and refines the
segmentation by moving boundary pixels one by one to
generate superpixels. It is fast and the main computational
cost is O(n

√
K · N).

A seed approach based on a simple hill-climbing opti-
mization was proposed in [31]. It starts from an initialized
superpixel partition and refines the initialization continuously
by modifying its boundaries. This algorithm defines an energy
function based on enforcing color similarity between the
boundaries and superpixel color histogram. It is fast. However,
the target number of superpixel is not under control and the
shapes of superpixels are irregular.

The FCC algorithm was proposed in [16]. It offers COM and
smoothness constraints and the edges of superpixels adhere
to object boundaries in images well. The complexity of this
method is about O(N log N).

1504 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

Fig. 1. Pipeline of our algorithm. (a) Input image. (b) Initial superpixels
and seed points (blue pluses). (c) Seed relocation by our new strategy
[yellow pluses show the relocated seeds from the original positions in (b)].
(d) Superpixel refinement by our method with updated center positions
(yellow pluses). (e) Final superpixels. Note that steps in (c) and (d) (rectangle
with dashed lines) are performed iteratively till the final superpixels are
obtained.

III. OUR APPROACH

The oversegmentation of an image I is to divide it into a
collection of subregions, which are referred to as superpixels,
namely, I = {Sl |l = 1, 2, . . . , K }. Superpixel generation is to
assign a unique label for each pixel of an image. A pixel x
with label L(x) belongs to the L(x)th superpixel region with
the center C̃L(x).

Fig. 1 illustrates the pipeline of the proposed method.
Given an image [Fig. 1(a)], we first place seeds with the
expected number of superpixels to obtain an initial superpixel
segmentation of the image, as shown in Fig. 1(b). To make
the edges of superpixels adhere well to object boundaries in
an image, we define a new distance measurement to optimize
superpixels. We also introduce a new strategy to update the
positions and intensities of superpixel seeds iteratively, as
shown in Fig. 1(c) and (d). The final generated superpixels
are shown in Fig. 1(e). Our major contributions lie in two
aspects: 1) a new distance measurement to make the edges of
superpixels align better with object boundaries in an image
[Fig. 1(d)] and 2) a new strategy to update the positions and
intensities of superpixel seeds [Fig. 1(c)].

In the following, Section III-A presents the new distance
measurement first, then, Section III-B introduces the optimiza-
tion strategy of superpixel seeds, and finally, Section III-C
gives an overall description of our superpixel generation
algorithm.

A. New Distance Measurement

For a pixel, the superpixel to which it belongs is determined
by the shortest distance from the pixel to those seeds of
its surrounding superpixels. In this paper, we design a new
distance measurement between a pixel and a superpixel seed.

One of the most important properties of an ideal superpixel
algorithm is that the edges of superpixels should align with

Fig. 2. 3 × 3 Gaussian template.

the object boundaries in an image. What is more, it is desired
for superpixels to have homogenous appearance and be
compact. Accordingly, our distance measurement between
pixel x and the lth superpixel seed consists of three terms,
i.e., boundary adherence, homogeneous intensity, and COM,
which is defined as

D(x, l) = wb × B(x, l) + wi × I (x, l) + α × wc × C(x, l).

(1)

Here, wb, wi , and wc are weight functions that are designed
to vary the focus on different characteristics during the
optimization procedure. For instance, when the segmentation
accuracy and COM are getting better, the weight function wb

for boundary adherence will be larger. They are defined as

wb = I (x, l) + C(x, l)

A

wi = B(x, l) + C(x, l)

A

wc = I (x, l) + B(x, l)

A
A = 2(I (x, l) + B(x, l) + C(x, l)).

α is a parameter to flexibly control the COM of the resulting
superpixels. For each pixel, it can be labeled by selecting the
superpixel of its neighboring one with the smallest D from
the pixel to its seed. By performing such a labeling strategy
for all the pixels sequentially, we can obtain a superpixel
segmentation of an image.

1) Boundary Term: In general, image boundaries are
detected by examining the gradient values of pixels. The larger
the gradient of a pixel is, the more likely it will be on image
boundaries. However, with the presence of noise, pixels that
are not on objects boundaries could have large gradient values
as well. In our algorithm, we introduce a new measurement
based on neighbors of one pixel to compute its possibility of
lying on object boundaries in an image, which is calculated by

w(x) = e

∑

xi
Gδ |g(xi)−g(x)|

|Rω(x)| , xi ∈ Rω(x) (2)

where Rω(x) is the collection of all the pixels in a ω×ω sized
window with pixel x as its center. |Rω(x)| is the number of
pixels in Rω(x). In this paper, we set ω = 3. g(x) is the
gradient of pixel x and Gδ is the Gaussian coefficient with
size 3 × 3 as shown in Fig. 2.

If pixel x is in a flat region where the intensities of pixels
xi surrounding it are homogeneous, the value of g(xi) is
small and quite similar to g(x). As a result, w(x) is small.
If pixel x is in a region with many details, g(x) and g(xi)
are similar and large. From the computation in (2), we know
that w(x) is small. If pixel x is on image boundaries, the
intensities of pixels surrounding it greatly vary along the

ZHANG et al.: SIMPLE ALGORITHM OF SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINT 1505

Fig. 3. (a) and (b) Results of our algorithm using (2) and g(x) as w(x) to
evaluate the probabilities of pixels being on image boundaries, respectively.

Fig. 4. Closeups of images in Fig. 3. (a) Closeups of the image in Fig. 3(a).
(b) Closeups of the image in Fig. 3(b).

orthogonal direction of boundaries and the gradient values of
pixels near the boundaries are large, while the others are small.
Consequently, w(x) is large based on the computation in (2).
The larger the value of w(x) is, the higher probability of the
pixel x on object boundaries is. Fig. 3 shows the results of
using (2) and g(x) as w(x) to evaluate the probabilities of
pixels being on image boundaries, respectively. The closeups
of these images are shown in Fig. 4(a) and (b) individually.
It is clear that edges of superpixels in Fig. 3(a) using (2) as
w(x) better adhere to object boundaries in the image than
the superpixels in Fig. 3(b), which are generated using g(x)
as w(x). Based on this observation of the behavior of pixels
on image boundaries, we design a boundary term to make the
edges of superpixels align to object boundaries in images as
follows:

B(x, l) = (1 − w(x))e
nlx

λ1δ2 + w(x)e
w(x)

λ2ζ2 (3)

where λ1 and λ2 are parameters, δ is the mathematical
expectation of nlx , and ζ is the average of w(x) in an image.
In a local window centered with pixel x , nlx is the number of
pixels whose label is not equal to l normalized by the total

Fig. 5. Results of superpixels and the magnified regions (a) with boundary
item and (b) without boundary term.

Fig. 6. Local region in the bottom yellow rectangle of Fig. 5(a). The seed
positions of the l1th and l2th superpixels are marked in blue.

number of pixels in this window. nlx is calculated as

nlx = |Rω(x)′|
|Rω(x)| , Rω(x)′ = {p|p ∈ Rω(x)&L(p) �= l} (4)

where Rω(x) is the same with the one in (2). | • | is the
number of elements in the collection •. To some extent, the
value of nlx indicates the probability of whether pixel x is on
the edges of superpixels.

Equation (3) consists of two terms, while the second one
is a constant for each pixel. The reason is that whether a
pixel is on object boundaries in images or lies on previous
superpixel edges, it is likely to belong to superpixel edges in
the next iteration. That means as long as one value between
of w(x) and nlx is large, the value of B(x, l) should be large.
Accordingly, the formulation of B(x, l) should be the sum of
these two parts as (3). The boundary term is to ensure that
edges of superpixels adhere to object boundaries in an image
as good as possible.

Figs. 5 and 6 show the effect of boundary term. Fig. 5(a)
presents the resulting superpixels generated by our proposed
method with the distance measurement combined with the
boundary term and more boundaries of the image are kept than
that in superpixels shown in Fig. 5(b), which are generated
without the boundary term. We explain the work of the
boundary term with reference to Fig. 6, which is a local region
in the bottom yellow rectangle in Fig. 5(a). For the yellow
pixel x in Fig. 6, the l1th superpixel and the l2th superpixel
are candidates it may belong to. On the one hand, the colors

1506 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

of these two superpixels are almost the same, so these two
intensity terms I (x, l1) and I (x, l2) are similar. On the other
hand, the location of pixel x is on the border between these
two superpixels whose seeds are marked in blue, which makes
the COM terms C(x, l1) and C(x, l2) almost the same. As a
result, whether pixel x belongs to the l1th superpixel or the
l2th superpixel depends on the boundary term. Considering (3),
for most of pixels surrounding pixel x belong to the
l1th superpixel, based on the computation in (4), nl1 x is smaller
than nl2 x , so B(x, l1) < B(x, l2) and D(x, l1) < D(x, l2).
Accordingly, the pixel x is more likely to be labeled l1.

2) Intensity Term: In our algorithm, we employ an inten-
sity term, aiming at generating superpixels where all pixels
contained within each of them have similar color intensities.
The designed intensity term uses color distance computed in
CIELAB space, which is defined as

dc(x, l) =
√

(Lx − Ll)
2 + (Ax − Al)

2 + (Bx − Bl)
2 (5)

where Lx , Ax , and Bx are the L, A, and B values of pixel x ,
respectively, and Ll , Al , and Bl are the corresponding channels
of the seed of the lth superpixel. The intensity term is
formulated as

I (x, l) = e
dc(x,l)
λ3η2 (6)

where λ3 is a parameter and η is the average of the standard
variance of color distance for all superpixels. From (6), we can
see that to minimize the intensity term, a pixel with color
values as close as possible to those of the seed of a superpixel
is preferred.

3) Compactness Term: Ideal superpixels should be compact.
In our algorithm, we use the Euclidean distance to control the
COM of superpixels. This term is defined as

C(x, l) = e

√
(r(x)−rl)

2+(c(x)−cl)
2

λc ·s (7)

where λc is a parameter and (r(x), c(x)) and (rl , cl) are
coordinates of pixel x and the lth superpixel seed in the
xy plane, respectively. To optimize the shape of a superpixel
close to that of a hexagon, we divide the distance between
pixel x and the seed a parameter s = (2

√
3N/9K)

1/2
, which

is the side length of a regular hexagon. The smaller the COM
term is, the closer pixel x is to the seed of the lth superpixel
and the more compact of the superpixel is.

B. Optimize Superpixel Seeds Based on Three-Sigma Rule

The majority of superpixel segmentation algorithms gen-
erates superpixels based on k-means strategy in an iterative
way. For each iteration, the seed of each superpixel is updated
by averaging all of the pixels belonging to it. However, this
may lead to inhomogeneous intensity within a superpixel,
especially when there are obvious differences among the
pixels belonging to this superpixel. Fig. 7(d) and (e) is an
example of such an issue after two consecutive iterations
using all the pixels contained in a superpixel to update its
seed. From Fig. 7(e), we can observe that the superpixel in
the yellow rectangle contains more pixels of background in
the result of latter iteration, while its boundary is far away

Fig. 7. Results of superpixels with different strategies to update seeds.
(a) Original image. (b) and (c) Results with seeds updated by (8) based on our
strategy. (d) and (e) Results of using all of pixels contained in a superpixel
to update its seed.

from the object boundaries in the image. To tackle this issue,
we use only reliable pixels that have the most homogeneous
appearance with the superpixel seeds to optimize the positions
and intensities of seeds. The position and intensity of the
lth superpixel seed are updated by

C̃l,i =

∑

x∈�l,i−1

q(x)

|�l,i−1| , i ≥ 1

�l,i−1 = {x |L(x) = l and |p(x) − C̃l,i−1| ≤ ξl,i−1} (8)

where C̃l,i and C̃l,i−1 are the seeds of the lth superpixel in
the i th and the (i − 1)th iterations, respectively. q(x) is the
intensity vector (Lx , Ax , Bx) or position vector (r(x), c(x)) of
pixel x . p(x) is the intensity of pixel x . ξl,i−1 is the threshold
that controls which pixels are used to update the seed in the
(i − 1)th iteration. The larger the value of ξl,i−1 is, the more
pixels are employed.

In statistics, the three-sigma rule is that 99.73% of the data
lies within three standard deviations of the mean in a normal
distribution, which is one of the most widespread distribution
in the nature. To make use of a sufficient number of pixels for
updating superpixel seeds, we choose reliable pixels according
to the three-sigma rule and set ξl,i−1 = 3δl,i−1, where δl,i−1
is the standard deviation of colors of the lth superpixel at
the (i − 1)th iteration. Fig. 7(b) and (c) shows two examples
of applying our strategy on updating superpixel seeds after
two consecutive iterations, which produces comparable results
compared with each iteration and better than those of continu-
ous iterations using all of the pixels contained in a superpixel
to update its seed, as shown in Fig. 7(d) and (e).

C. Superpixel Segmentation Algorithm

The scheme of our algorithm is similar to the framework of
k-means based superpixel generation approaches, which per-
forms initialization and refinement till some termination condi-
tions are met. Taking the VCells algorithm as an example, our
approach is distinct from them mainly in the following aspects:
1) our algorithm defines a distance function to balance among
boundary adherence, intensity, and COM characteristics of

ZHANG et al.: SIMPLE ALGORITHM OF SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINT 1507

Algorithm 1 Proposed Superpixel Generation Algorithm
input : image I , expected number of superpixel K
output: the labels of pixels
1) Place K superpixel seeds in a hexagonal pattern
2) Initialize labels of all of the pixels by 9
3) Update the superpixel seeds using 8
4) Update the labels of all pixels by 1
5) Repeat 3) and 4) till the termination condition is
reached
6) Enforce connectivity, according to the closest color
guideline

superpixels and 2) our approach uses only reliable pixels
belonging to one superpixel to update its seed, while for the
other superpixel segmentation methods based on k-means, i.e.,
VCells, all the pixels within one superpixel are employed. As a
summary, Algorithm 1 gives a complete description of our
method.

1) Seeds Initialization: In our approach, we place K ini-
tial seeds in a hexagonal pattern, which is a user-defined
parameter. Similar to other algorithms, to avoid centering a
superpixel on an edge, we initialize the seeds with positions
at the local lowest gradient locations compared with their
neighborhoods.

2) Labeling Pixels: A superpixel segmentation method aims
to assign a unique label to each pixel of the input image. In our
algorithm, we label pixels based on the distance measurement
between pixels and superpixel seeds as introduced in (1).

In the beginning, since no pixels are labeled except for the
initialized seeds, nlx in (3) cannot be calculated. Here, we use
a simplified distance measurement defined in (9) to initialize
the labels of pixels

D(x, l) = I (x, l) + C(x, l). (9)

After the initialization step, we use (1) to measure the
distance between pixels and superpixel seeds and update
the label of each pixel with the superpixel whose seed has
the shortest distance to it.

Similar to the SLIC algorithm, at the end of the labeling
procedure, some orphaned pixels do not belong to the same
connected superpixel. To enforce the connectivity, we relabel
small disjoint components with the label of the neighboring
superpixel that has the closest color to it.

3) Implementation:
a) Parameters: Five parameters should be decided

in the proposed algorithm. According to experiments on
5% images in the test subset of Berkeley segmentation data-
base (BSD) [32], we set λ1 ∈ [0.01, 0.08] and λ2 ∈ [0.1, 0.3]
in (3). The smaller the value of λ1 is, the larger proportion
of nlx is. It is the same as the value of λ2. In this paper,
we set λ1 = 0.05 and λ2 = 0.2. We set λ3 = 6 in the
intensity term (6). The results of superpixels with different
values of λ3 are shown in Fig. 8. Most of object boundaries
are detected when λ3 = 6 in Fig. 8(c). We set λc = 0.57 in (7).
α ∈ [0,+∞] is the parameter to balance COM and boundary
adherence. The larger α is, the more compact superpixels are.

Fig. 8. Result of superpixels with different values of λ3 in (6).
(a) Original image. (b) λ3 = 4.5. (c) λ3 = 6. (d) λ3 = 7.5.

Fig. 9. Illustration of superpixels on BSD. All images are computed with
α = 1 unless otherwise specified. Images in the second row are zoomed-
in views of the ones in the first row. (a) α = 0. (b) α = 1. (c) α = 10.
(d) α = 50.

b) Termination condition: Based on the residual error E
of location and intensity between the new superpixel seeds
and the previous ones, for all the experimented test cases, our
algorithm finishes within 20 iterations.

c) Complexity: If an image contains N pixels and the
number of superpixels is K , then each superpixel should
contain approximately N/K pixels. In the first step, we place
seeds in a way that is independent of the image size,
whose computational cost is negligible. The most time con-
suming part is the superpixels refinement step. For each
pixel, three terms in (1) should be calculated. Both the
computational cost of COM and intensity terms are O(1).
The complexity of the computing boundary term is O(ω2),
where ω × ω is the local window size decided by the user.
Therefore, the computational cost of calculating the distance
between one pixel and a seed at the refinement step is
O(1 + 1 + ω2). In this paper, the local window is set to be as
3×3. By keeping ω as a constant, the complexity of the basic
calculation is O(1). Therefore, the computational cost for each
iteration is O(N). For n iterations, the computational cost
is O(n · N). The probabilities of pixels on object boundaries in
an image are calculated only once and the computational cost

1508 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

Fig. 10. Results of image superpixels and magnified regions. Top to bottom: the results are processed by our method (α = 1), Turbopixels, SLIC, VCells,
FCC, and LRW, respectively.

is O(N). Thus, the total complexity of the proposed algorithm
is O((n + 1) · N).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the proposed method, we apply it on
BSD [32] and the Microsoft MSRC GrabCut dataset [33] and
benchmarked and compare it with the state-of-the-art methods.
BSD contains 500 images with approximately six human-
annotated ground-truth segmentations for each image [34].
MSRC contains 30 images with ground-truth segmentation
masks [35]. In order to obtain an objective and intuitive
comparison, we compare our algorithm with other three well-
known k-means-based algorithms: SLIC, FCC, and VCells.
At the same time, Turbopixels and LRW as the representative
of gradient-ascent-based approach and graph-based method
are also being compared. In the comparison, the superpixel

results of Turbopixels, SLIC, VCells, and LRW are generated
using the implementations downloaded from their websites
with parameter settings for the best performances.

A. Visual Comparison

Fig. 9 shows an image from BSD and its superpixels to
demonstrate the influence of the parameter α (0, 1, 10, 50)
for homogeneous (blue sky) and textured regions (clouds).
As expected, when α = 0, the superpixels are in a mess
for there is no COM constraint, while when α → +∞,
superpixels tend toward regular grid of hexagonal cells. Both
of them show good adherence to object boundaries in images,
as shown in Fig. 9.

Figs. 10 and 11 show some images with superpixels
generated by our method, Turbopixels, SLIC, VCells, FCC,

ZHANG et al.: SIMPLE ALGORITHM OF SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINT 1509

Fig. 11. Results of image superpixels and magnified regions. From top to bottom: the results are processed by our method (α = 1), Turbopixels, SLIC,
VCells, FCC, and LRW, respectively.

and LRW from top to bottom, respectively. The expected
number of superpixels is 1100 and 100 in Figs. 10 and 11,
respectively. The first column displays the whole image super-
pixels generated by each method and the other columns are
their corresponding magnified regions. It is clear that the edges
of our resulting superpixels better adhere to object boundaries
in images especially in the yellow rectangular regions. For
instance, the leg boundaries of this tiger in Fig. 10 are kept
tightly in the resulting superpixels generated by our proposed
method, while have a certain extent of contraction in the
results of comparative algorithms, as shown in the second
column of Fig. 10. The reason is that in our algorithm, image
boundaries are considered additionally and the probabilities
of pixels lying on image boundaries are estimated more
accurately by (2).

Figs. 12 and 13 show various images from BSD,
MSRC with their corresponding superpixels generated by
our proposed algorithm, Turbopixels, SLIC, VCells, FCC,
and LRW. It is clear that our algorithm has the best
performance.

B. Quantitative Comparison

Boundary recall (BR), contour density (CD), underseg-
mentation error (USE), COM [36], and achievable seg-
mentation accuracy (ASA) [17] are five commonly used
metrics to evaluate the performance of superpixel generation
algorithms. We adopt all these measures to compare our
approach with those existing superpixel methods. The results
for BR, CD, USE, and COM on BSD and MSRC are shown
in Figs. 14 and 15, respectively.

1) BR: BR is an important metric for evaluating boundary
adherence of superpixels. It measures what fraction of the
ground-truth edges falls within at least two pixels of superpixel
boundaries. A high BR indicates that very few true edges are
missed. BR of each considered algorithm and our proposed
method with different values of α are plotted against the
number of superpixels in Figs. 14(a) and 15(a). All of these
plots are produced by averaging the values of BR across all
the images in each dataset. As shown in Figs. 14(a) and 15(a),
the larger the value of α is, the lower the BR is. This
is because the negative correlation between BR and COM.

1510 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

Fig. 12. Comparison results of image superpixels in BSD generated by our method and compared algorithms. Left to right: the results are processed by our
method (α = 1), Turbopixels, SLIC, VCells, FCC, and LRW. The number of superpixels in all the results is 300 except the first row with 100 superpixels.

In Fig. 14(a), when α = 1, our algorithm achieves a compa-
rable performance with the best one among the comparative
methods. Given various values of α, Fig. 15(a) demonstrates
that our algorithm achieves the best performance among the
comparative methods. The reason is that we introduce a
boundary term in our algorithm that may make the edges
of superpixels consistent with object boundaries in an image.
As a result, we compute CD, USE, and ASA with α = 1
in this paper.

2) CD: To avoid overestimating artificially BR, we also
evaluate boundary adherence by CD, which is defined as
the number of pixels used to describe superpixels’ edges

normalized by the total number of pixels in an image.
The average CDs on BSD and MSRC are plotted against
BR in Figs. 14(b) and 15(b), respectively. For a constant
BR value, the lower the CD is, the better result is. The
VCells method has the best performance on the BSD, as
shown in Fig. 14(b), and our approach has better perfor-
mance than SLIC, Turbopixels, and LRW. Furthermore, our
algorithm has the best performance on MSRC, as shown
in Fig. 15(b).

3) USE: USE essentially measures the error that an algo-
rithm makes in segmenting an image with respect to a known
ground truth (human segmented images in this case). This error

ZHANG et al.: SIMPLE ALGORITHM OF SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINT 1511

Fig. 13. Comparison results of image superpixels in MSRC by our method and compared algorithms. Left to right: the results are processed by our method
(α = 1), Turbopixels, SLIC, VCells, FCC, and LRW. Top to bottom: the number of superpixel is 500, 500, 300, and 100, respectively.

Fig. 14. Quantitative evaluation on the BSD benchmark. (a) BR. (b) CD over BR. (c) USE. (d) COM over BR.

Fig. 15. Quantitative evaluation on the MSRC dataset. (a) BR. (b) CD over BR. (c) USE. (d) COM over BR.

is computed in terms of the bleeding of the segment output
by an algorithm when placed over ground-truth segments. This
measure thus penalizes superpixels that do not tightly fit the

ground-truth segment boundary. Given a ground-truth segmen-
tation of an image into regions {Gi |, i = 1, 2, . . . , M} and a
superpixel segmentation into superpixels {Sl |l = 1, 2, . . . , K },

1512 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

the USE of the whole image is calculated by

USE = 1

N

⎡

⎣
M∑

i=1

⎛

⎝
∑

{Sl ||Sl−Gi |>B}
Area(Sl)

⎞

⎠ − N

⎤

⎦

where N is the total number of pixels, Area(Sl) is the area of
the superpixel Sl , and B is the minimum area of overlapping.
In our experiment, B is set to be 5% of Area(Sl). A lower
USE indicates that more objects in an image are recognized.
We average the values of USE across all the images in BSD
and MSRC and plot the curves of considered algorithms for
increasing numbers of superpixels in Figs. 14(c) and 15(c).
As shown in Fig. 14(c), our algorithm has a comparable
performance with VCells and a better performance than the
other methods. At the same time, our algorithm achieves the
best performance on MSRC, as shown in Fig. 15(c).

4) COM: The larger the area of a shape for a given
boundary length is, the better its COM is. That is to say,
compact superpixels correspond to the ones whose shape tends
to be a disc. Let ASl be the area and LSl be the perimeter of
a shape, e.g., of a superpixel Sl . The isoperimetric quotient of
this superpixel is

QSl = 4π ASl

L2
Sl

.

For a given segmentation, we compute the sum over the
isoperimetric quotients of each superpixel normalized by the
fraction of its size |Sl | compared with the whole image. Let
ℵ be the set of all superpixels of a segmentation of the image I .
The COM of the segmentation is

COM =
∑

Sl∈ℵ
QSl · |Sl |

|I | .

The larger the value is, the more compact superpixels
are. However, pursuing a high value of COM blindly is
not desirable, because of the negative correlation between
BR and COM [36]. The reason is that for a higher BR,
the superpixel boundaries have to adjust more to the image
content, which makes them less compact. In other words, the
tradeoff between BR and COM is more considerable than
higher COM unilateral.

Accordingly, the COM of superpixels generated by each
considered algorithm, which is calculated by averaging the
values of COM across all the images in BSD and MSRC, is
plotted against BR in Figs. 14(d) and 15(d). To demonstrate the
impact of the parameter α on the balance between boundary
adherence and COM, Figs. 14(d) and 15(d) display the results
of our method with different values of α. The larger α is,
the higher COM is and the lower BR is. The results with
α = 0 have the poorest performance both on BSD and
MSRC, as shown in Figs. 14(d) and 15(d), as there is no
constraint on COM. The superpixels generated by our method
with α = 1 are more compact than FCC when the number of
superpixel is large. Furthermore, the results with α = 100 have
a comparable performance with LRW and a better performance
than FCC, VCells, and Turbopixels. The performance of
our algorithm becomes better for the increasing value of α.
Remarkably, the BR of our algorithm is always higher than

Fig. 16. ASA curves of our method and compared approaches on BSD.

those of LRW, SLIC, and Turbopixels both on MSRC and
BSD, as shown in Figs. 14(a) and 15(a).

5) ASA: This metric measures whether objects in images
are correctly recognized. In other words, ASA computes the
highest achievable accuracy by labeling each superpixel with
the label of ground-truth segmentation that has the biggest
overlap area. The metric is defined as

ASA =
∑

l arg max
i

|Sl ∩ Gi |
∑

i |Gi | .

The higher ASA is, the more the objects recognized cor-
rectly in an image are. The ASA of each considered algorithm,
which is calculated by averaging the values of ASA across
all the images in BSD, is plotted against the number of
superpixels in Fig. 16. Our algorithm outperforms the other
methods. For only one object has been labeled in the ground-
truth segmentation mask of each image in MSRC, the ASAs
of all the algorithms are similar and approximated to 1.
ASA plots against the number of superpixels on MSRC are
not presented in this paper.

C. Computation Time

In this section, we compute the runtime of our algorithm,
Turbopixels, SLIC, VCells, and FCC on a personal computer
based on Intel Core i5 central processing units, operating at
3.10 GHz. The image size is kept as 321 × 481. We disregard
LRW since it is computationally expensive compared with the
other five methods. Fig. 17 shows the plots of runtime versus
superpixel density of these five methods. Our algorithm is
faster than Turbopixels, FCC, and VCells, while slower than
SLIC. The reason is that in each iteration, on the one hand, we
relabel all pixels in an image by calculating (1), which contains
a boundary term based on the pixels in the neighborhood.
On the other hand, our algorithm uses highly reliable pixels
to update superpixel seeds based on the three-sigma rule. The
threshold in (8) should be calculated for each superpixels in
each iteration.

D. Limitation

Although superpixels generated by our proposed algorithm
keep most of object boundaries in images and achieve a
tunable tradeoff between boundary adherence and COM,

ZHANG et al.: SIMPLE ALGORITHM OF SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINT 1513

Fig. 17. Computation time comparison.

a number of limitations exist in the current approach. First,
some weak boundaries in images are missing (e.g., the head
boundary under the left ear and the beard of the tiger in the
first image of Fig. 10). The reasons are that the colors of this
object and its neighbors are similar and the boundary terms of
pixels in this object are small. However, this may be addressed
by a preprocessing step especially on image boundaries or
combining pixel colors with gradients to evaluate the object
boundaries in the future. Second, the efficiency of the current
approach should be improved further.

V. CONCLUSION

To well align the computed superpixels to object boundaries
in an image, we define a new measurement to calculate the
probabilities of pixels lying on image boundaries. Based on
this term, we define a new distance measurement to evaluate
the similarities of pixels and superpixel seeds combining image
intensity, COM, and boundary terms. At the same time, we
use only reliable pixels based on three-sigma rule to update
superpixel seeds. Our algorithm is simple, effective, and
accurate. The proposed algorithm generates superpixels with
good adherence to object boundaries in an image and achieves
a tunable tradeoff between COM and boundary adherence.

REFERENCES

[1] X. Ren and J. Malik, “Learning a classification model for segmentation,”
in Proc. 9th IEEE Int. Conf. Comput., Oct. 2003, pp. 10–17.

[2] B. Peng, L. Zhang, and D. Zhang, “Automatic image segmentation by
dynamic region merging,” IEEE Trans. Image Process., vol. 20, no. 12,
pp. 3592–3605, Dec. 2011.

[3] J. Shen, Y. Du, and X. Li, “Interactive segmentation using constrained
Laplacian optimization,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 24, no. 7, pp. 1088–1100, Jul. 2014.

[4] G. Mori, X. Ren, A. A. Efros, and J. Malik, “Recovering human body
configurations: Combining segmentation and recognition,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2.
Jun./Jul. 2004, pp. II-326–II-333.

[5] Z. Li, X.-M. Wu, and S.-F. Chang, “Segmentation using superpixels:
A bipartite graph partitioning approach,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 789–796.

[6] J. Cheng et al., “Superpixel classification based optic disc and optic cup
segmentation for glaucoma screening,” IEEE Trans. Med. Imag., vol. 32,
no. 6, pp. 1019–1032, Jun. 2013.

[7] B. Liu, H. Hu, H. Wang, K. Wang, X. Liu, and W. Yu, “Superpixel-based
classification with an adaptive number of classes for polarimetric SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 907–924,
Feb. 2013.

[8] F. Yang, H. Lu, and M.-H. Yang, “Robust superpixel tracking,” IEEE
Trans. Image Process., vol. 23, no. 4, pp. 1639–1651, Apr. 2014.

[9] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, May 2002.

[10] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181,
Sep. 2004.

[11] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson,
and K. Siddiqi, “TurboPixels: Fast superpixels using geometric flows,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2290–2297,
Dec. 2009.

[12] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282,
Nov. 2012.

[13] O. Veksler, Y. Boykov, and P. Mehrani, “Superpixels and supervoxels
in an energy optimization framework,” in European Conference on
Computer Vision. Crete, Greece: Springer, 2010, pp. 211–224.

[14] J. Peng, J. Shen, A. Yao, and X. Li, “Superpixel optimization using
higher-order energy,” IEEE Trans. Circuits Syst. Video Technol., vol. 26,
no. 5, pp. 917–927, May. 2016.

[15] J. Wang and X. Wang, “VCells: Simple and efficient superpixels using
edge-weighted centroidal Voronoi tessellations,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 34, no. 6, pp. 1241–1247, Jun. 2012.

[16] X. Pan, Y. Zhou, C. Zhang, and Q. Liu, “Flooding based superpixels
generation with color, compactness and smoothness constraints,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Oct. 2014, pp. 4432–4436.

[17] J. Shen, Y. Du, W. Wang, and X. Li, “Lazy random walks for
superpixel segmentation,” IEEE Trans. Image Process., vol. 23, no. 4,
pp. 1451–1462, Apr. 2014.

[18] Y. Liang, J. Shen, X. Dong, H. Sun, and X. Li, “Video supervoxels using
partially absorbing random walks,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 5, pp. 928–938, May. 2016.

[19] J. Lu, H. Yang, D. Min, and M. N. Do, “PatchMatch filter: Efficient edge-
aware filtering meets randomized search for fast correspondence field
estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2013, pp. 1854–1861.

[20] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[21] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, and
G. Jones, “Superpixel lattices,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2008, pp. 1–8.

[22] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy
rate superpixel segmentation,” in Proc. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2011, pp. 2097–2104.

[23] S. Beucher and C. Lantuéjoul, “Use of watersheds in contour detec-
tion,” in Proc. Int. Workshop Image Process., Real-Time Edge Motion
Detection, 1979, pp. 391–396.

[24] S. Beucher and F. Meyer, “The morphological approach to segmenta-
tion: The watershed transformation. Mathematical morphology in image
processing,” Opt. Eng., vol. 34, pp. 433–481, 1993.

[25] F. Meyer, “Un algorithme optimal pour la ligne de partage deseaux,”
Congr. Reconnaissance Formes Intell. Artif., vol. 2, pp. 847–857,
Nov. 1991.

[26] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient
algorithm based on immersion simulations,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.

[27] V. Machairas, M. Faessel, D. Cárdenas-Peña, T. Chabardes, T. Walter,
and E. Decencière, “Waterpixels,” IEEE Trans. Image Process., vol. 24,
no. 11, pp. 3707–3716, Nov. 2015.

[28] V. Machairas, E. Decencière, and T. Walter, “Spatial repulsion between
markers improves watershed performance,” in Mathematical Morphol-
ogy and Its Applications to Signal and Image Processing. Reykjavik,
Iceland: Springer, 2015, pp. 194–202.

[29] A. Vedaldi and S. Soatto, “Quick shift and kernel methods for
mode seeking,” in Computer Vision. Marseille, France: Springer, 2008,
pp. 705–718.

[30] P. Wang, G. Zeng, R. Gan, J. Wang, and H. Zha, “Structure-sensitive
superpixels via geodesic distance,” Int. J. Comput. Vis., vol. 103, no. 1,
pp. 1–21, 2013.

[31] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van Gool,
“SEEDS: Superpixels extracted via energy-driven sampling,” in Com-
puter Vision. Florence, Italy: Springer, 2012, pp. 13–26.

[32] (2007). The Berkeley Segmentation Dataset and Benchmark. [Online].
Available: http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

1514 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

[33] (2004). GrabCut. [Online]. Available: http://research.microsoft.com/en-
us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut
.htm

[34] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2. Jul. 2001, pp. 416–423.

[35] C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: Interactive
foreground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 309–314, 2004.

[36] A. Schick, M. Fischer, and R. Stiefelhagen, “Measuring and evaluat-
ing the compactness of superpixels,” in Proc. 21st Int. Conf. Pattern
Recognit. (ICPR), 2012, pp. 930–934.

Yongxia Zhang received the B.S. degree from
the Qilu University of Technology, Jinan, China,
in 2011. She is currently pursuing the Ph.D. degree
with the School of Computer Science and Technol-
ogy, Shandong University, Jinan.

Her current research interests include computer
vision, image processing, and machine learning, in
particular, the problem of image and video denoising
and image segmentation.

Xuemei Li received the master’s and Ph.D. degrees
from Shandong University, Jinan, China,
in 2004 and 2010, respectively.

She is currently an Associate Professor with
the School of Computer Science and Technology,
Shandong University, where she is also a member of
the Geometric Design and Information Visualization
Laboratory. Her current research interests include
geometric modeling, computer aided geometric
design, medical image processing, and information
visualization.

Xifeng Gao received the B.S. and M.S. degrees in
computer science from Shandong University, Jinan,
China, in 2008 and 2011, respectively. He is cur-
rently pursuing the Ph.D. degree in computer science
with the University of Houston, Houston, TX, USA.

His current research interests include computer
graphics, geometry processing, medical imaging,
and multimedia security.

Caiming Zhang received the B.S. and M.E. degrees
from Shandong University, Jinan, China, in
1982 and 1984, respectively, and the D.Eng. degree
from the Tokyo Institute of Technology, Tokyo,
Japan, in 1994, all in computer science.

He held a visiting position with the University of
Kentucky, Lexington, KY, USA, from 1997 to 2000.
He is currently a Professor and Doctoral Supervisor
with the School of Computer Science and
Technology, Shandong University. His current
research interests include CAGD, computer

graphics, information visualization, and medical image processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

