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1 IMPROVED BIFURCATION HANDLING

As illustrated in the paper that the basic bifurcation
handling introduces two valence-6 extraordinary points
on the surface, which may result in elements with large
distortion. To improve the element quality at bifurca-
tions, we extend the bifurcation handling as follows.

1. Instead of computing the line segment R0R1 crossing
the saddle point, we first find a surface patch R0R1R2R3

that covers the bifurcation (i.e., the purple patch in
Figure 1(a)). To achieve that, the user specifies the four
points, R0, R1, R2, R3, at the boundary of level set
Li. Then, the shortest surface curves connecting R0, R3

and R1, R2 are computed, respectively. This step can
also be automatically achieved by the following steps:
1) computing the line segment R′0R

′
1 crossing the saddle

point; 2) using R′0 and R′1 as the center of edges P1P4

and P2P3 of Qi, find R0R1 and R2R3 to make sure R0

and R1 are at the two sides of R′0, and, R2 and R3 are
at the two sides of R′1. Distances of R0 and R1 from
R′0 are the same, which are 1/3 of the segment length
P1R

′
0 and R′0P4, respectively. These are the same for

R2 and R3 as well.

2. Next, similar to the original pipeline, we project
R0, R1, R2, R3 along the inverse gradient direction of
the harmonic field to obtain P0, P1, P2, P3. Together,
these eight points form a hexahedral component (Fig-
ure 1(b)). When connecting the patches of Qi+1,0 and
Qi+1,1 with those of Qi, rather than mapping the two
unmatched patches to a single section, i.e., R0P0P1R1

in Figure 7(c), we now map them to two sections, i.e.,
R0P0P3R3 and R1P1P2R2, respectively, as shown in
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Figure 1(c). Through the above process, the two valence-
6 extraordinary points are split into four valence-5
extraordinary points, corresponding to R0, R1, R2, R3,
respectively.

3. By propagating this splitting operation down (splitting
bifurcation) or up (merging bifurcation) throughout the
whole mesh, a new hex patch in the base-complex can
be generated.

Note that this extended bifurcation handling is an op-
tional process that is suitable to the bifurcations whose
neighborhoods are relatively flat, such as the back of
the kitten model. In our results, this process has only
been applied to the kitten, fertility, blade, and rocker
arm models.

2 SPLINE FITTING

To fit the splines, for each hexahedral component (i.e.
a cuboid) in the hex mesh representation, we compute
a regular grid of control points, i.e., sub-dividing the
cuboid along each dimension evenly. Due to the higher
degree used in the B-spline basis, regular sampling, as
used for a trilinear basis causes distortion. A bijective
mapping can be computed which maps from the unit
cube, C : [0, 1] × [0, 1] × [0, 1], to the corresponding
hexahedral component C, i.e. f : C → C. We regularly
place samples C along each dimension, which gives rise
to a set of 3D grid points Pi. These points are then
mapped back to the space of C via the inverse function
f−1. This returns the samples in C, denoted by Pi. They
are the control points for the spline fitting. This process
is the Schoenberg approximation in the context of data
fitting.

After computing the node locations, triline B-spline
patches can be fitted to each of the cuboids individually
using standard fitting methods as used in [1]. The
smoothness of the fitted spline is C2 in the interior
of each patch but C0 across the boundaries. It should
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Fig. 1. Illustration of the extended bifurcation handling: (a) the configuration at a splitting bifurcation in the extended
process, (b) a new hexahedral component formed by the new saddle patch, and (c) the mapping of the unmatched
patch in Qi+1,0 to the section R0P0P3R3.

be clarified that our focus is not to achieve higher-
order smoothness across the boundaries of cuboids.
However, the predictable and simple structure of our
output potentially allows us to increase the continuity
by reducing the number of boundaries between patches.
Even so, the smoothness around the neighborhood of an
extraordinary point is not guaranteed, and can be at most
C0. Methods like SRF and Polycube approaches intro-
duce larger number of hexahedral components, reducing
the continuity over the space as only C0 smoothness can
be guaranteed across the cuboid boundaries.

3 ADDITIONAL RESULTS

Figures 2 and 3 provide a gallery of the additional results
generated with our method.
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Fig. 2. Additional results for the cat, rabbit, dolphin, sculpture, deformed torus, and U-shape models with our method.
The left most column shows the Jacobian visualizations and the histograms of the Jacobian distribution of the
finest version of the corresponding hex-meshes. The right columns show the meshes with different resolutions. Hex-
elements that belong to the same hexahedral component (see the definition in the paper) are displayed with the
same color. The numbers below the histograms show the minimum and average Jacobian values.
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Fig. 3. Additional results for the rocker arm and a blade. Hex-elements that belong to the same hexahedral
component (see the definition in the paper) are displayed with the same color. The numbers below the histograms
show the minimum and average Jacobian values.


