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Abstract In quantitative brain image analysis, accurate brain tissue segmentation from brain magnetic resonance image

(MRI) is a critical step. It is considered to be the most important and difficult issue in the field of medical image processing.

The quality of MR images is influenced by partial volume effect, noise, and intensity inhomogeneity, which render the

segmentation task extremely challenging. We present a novel fuzzy c-means algorithm (RCLFCM) for segmentation and

bias field correction of brain MR images. We employ a new gray-difference coefficient and design a new impact factor

to measure the effect of neighbor pixels, so that the robustness of anti-noise can be enhanced. Moreover, we redefine the

objective function of FCM (fuzzy c-means) by adding the bias field estimation model to overcome the intensity inhomogeneity

in the image and segment the brain MR images simultaneously. We also construct a new spatial function by combining

pixel gray value dissimilarity with its membership, and make full use of the space information between pixels to update the

membership. Compared with other state-of-the-art approaches by using similarity accuracy on synthetic MR images with

different levels of noise and intensity inhomogeneity, the proposed algorithm generates the results with high accuracy and

robustness to noise.
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1 Introduction

With the rapid development of medical imaging

technology, medical image has become one of the major

auxiliary means in clinical care, and greatly improved

the accuracy of medical diagnosis. Current medical im-

age segmentation technology focuses on magnetic reso-

nance images (MRI), which has great soft tissue resolu-

tion and multi-spectral characteristics, and it is capa-

ble of multi-directional and multi-parameter imaging.

Moreover, the non-radioactive imaging modalities are

harmless to human beings. The advantages above make

MRI quite suitable for inspecting brain lesions.

Segmentation of major brain tissues from MRI, in-

cluding gray matter (GM), white matter (WM) and

cerebro-spinal fluid (CSF), is a key step for both clinical

diagnosis and neuroscience. Medical images are fuzzy

inherently, because they are inevitably affected by ran-

dom noise, magnetic field inhomogeneity and the par-

tial volume effect caused by the limit of the imaging

device resolution. These factors directly result in the

fuzziness of medical images and make the segmentation

process more difficult and challenging for these images.

The bias field correction for MRI has been studied

extensively in the past two decades. The smoothly

varying bias field, which causes the intensity of the

same tissue varies with its positions, is identified

as one of technical barriers in the MRI segmenta-
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tion. Although this change is difficult to be observed

directly, the intensity-based segmentation algorithms

may produce error classification of tissues. Gene-

rally, the methods handling bias field are divided into

two categories: prospective methods and retrospec-

tive methods[1]. Prospective methods[2-4] manage to

avoid intensity inhomogeneity in the collection proce-

dure by using the specific nuclear magnetic resonance

(NMR) equipment. These methods can correct the

bias field produced by the imaging devices and envi-

ronment, but they fail to handle the inhomogeneity

caused by patients. In addition, each scan needs to

create a new model, which reduces the practicabi-

lity of these methods in clinic. Instead, retrospective

methods[5-8] are based on the image post-processing.

Ignoring the source of the bias field, these methods can

be applied to any MRI. Generally, these methods esti-

mate a non-uniform multiplicative field by homomor-

phic filtering[9], and restore the real image by removing

this field from original image.

Segmentation based method[10] is one of the most

popular methods to handle the intensity inhomoge-

neity in retrospective methods. The bias field correc-

tion is an essential preprocessing step for medical im-

age segmentation. In turn, the accurate segmentation

makes intensity inhomogeneity correction much sim-

pler. Thus, a method including tissues segmentation

and bias field correction could handle the intensity inho-

mogeneity better. These bias field correction methods

can be further classified according to the applied image

segmentation method. The most popular one is based

on the fuzzy c-means clustering algorithm (FCM)[11].

Fuzzy c-means is a soft clustering algorithm which as-

sumes the image pixels can be classified into various

categories. Due to the uncertainty of initial categories,

FCM algorithm retains much more information than

other segmentation methods[12], and depicts the fuzzy

characteristic of medical image dramatically. Since the

conventional FCM algorithm does not take any spatial

information into account, it becomes very sensitive to

noise and intensity inhomogeneity. Many researchers

have compensated this drawback of FCM by modify-

ing the objective function, transforming the distance

measure method or incorporating the local spatial in-

formation.

Ahmed et al.[13] modified the objective function and

proposed FCM
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tion for each iteration. Compared with state-of-the-

art segmentation techniques, the proposed method im-

proves the robustness to the bias field correction and

accuracy of tissues segmentation as shown by our ex-

perimental results.

The remaining part of this paper is organized as fol-

lows. Section 2 briefly describes the fuzzy c-means algo-

rithm and the bias field formulation in images. The de-

tailed RCLFCM model is introduced in Section 3. Ex-

perimental results and comparisons with existing meth-

ods are discussed in Section 4. Conclusions are given

in Section 5.

2 Preliminary Theory

Fuzzy c-means clustering algorithm and bias field

formulation are effective methods for medical image

processing, and they are the main foundation of the

proposed algorithm.

2.1 Fuzzy C-Means Clustering

Let I = {xi, i = (1, 2, ..., N)}, where xi is the i-th

pixel of image I with dimension D. The standard FCM

algorithm divides these pixels into K clusters by mini-

mizing the objective function, and every cluster cen-

troid is weighted by its corresponding membership. The

membership function is U = {uik} ∈ R
K×N , where

uik ∈ [0, 1] is pixel i belonging to cluster k and follows

the constraint
∑K

k=1 uik = 1. The conventional objec-

tive function is defined as[14]:

JFCM =

N
∑

i=1

K
∑

k=1

um
ik||xi − vk||

2, (1)

where m ∈ (1,∞) is the fuzzy weighting exponent upon

the membership and m = 2 generally. ||xi − vk||
2 is a

Euclidean distance between point xi and cluster center

vk. The requirements for minimizing (1) by calculating

the membership value uik and the cluster centers vk are

as follows:

uik =
1
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basis functions is given[22]. The bias field can be ex-

pressed by a linear combination of a group of smooth

basis functions g1(x), ..., gM (x)[1]. The key problem of

having a better expression of bias field is to seek the op-

timal coefficients w1, ..., wM in the linear combination

b(x) =
∑M

k=1 wkgk(x). The bias field can be defined as:

b(x) = w
T
G(x), (4)

where the coefficient vector is represented by w =

(w1, ..., wM )T, and the basis functions are represented

by G(x) = (g1(x), ..., gM (x))T.

Assumed that the brain MR image has N types of

tissues, the gray level of true image J(x) in the i-th

cluster is constant ci approximately. In soft cluster-

ing, every pixel has fuzzy membership functions ui(x)

for each cluster center. The fuzzy membership func-

tions can be interpreted as the probability that pixel

x belongs to the i-th cluster, and they take values be-

tween 0 and 1 following the constraint
∑N

i=1 ui(x) = 1.

Therefore, when the membership functions ui(x) and

cluster center constant ci are given, the true image can

be defined as :

J(x) =

N
∑

i=1

ciui(x). (5)

Using these definitions of the bias field b and the

true image J in (4) and (5) respectively, the objective

function F (b, J) can be formulated as[1]:

F (b, J) = F (u, c,w)

=

∫

Ω

|I(x)−w
T
G(x)

N
∑

i=1

ciui(x)|
2dx, (6)

whereG(x) is the basis function, and u = (u1, ..., uN)T,

c = (c1, ..., cN )T and w = (w1, ..., wN )T are three varia-

bles to be determined.

3 Proposed Methods

In this paper, we design a new fuzzy factor, which

has a better performance on measuring the influence of

the neighborhood pixels. It also takes a full account of

the spatial information to reduce the noise sensitivity.

Furthermore, we combine the gray-level dissimilarity

with membership, and present a new spatial function

to improve the efficiency of clustering by updating fuzzy

membership. We redefine the objective function by in-

corporating bias field estimation model to implement

bias field estimation and MRI tissues segmentation.

3.1 Improved Fuzzy Factor

The fuzzy factor is aimed at controlling the weight

between noise reduction and details reservation. From

(2), the fuzzy factor of FLICM algorithm uses only spa-

tial distance factor, which is defined as:

δsd =
1
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where V ar(x) denotes the gray-value variance of local

window, and x̄ denotes the mean of gray-value. We

define the gray-difference coefficient between neighbor

pixel xj and central pixel xi, as follows:

Sij = ||xj − xi||, j ∈ Ni.

We normalize the variance coefficient of local win-

dow and the gray-difference coefficient to (0, 1] respec-

tively as:

εi =
(Cu − Cmin) + ξ
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noise-corrupted pixels converge to a similar value af-

ter three iterations. Generally, the gray-level values

of noise-corrupted pixels are far different from those

of the other pixels within the window, and thus the

new spatial function balances the membership values,
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Fig.3. Illustration of the 3× 3 window with noise (marked with
a square in original image), the cluster center (V1, V2) and the
corresponding membership values updated by the new spatial
function in case 1. (a) Original image. (b) Gray-level values
of pixels within the local window. (c) Initial membership val-
ues. (d) Membership values after one iteration. (e) Membership
values after two iterations. (f) Membership values after three
iterations.
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Fig.4. Illustration of the 3× 3 window with noise (marked with
a square in original image), the cluster center (V1, V2) and the
corresponding membership values updated by the new spatial
function in case 2. (a) Original image. (b) Gray-level values
of pixels within the local window. (c) Initial membership val-
ues. (d) Membership values after one iteration. (e) Membership
values after two iterations. (f) Membership values after three
iterations.

and changes their membership values considerably (the

updated membership values are equal or close to 1).

Therefore, the new spatial function is able to reduce

the number of iterations and suppress the influence of

noise and outliers.

Case 2. The central pixel is a noise pixel and other

pixels are not corrupted by noise (as shown in Fig.4). It

clearly shows that the corresponding membership val-

ues of neighbor pixels and the central pixel converge to a

similar value after three iterations. Similarly, the mem-

bership values of these pixels are balanced by the new

spatial function, which changes their membership val-

ues considerably (the updated membership values are

equal or close to 0). Thus, the membership value of the

central pixel is not influenced by noise and outliers.

3.3 Objective Function of RCLFCM

In this paper, we propose a new objective function

based on the energy minimization formulation (6) and

the new fuzzy factor definition (10) as follows:

JRCLFCM =
N
∑

i=1

c
∑

k=1

um
ki||xi − bivk||

2 +G′
ki,

G′
ki =

∑

j∈Ni

δij(1− ukj)
m||xj − bivk||

2,

where G′
ki denotes the new impact factor incorporated

with new fuzzy factor δij , and xj denotes the neighbor

pixels falling into a window (Ni) around the central

pixel xi. vk is the prototype of the center of cluster k,

and bi is the intensity of the bias field on pixel xi.

The energy minimization is performed by minimiz-

ing the objective function JRCLFCM alternately with

respect to each variable given and the other two fixed.

During the whole process, our objective function is con-

strained by 0 6 uki 6 1,
∑K

k=1 uki = 1. The minimiz-

ing of the cluster center vk and the membership value

uki is obtained as follows:

v̂k =

∑N
i=1 bi

(

um
kixi +

∑

j∈Ni
δij(1 − ukj)

mxj

)
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vector G(i) = (g1(i), ..., gM (i))T. Minimizing the ob-

jective function with respect to coefficient w for fixed

vk and uki as follows:

ŵ =

∑N
i=1

∑c
k=1 G(i)um

kivkxi

1. RCLFCM(c,m, p, q, ε)
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more uniform after the bias field correction, and we get

segmentation results as expected.

Fig.6. Illustration of the bias field correction and tissues seg-
mentation results by applying RCLFCM algorithm. (a) Three
real brain MR images. (b) Images after bias field correction. (c)
Estimated bias field. (d) Tissues segmentation results.

We apply the RCLFCM algorithm on synthetic MR

brain images, and compare it with five fuzzy algo-

rithms including FCM
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig.8. Illustration of (a) three simulated T1-weighted 1 mm brain MR images with 40% intensity inhomogeneity, and 9% Gaussian
noise, and segmentation results obtained by applying (b) FCM
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method is EnFCM, while the slowest is FLICM. The

proposed method RCLFCM is quite time-consuming,

but this drawback is compensated for its better perfor-

mance as it is shown above. Moreover, our proposed

RCLFCM algorithm is easy to implement.
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Fig.9. Vpc values of segmentation results by applying the six
algorithms with increasing noise.
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5 Conclusions

In this paper, we proposed a robust algorithm

RCLFCM for brain MR image segmentation and bias

field correction. In order to take full consideration

on neighborhood information and improve the perfor-

mance of denoising, we designed a gray-different coef-

ficient and defined a new impact factor to measure the

effect of the immediate neighborhood. We proposed

a new objective function which is based on the bias

field model and FCM algorithm. By minimizing the

new objective function, we segmented the MR image

and corrected the bias field simultaneously, which sup-

presses the influence of intensity inhomogeneity effec-

tively and achieves better tissues segmentation results.

Furthermore, we designed a novel spatial function in-

corporated with gray-level dissimilarity and member-

ship function, and made full use of the spatial infor-

mation between pixels to update the membership val-

ues in each iteration step, which improves the effective-

ness of the clustering algorithm. In the experiment,

we applied RCLFCM algorithm on synthetic MR brain

images from the BrainWeb database, and compared it

with five algorithms. The experimental results showed

that the new method can estimate the bias field and

suppress the noise effectively, and achieves more accu-

rate segmentation results on brain tissue than the other

methods.
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