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Figure 1: (a) An input hex-mesh [Li et al. 2012]: The image on the left shows its base-complex that partitions the hexahedral mesh into
different large components, illustrated with different colors on the right. Due to the misalignments between singularities, many (typically
small) components arise. For instance, a strip of small components near the sharp feature is highlighted. (b) Our alignment algorithm
reduces the complexity of the base-complex but leads to a hex-mesh with a large distortion. (c) Both the singularity placement and the
element quality of the resulting hex-mesh are improved by our structure-aware optimization algorithm.

Abstract

Recently, generating a high quality all-hex mesh of a given vol-
ume has gained much attention. However, little, if any, effort has
been put into the optimization of the hex-mesh structure, which is
equally important to the local element quality of a hex-mesh that
may influence the performance and accuracy of subsequent compu-
tations. In this paper, we present a first and complete pipeline to op-
timize the global structure of a hex-mesh. Specifically, we first ex-
tract the base-complex of a hex-mesh and study the misalignments
among its singularities by adapting the previously introduced hex-
ahedral sheets to the base-complex. Second, we identify the valid
removal base-complex sheets from the base-complex that contain
misaligned singularities. We then propose an effective algorithm
to remove these valid removal sheets in order. Finally, we present
a structure-aware optimization strategy to improve the geometric
quality of the resulting hex-mesh after fixing the misalignments.
Our experimental results demonstrate that our pipeline can signifi-
cantly reduce the number of components of a variety of hex-meshes
generated by state-of-the-art methods, while maintaining high geo-
metric quality.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations
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1 Introduction

Given a two-dimensional closed surface M, producing a high
quality volume parameterization f : M → R3, that is aligned
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with boundary features, is a prerequisite for a number of impor-
tant applications including finite element analysis (FEA), volume
sampling, 3D texture synthesis, and data compression. A hex-
mesh H resulting from a non-degenerate volume parameterization
is suitable for partial differencial equation (PDE) solving, tensor-
product/trivariate spline fitting [Wang et al. 2012; Li and Qin 2012;
Martin et al. 2008], Isogeometric Analysis (IGA) [Hughes et al.
2005; Bazilevs et al. 2006], and multi-grid and adaptive computa-
tions [Leonard et al. 2000; Wada et al. 2006].

Although the quality criteria of hex-meshes are application depen-
dent, the hex-meshes that conform to boundary surfaces, preserve
boundary features, have regular distribution of parameterization
lines, and have low element distortion, are generally preferred [Mo-
tooka et al. 2011; Gao et al. 2014]. It is noteworthy that a hex-
mesh with the above desired characteristics usually require a certain
amount of well-placed singularities that are distributed either on the
boundary or in the interior of the volume [Nieser et al. 2011; Huang
et al. 2011; Li et al. 2012; Jiang et al. 2014]. Unlike the singularities
in frame fields, the singularities of a semi-structured mesh consist
of irregular mesh vertices and edges, i.e., those vertices whose va-
lences are not 4 on a 2D quad-mesh [Bommes et al. 2011; Tarini
et al. 2011], or edges whose valences are not 4 in the interior of a
hex-mesh. These irregular vertices and edges correspond to those
places where the parameterization is discontinuous. Intuitively, the
singularities as well as the separation structures starting from them
partition the domain into small regions. Figure 1(a) shows such
a partition example for a Sculpture hex-mesh. Its wireframe and
associated transparent surfaces visualize the partitioning structure,
which is referred to as the base-complex in this paper. Each sub-
volume of this partition, referred to as a component (i.e., the indi-
vidual colored regions shown in the right of Figure 1(a)), can be
mapped to a cube.

With the above partition, a C2 spline basis can be fit to each com-
ponent for FEA, while only C0 continuity can be guaranteed across
the boundaries of different components. For applications, such as
IGA, that seek a high level of smoothness throughout the entire vol-
umetric domain, fewer components are desired, as it would lead to
more accurate and faster simulations [Hughes et al. 2005]. How-
ever, given the same set of singularities, without careful control, it
can often result in a partition with a large number of components
(Figure 1(a)). This issue has been discussed in quadrangulation
applications [Myles et al. 2010; Bommes et al. 2011; Tarini et al.
2011], and is attributed to the misalignment of singularities. Li



et al. [2012] also pointed out a similar misalignment issue in hex-
meshes. To date, an effective and automatic pipeline has not yet
been proposed to reduce the number of components by fixing the
hex-mesh misalignment issue.

In this paper, we propose a first solution to simplify the base-
complex of a hex-mesh by procedurally removing its misalign-
ments. Our technique is based on the key insight that the base-
complex (Section 3, Figure 1(a)) is essentially the coarsest hex-
mesh that has the same structure as the input hex-mesh. Therefore,
its simplification can be achieved by adapting the previously in-
troduced hexahedral sheet removal technique [Borden et al. 2002]
to the base-complex. However, removing hexahedral sheets from
the base-complex may alter its singularity structure, which is unde-
sired in this work. In addition, removing hexahedral sheets by sim-
ply collapsing them into their dual planes as the previous method
does may lead to severe geometric artifacts due to the coarse res-
olution of the base-complex (Figure 8(a)). To address these new
challenges, we introduce an effective pipeline to enable the iden-
tification of valid removal sheets (Section 4.2) and their ranking
(Section 4.3), and the extraction of a quad surface for the removal
of a candidate sheet (Section 4.4). After simplifying the base-
complex, both the resulting hex-mesh (Section 5.1) and its base-
complex could be highly distorted (Figure 1(b)). We then extend
the parameterization-based optimization from quad-meshes [Tarini
et al. 2011] to hex-meshes to further optimize the placement of sin-
gularities and reduce the distortion of the hex-meshes (Section 5.3,
Figure 1(c)).

2 Related Work

Volume parameterization and hex-meshing: A variety of meth-
ods exist to generate unstructured hexahedral meshes. For a thor-
ough survey, please refer to [Shepherd and Johnson 2008]. Sev-
eral recent approaches, including polycube based methods [Greg-
son et al. 2011; Livesu et al. 2013; Huang et al. 2014] and frame
field based methods [Nieser et al. 2011; Huang et al. 2011; Li
et al. 2012; Jiang et al. 2014], have been proposed to generate
hex-meshes with relatively large components while having a high
local element quality. By mapping models to axis-aligned poly-
cubes, researchers introduced Polycuts [Livesu et al. 2013] and L1-
Polycubes [Huang et al. 2014] to remove unnecessary small cubes
produced by the conventional polycube method [Gregson et al.
2011]. Li et al. [2013] extended the conventional polycubes [Greg-
son et al. 2011] to generalized polycubes (GPC) to handle curved
cuboid representations. However, the control of the interior struc-
ture of the hex-mesh is still missing. Huang et al. [2011] proposed
a first automatic solution to create a boundary conformal 3D cross
field via an expensive optimization. Nieser et al. [2011] pointed out
that only 10 types of singularities can lead to a valid all-hex mesh.
Li et al. [2012] and Jiang et al. [2014] introduced techniques to con-
vert a general 3D cross field to a restricted field with only these 10
types of singularities. After regularizing the cross field and fixing
degeneracies, high quality hex-meshes can then be generated using
the CubeCover technique [Nieser et al. 2011] or solving a mixed-
integer problem. However, as mentioned in [Li et al. 2012], the
singularities in the obtained hex-meshes may not be aligned with
each other, leading to many small components. This misalignment
issue also arises in the hex-meshes generated by the polycube ap-
proaches.

Structure optimization: Many methods have been proposed to
produce quad-meshes with high quality global structures. Please
refer to [Bommes et al. 2013] for a survey of these techniques.
In contrast, our work focuses on optimizing the global structures
of hex-meshes by correcting the misalignment of singularities. In
2D cases, the misalignment of singularities in the global structure
can be greedily tackled by the methods introduced in [Myles et al.

2010; Bommes et al. 2011; Tarini et al. 2011]. Specifically, Myles
et al. [2010] introduced T-mesh to simplify the patch domain by al-
lowing the existence of T-junctions. While Bommes et al. [2011]
aligned the singularities by removing helix configurations, Tarini
et al. [2011] simplified the patch domain by optimizing the con-
nectivities of separatrices originating from the singularities. For
hex-meshes, existing methods either simplify (or coarsen) the hex-
meshes via local modifications of some hexahedral sheets [Borden
et al. 2002] or alter the local areas of the hex-meshes via hexahedral
duals [Tautgesa and Knoopb 2003]. Neither method can guarantee
to reduce the number of components in the base-complexes.

3 Hex-mesh Structures and Misalignments

In this section, we first review the singularity structure of hex-
meshes. Then, we extend the base-complex concept from 2D quad-
meshes to 3D hex-meshes, and introduce a robust algorithm to ex-
tract it. Finally, we describe the misalignments in the base-complex.

3.1 Singularity Structure

Consider a hex-mesh H = (V,E, F,H), where V is a set of ver-
tices, E is a set of edges, F is a set of faces, and H is a set of
hexahedral elements. Throughout the paper, we define the valence
of a vertex or an edge with respect to the number of its neighboring
hexahedral elements. An edge is said to be irregular if its valence is
not 2 (on the boundary) or not 4 (in the interior). A vertex is called
regular if its valence is 4 (on the boundary) or 8 (in the interior);
otherwise, it is an irregular vertex.
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Figure 2: The singularity structure (a) and base-complex (b) of a
Fandisk hex-mesh. The singular nodes and singular edges of both
the singularity structure and the base-complex are in red, while the
non-singular nodes and regular edges of the base-complex are in
blue. (c) shows four closed singular edges in the interior of a Torus
hex-mesh, while (d) shows four closed singular edges on the bound-
ary.

AssumeH is a valid manifold all-hex mesh, where each edge has a
neighborhood that is homeomorphic to a cylinder or a half-cylinder,
and each vertex has a neighborhood that is homeomorphic to a
sphere or a half-sphere. Edges with half-cylinder neighborhoods
and vertices with half-sphere neighborhoods are on the boundary.
The boundary of a manifold hex-mesh is a closed two-manifold
mesh.

With the above assumptions, the singularity structure ofH, denoted
by S, consists of a set of singular nodes and singular edges. A
singular edge is a 1D curve composed of a sequence of connected
irregular edges with the same valence, either in the interior (Fig-
ure 2(c)) or on the boundary (Figure 2(d)) of the hex-mesh. The
singular edges can be classified into two types: open or closed (Fig-
ure 2(c-d)). Specifically, the end points of an open singular edge
are singular nodes (i.e., the intersections of some singular edges or
their intersections with the boundary). It cannot simply start or end
in the interior of the volume; instead, it either hits the boundary or
connects with other open singular edges via a singular node. By
contrast, no singular node exists on a closed singular edge, and it



is completely either on the boundary or contained in the volume.
Note that a singular node can be either regular or irregular.

The above definition of the singularity structure also self-describes
an automatic algorithm to identify it. Figure 2(a) shows an example
of the singularity structure of a Fandisk hex-mesh.

3.2 Base-Complex

After extracting the singularity structure, we now describe the def-
inition and computation of the base-complex of a hex-mesh. Anal-
ogous to the base-complex of a quad-mesh [Bommes et al. 2011],
the base-complex of a hex-mesh is an all-hexahedral structure.

Similar to the curve separatrices in 2D [Tarini et al. 2011], which
consist of edges in a quad-mesh, the surface separation structures
starting from any singular edges are needed to define the base-
complex of a hex-mesh. We refer to these surface separation struc-
tures as the separation surfaces. Each separation surface consists
of a set of connected quads in the hex-mesh. For a singular edge
with valence n, there are n separation surfaces originating from
it. All the separation surfaces from singular edges form a surface
graph network embedded in the hex-mesh, describing its topologi-
cal structure.

We denote the base-complex of a hex-mesh H as B =
(BV ,BE ,BF ,BC) (Figure 2(b)). BE is the set of the intersec-
tions of the separation surfaces. Each base-complex edge in BE ,
either singular or regular, consists of a sequence of connected hex
edges of H. The singular base-complex edges in B are illustrated
as red curves in Figure 2(b), while the regular edges are illustrated
as blue curves. BV is the set of the end points of the base-complex
edges in BE , which are either singular (red nodes in Figure 2(b))
or non-singular (blue nodes in Figure 2(b)). The reason to include
non-singular nodes and regular base-complex edges is to remove
T-junction configurations. BF is a set of base-complex faces, each
of which has four edges in BE . BF partitions the domain of H
into a set of components in BC . Each component is a cuboid-like
sub-volume.

Algorithm 1 describes the pseudo code for extracting the base-
complexB from a given hex-meshH. It is important to note that our
defined base-complex is distinct from the one mentioned in [Livesu
et al. 2013] which is actually a polycube structure.

Algorithm 1: Pseudo code of extracting B fromH

Input :H
Output: B
Extract S fromH;
foreach singular edge sei of S do

if sei is open then
Trace n separatrices for each of the two singular nodes of
sei, where n is the valence of sei;

if sei is closed then
Trace n separatrices for every irregular vertex on sei;

Trace n separation surfaces for sei, which is guided by the
separatrices;

Extract BV and BE from the intersections of all separation
surfaces;
Extract BF by decomposing separation surfaces into patches based
on their intersections, i.e., BE ;
Extract BC by labeling hex elements that fall in different cuboid
regions separated by BF using a flooding algorithm.

(a) (b)

Figure 3: A misaligned singularity pair on surface (a) and in vol-
ume domain (b), respectively. The singular nodes and edges are
shown in red.

3.3 Misalignments in Base-Complex

Two singular edges are considered as aligned when there is a sep-
aration surface directly connecting them. Similar to regular nodes
in the base-complexes of quad-meshes, which are caused by the
mismatch of the separatrices of singular nodes in 2D (Figure 3(a)),
the mismatch of the separation surfaces of singular edges in hex-
meshes (Figure 3(b)) causes the arising of regular base-complex
edges in 3D, and thus creates additional patches and components in
the base-complex.

4 Alignment Algorithm

Given a hex-meshH and its extracted base-complex B, we propose
an algorithm to simplify B by aligning mismatched singular edges
in it. During the simplification, we maintain the singularity struc-
ture ofH, which means the numbers and valences of singular nodes
and edges, and their connectivities remain unchanged.

4.1 Pipeline

(a) (b)

Left - Fl Right - FrMiddle

Figure 4: A base-complex sheet (a) extracted from the base-
complex of a Fandisk hex-mesh consists of three parts (b): a left
surface (Fl), a middle volume, and a right surface (Fr). Regular
and singular edges of the base-complex are shown in blue and red,
respectively.

When applying the hexahedral sheets from hex-meshes [Borden
et al. 2002] to their base-complexes, we refer to them as the base-
complex sheets. Figure 4(a) shows a base-complex sheet extracted
from the base-complex of a Fandisk hex-mesh. All the components
in a base-complex sheet can be removed by performing the hex-
ahedral sheet collapse process introduced in [Borden et al. 2002].
However, since we want to maintain the singularity structure, we
only remove those base-complex sheets that do not merge, remove,
or create singularities in the singularity structure. For the sake of
simplicity, in the remainder of this paper, we refer to those remov-
able base-complex sheets as the valid removal base-complex sheets,
or further abbreviated as the candidates.



Figure 5: Our alignment algorithm is applied to a Bone hex-mesh. Input: the singularity structure (red) and the constructed base-complex.
Within each iteration, the results are shown in Step 1, Step 2, and Step 3, respectively. Because the resulting base-complex is valid for each
iteration, the results of Step 4 are not shown. Output: the constructed aligned base-complex.

Our alignment algorithm can be summarized as follows:

1. Detect all the valid removal base-complex sheets in the base-
complex B (Section 4.2) and put them in a candidate list for
removal;

2. Rank all the candidates in the list based on their shapes and
numbers of components (Section 4.3);

3. Correct the top-ranked candidate to obtain a simplified base-
complex, denoted by B′ (Section 4.4);

4. Check the validity of B′ (Section 3.2). If it is valid, assign B′
to B and go to Step 1. Otherwise, discard B′, re-parameterize
H guided by B (Section 5.1) and go to Step 1.

Repeat the above process until no more candidates can be found or
the number of corrected candidates meets p, which is the number
of valid removal base-complex sheets that users want to remove.

At the above Step 4, the resulting simplified base-complex B′ may
not be valid due to an insufficient number of hexahedral element
layers within the valid removal base-complex sheet (Figure 13).
This can be well addressed by a re-parameterization step (Sec-
tion 5.1). Note that this re-parameterization only inserts additional
hexahedral element layers to satisfy the topology preservation de-
scribed in Section 4.4.3. Figure 5 shows a pipeline overview of our
alignment algorithm.

4.2 Candidate Detection

To identify these candidates, we first decompose each base-
complex sheet into three parts: a left surface Fl, a right surface
Fr , and a middle (volume) part, as shown in Figure 4(b). The vol-
ume part encloses a sequence of parallel base-complex edges (i.e.,
the blue and red edges in the middle image of Figure 4(b)). The left
and right surfaces consist of those base-complex faces that do not
share any parallel edges with the volume part.

We then consider a base-complex sheet as a candidate if none of the
singular edges in its left surface is aligned with any singular edge in
its right surface. Specifically, we check whether each base-complex
edge in the volume part satisfies one of the following criteria: 1) if
the base-complex edge is regular, its two end nodes cannot be on
singular edges simultaneously; 2) if it is singular, it must be a part
of a singular edge of the singularity structure (not the entire singular
edge). Based on these criteria, the base-complex sheet shown in
Figure 4 is a candidate. We can easily find all the candidates in
the base-complex by performing this check. The leftmost image of
iteration 1 in Figure 5 shows all the detected candidates for a Bone
hex-mesh. The parallel edges with the same color represent one
candidate.

(a) (b) (c)

Figure 6: (a) A single entangled candidate (crossing components in
green); the singular nodes and non-singular nodes in B are in red
and blue, respectively, (b) the original Fertility hex-mesh embedded
with the entangled candidate (black edges), and (c) the optimized
Fertility hex-mesh with a simplified base-complex.

It is noteworthy that the candidates may be entangled with them-
selves to form complicated scenarios. Figure 6(a) shows such an
example. For simplicity, we explain our algorithm using a scenario
where the candidates are not entangled. Our alignment algorithm
can also remove entangled candidates in a similar manner. Fig-
ure 6(c) shows the optimized Fertility that removes the entangled
candidate existing in Figure 6(b).

4.3 Candidate Ranking

(a) (b)

Candidate-2

Candidate-1

Candidate-2

Candidate-1

Figure 7: Removing one candidate eliminates the other one as
well: (a) two parallel candidates, and (b) two orthogonal candi-
dates. The left and right surfaces of the candidates are highlighted
with different colors.

Figure 7(a) shows two neighboring candidates that are parallel to
each other, while Figure 7(b) shows an orthogonal candidate pair.
In either case, removing one candidate leads to the elimination of
the other. However, removing these candidates in different orders
may lead to distinct numbers of components in the resulting base-
complex. Ideally, we want to first correct those candidates that
can lead to a smaller number of components in the resulting base-
complex. They should also have small and thin shapes, which can



lead to less mesh distortion after removal. To achieve these goals,
we introduce a priority metric for a candidate, m,

Wm = Am + αTm
2 +NB′ (1)

where Am counts the number of quad elements in either the left
or the right surface of m (Figure 4(b)), Tm measures the width of
the middle part of m, which counts the number of the hex edges of
any base-complex edge in the volume part, and NB′ is the number
of components in the original base-complex minus the number of
components in m. Here, α balances the importances of Am and
Tm. We use α = 6 for all our experiments. The smaller this priority
metric is, the higher a candidate is ranked.

(a) (b)

Figure 8: Aligned hex-meshes by (a) simply collapsing the candi-
dates without preserving the features on the surface boundary of
the hex-mesh, and (b) our approach.

4.4 Candidate Correction

The direct collapse of a candidate onto its dual plane [Borden et al.
2002] could remove the misalignments between the singular based-
complex edges located at the left and right surfaces. While this
procedure is ideal for some circumstances, it could result in hex-
meshes with missing geometric features near the boundary (Fig-
ure 8(a)), which will be difficult to recover by optimization. In this
section, we introduce a novel strategy to remove the misalignments
in a candidate by directly connecting its contained singularities us-
ing a quad surface in a zig-zag manner. This quad surface con-
sists of a sequence of patches, each of which is extracted from a
component in the candidate. Each of these patches will become a
base-complex face in the simplified base-complex.

For each component in the candidate, we extract a patch for the
quad surface as follows. First, we determine the four corners of
the patch, which is referred to as its configuration (Section 4.4.1).
Figure 9(b) shows the computed configurations for all the compo-
nents in the candidate shown in Figure 9(a). Second, based on this
configuration, we extract the patch consisting of quads from the
hex-mesh (Section 4.4.2). Figure 9(c) shows the extracted patches
that form the quad surface. After extracting the quad surface, we
reconstruct the simplified base-complex, as shown in Figure 9(d)
(Section 4.4.3).

(a) (d)(b) (c)

Figure 9: (a) A candidate in a Fandisk hex-mesh; (b) the computed
patch configurations, which are indicated by colored planes (blue
for original configurations and red for diagonal configurations);
(c) the extracted quad surface; and (d) the reconstructed simplified
base-complex.

Given a base-complex component that can be mapped to a regular
cube with three principal directions (i.e., i, j, k), we denote its
nodes, edges, and faces as vi,j,k, εi,j , and τi, respectively. εi,j
connects nodes vi,j,k and vi,j,k+1. τi and τi+1 denote the two faces
parallel to the jk plane (Figure 10).

4.4.1 Candidate Configuration

To extract a quad surface from a candidate, the following con-
straints are enforced: 1) if one or more edges of a patch of the quad
surface are singular, then these edges should remain unchanged;
otherwise, the aligned base-complex would not sit in the original
hex-mesh any more, and 2) any two neighboring patches of the quad
surface are connected via exactly one base-complex edge. Condi-
tion 1 is for singularity structure preservation, while Condition 2
is for the correct connectivities of both the quad-surface and the
subsequent simplified base-complex.
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Figure 10: A valid patch can be extracted from a component shown
at the upper-left corner in three distinct cases: original (2 config-
urations), diagonal (4 configurations), and trigonal (8 configura-
tions).

For a component in the candidate (the upper-left of Figure 10), we
assume the base-complex faces τj and τj+1 belong to the left and
right surfaces of the candidate, respectively. A patch can be ex-
tracted from the component in three topologically distinct cases:
original (6 configurations in total), i.e., four nodes are on the same
face of bc, diagonal (6 configurations in total), i.e., two nodes on
one face and the other two on another face, and trigonal (24 config-
urations in total), i.e., three nodes on one face and the fourth one on
another face. For each of the three cases, we need to filter out those
configurations that contain the base-complex edges belonging to the
volume part of the candidate (e.g., the parallel edges in Figure 4(b),
middle). Otherwise, the subsequent simplified base-complex will
not be valid after the collapse process described in Section 4.4.3.
The remaining valid configurations (14 in total) are: 2 original, 4
diagonal, and 8 trigonal. Figure 10 illustrates the connectivity of
the four corners for each valid configuration.

To extract a patch from a component, only one configuration is
needed. The determination of the configurations for all the com-
ponents in the candidate is performed as follows. We first initialize
all the components with all the above 14 valid configurations. Then,
for those components that contain singular base-complex edges, we
discard their configurations that do not satisfy both Condition 1 and
Condition 2. For the other components, we discard their config-
urations that do not satisfy Condition 2. Once those unqualified
configurations of a component are discarded, the configurations of
its neighboring components will be updated accordingly based on
Condition 2. By performing one iteration of this filtering process
through all the components in the candidate, we remove all their
unqualified configurations. However, after this process, some com-
ponents may still have more than one qualified configuration re-
maining. In this case, we randomly select one of these components,
and randomly choose one among its remaining qualified configu-
rations, and propagate this update to the other components. By re-
peating this process, only one qualified configuration remains for



each component of the candidate (Figure 9(b)).

4.4.2 Quad Surface Extraction

After determining the configurations for the components in a can-
didate m, we now describe how to extract a quad surface F ′m by
extracting its patches from the components in m. Each patch can
be constructed independently. As shown in Figure 10, we denote
the to-be-extracted patches for the three topologically distinct con-
figuration cases as τ· (original), τ̂· (diagonal), and τ̃· (trigonal), re-
spectively. For each component bc in m, the to-be-extracted patch
will be either set as one of the two original faces of bc (i.e., the
original configurations), or newly extracted (i.e., the diagonal and
trigonal configurations). In the former case, the patch will be either
τj or τj+1 of bc (Figure 10). In the following we concentrate on
the extraction of the patch from bc whose configuration is diagonal.
Trigonal configurations can be handled similarly.
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(b)
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Figure 11: A new base-complex face with a diagonal configuration
can be constructed from a component (a) by first extracting two new
base-complex edges (b); second, peeling hex elements gradually
from the surface (d) to the interior (e) by measuring the weights
calculated for them (c). The constructed patch is shown in (f).

Assume the to-be-extracted patch is τ̂1 corresponding to the first
diagonal configuration in Figure 10, we now describe how to extract
this patch. One example is illustrated in Figure 11.

First, as shown in Figure 11(b), we find the four edges of τ̂1: two of
them are the original base-complex edges, and the other two need
to be newly extracted, i.e., ε̂1 from τk and ε̂2 from τk+1, respec-
tively. Let us take the extraction of ε̂1 as an example. Consider τk
consisting of points and edges as an undirected graph, then ε̂1 is
the shortest valid path from vi,j,k to vi+1,j+1,k. A path could be
invalid if three edges on the path share a hexahedral element in the
hex-mesh. The kthDijkstra algorithm [Yen 1971] is employed to
efficiently extract the shortest valid path.

Second, with the four edges (red curves in Figure 11(b)) extracted
for τ̂1, we find its interior quads that are located inside the compo-
nent bc in two steps.

As shown in Figure 11(c), we first calculate a weight function over
the whole volume of bc. The weight of a vertex v in bc is calculated
using s(v) = d2e(v) − dc(v) − de(v) − df (v), where d2e(v),
dc(v), de(v), and df (v) are the minimal distances from v to the
two newly extracted edges ε̂1 and ε̂2, to the eight corners, to the
twelve edges, and to the six base-complex faces of bc, respectively.
The distances are measured as the number of traveled hex edges,
calculated through a bread-first search. The weight of each quad
within bc is then computed by averaging the weights of its four
vertices. As shown in Figure 11(c), the weights become smaller

from the corners corresponding to εi,j+1 and εi+1,j to the center,
as the color is gradually changed from red to blue.

Then, the interior of τ̂1 can be obtained by a hex element
peeling process. The surface of the component bc is sep-
arated into two parts based on the four boundary edges of
τ̂1. Either one of the two parts can be used for initializa-
tion. Here, we initialize τ̂1 as the partial surface consist-
ing of faces τj , τi+1 and patches ∆1, ∆2 (Figure 11(d)).
If a quad within bc is on τ̂1 then we
mark it as a boundary quad; otherwise,
we mark it as an interior quad. All the
hex elements in bc are marked as valid.
Next, we check each valid hex element, h, that has at least a bound-
ary quad. As shown in the inset figure, if the sum of the weights of
all of its boundary quads (green, left) is larger than the sum of the
weights of all of its interior quads (blue, left), then we mark all of
its original boundary quads as invalid (white, right), set its original
interior quads as new boundary quads (green, right), and label it as
invalid. By repeating the above process, τ̂1 continuously moves to-
wards the center of bc. When all the valid hex elements that contain
boundary quads do not change their states any more, the final τ̂1
is reached. Figure 11(e) shows an intermediate state of τ̂1 during
the above peeling. The final extracted τ̂1 is shown in Figure 11(f).
Figure 9(c) shows the constructed quad surface of a candidate of a
Fandisk hex-mesh.

(a) (b) (c)Original Diagonal Trigonal

τj
τ1
~

τ̂1

Figure 12: Illustration of the collapse for the original (a), diagonal
(b), and trigonal (c) configurations.

4.4.3 Simplified Base-Complex

After extracting the quad surface, a new base-complex B′ can be
constructed by collapsing the candidate onto the quad surface (Fig-
ure 9(d)).

As shown in Figure 12(a), for a patch corresponding to an original
configuration, if τj is selected, we discard τj+1 and merge the com-
ponent bc with its neighbor that is adjacent to τj+1. If τj+1 is on
the surface boundary of the hex-mesh, we simply discard bc. For
a diagonal patch (e.g., τ̂1 in Figure 12(b)), we reconstruct its local
base-complex by removing the two original base-complex faces (in
cyan) and inserting the diagonal patch (in blue). The trigonal patch
(e.g., τ̃1 in Figure 12(c)) can be handled in a similar fashion to the
diagonal patch.

(a) (b) (c) (d)

Figure 13: (a) shows a diagonal configuration of a component that
is comprised of only a single hex element. The two cyan quads
belong to the left and right surfaces of the candidate, respectively.
(b) shows the actual extracted patch that would lead to an invalid
B′. (c) illustrates the same component with additional refined hex
elements, and (d) is the resulting patch with the correct connectivity.

Topology preservation: During the quad surface extraction step
described in Section 4.4.2, while the original configurations work



perfectly, there is a constraint for both the diagonal and trigonal
configurations. Figure 13(a) shows a diagonal configuration where
the component in the middle contains only one hexahedral element.
The two quads in cyan are parts of the left and right surfaces of the
base-complex sheet. Figure 13(b) shows its actual extracted patch
(red), which would lead to an invalid base-complex after collapse.
Figure 13(c-d) illustrate that this issue can be easily resolved by
inserting an additional hex element layer.

To avoid an invalid simplified base-complex, if the configuration of
a component is diagonal, then two of its three principal directions
must have a resolution of at least two hex elements; if the config-
uration of a component is trigonal, then all of its three principal
directions must have a resolution of at least two hex elements. As
described in Step 4 of our alignment algorithm (Section 4.1), this
can be satisfied through the re-parameterization (see Section 5.1) of
the hex-mesh to increase the number of hex element layers in the
candidates.

5 Parameterization and Optimization

After removing misalignments in the base-complex, we re-
parameterize the volume of the model based on the simplified base-
complex (Section 5.1) and generate a new hex-mesh (Section 5.2).
The simplified base-complex and its resulting hex-mesh may ex-
hibit certain geometric artifacts (Figure 1(b)). To improve them,
we propose a structure-aware re-parameterization algorithm (Sec-
tion 5.3).

5.1 Component-Wise Volume Parameterization

As the simplified base-complex is always valid based on the above
processing (Section 4), each hex element of the hex-mesh belongs
to only one component in the simplified base-complex. The param-
eterization of the volume of the model is performed within each
component of the base-complex. Each base-complex face can be
mapped to a planar rectangular parametric domain, and each com-
ponent can be mapped to an axis-aligned cube domain. A com-
ponent can be re-meshed into a tetrahedral mesh by subdividing
each hex element into five tets [Hacon and Tomei 1989]. Its pa-
rameterization proceeds by assigning parametric values to its eight
corners, to its twelve base-complex edges, to its six base-complex
faces, and finally to its volume, respectively. Mean value coordi-
nate techniques for 2D [Floater 2003] and 3D [Ju et al. 2005] are
used to calculate the parametric coordinates of the vertices inside
the base-complex faces and inside the components, respectively.

5.2 Discretization of Parameterization

Hex = 116

JMin = 0.643
JAve = 0.855

Hex = 939

JMin = 0.609
JAve = 0.921

Hex = 51798

JMin = 0.542
JAve = 0.950

(a) (b) (c)

Figure 14: Multi-resolution hex-meshes can be generated by only
providing different user-specified element numbers (NH). They are:
(a) 100, (b) 1000, and (c) 50000, respectively.

Typically, the discretization resolution of the parameterization is
determined by a scalar value (e.g., the average edge length). How-
ever, it is impossible for users to know beforehand how many hex

elements will be produced. Given the desired number of elements,
NH, we present a strategy to re-parameterize the mesh such that its
element number is reasonably close to NH. Recall that the resolu-
tion of a component is determined by the resolutions along the three
parameterization directions. Therefore, as long as we can determine
the resolution of each base-complex edge, the total element number
of the final hex-mesh can be soundly estimated. Assume Nm is the
number of base-complex sheets in the base-complex. Since all the
parallel base-complex edges in the volume part of a base-complex
sheet are expected to have the same resolution, we can categorize
them as one group; as a result, we have a total of Nm groups of
base-complex edges. For a group of parallel edges, we calculate its
representative length, δ, as follows.

δ =

∑
t

lEt
lēt

nc
(2)

Here, nc is the number of base-complex edges in the group, and δ is
the ratio between the sum of the lengths of all the nc base-complex
edges (lEt ) in the group and the average hex-edge length (lēt ) of the
original hex-meshH. Assume the resolutions along the three direc-
tions of a component are wδi, wδj , and wδk, respectively, where w
is a scalar weight. The number of hexahedral elements contained in
the component will be w3δiδjδk. Let NH equal to the total num-
ber of elements in the resulting hex-mesh, which is

∑
w3δiδjδk,

by summing up all the elements in all the components in the base-
complex, w can be calculated as follows.

w = 3

√
NH∑
δiδjδk

(3)

Thus, to produce a hex-mesh with approximate NH elements, each
base-complex edge in the same base-complex edge group should
contain dwδe hex-edges. Figure 14 shows three hex-meshes of
Hanger model with different user-specified numbers of hexahedal
elements.

5.3 Global Optimization

(a) (b) (c)

Figure 15: (a) The re-parameterized hex-mesh after alignment for
a Rockerarm model before optimization. Distinct components are
colored differently. (b) Different sets of parameterization domains
for each iteration. Isolated edge and face domains are colored in
red and green, respectively; the domains colored in white are fixed
for the current iteration. (c) The optimized hex-mesh.

The initially re-parameterized hex-mesh after misalignment cor-
rection may contain a large distortion (see Figure 1(b) and Fig-
ure 15(a)), which is less suitable for downstream applications.
Therefore, to obtain a high quality hex-mesh, a post-processing step
such as optimization may be required. For certain cases, commonly
used optimization techniques, such as various Laplacian smoothing
and geometric flow [Zhang et al. 2005], may push some interior



vertices onto the boundary, which would pose challenges for sub-
sequent untangling processing [Brewer et al. 2003]. The reason is
that, after alignment, singularities may no longer be at their optimal
locations. To improve the quality, we perform a structure-aware
global parameterization over the base-complex domain, as detailed
below. Our method efficiently optimizes the base-complex struc-
ture while ensuring that those geometrically and topologically inte-
rior nodes in the input volume remain inside after parameterization.
The quality of the generated hex-mesh is consequently improved.

(a) (b)

Figure 16: Base-complex patch (a) and edge (b) based parame-
terization domains. Domains shown in (b), from left to right, have
valence 4, 3, and 5, respectively.

For each interior base-complex edge or face, we build a parame-
terization domain, as shown in Figure 16. This strategy is inspired
by [Dong et al. 2006; Pietroni et al. 2010; Tarini et al. 2011], which
introduced interpolation-space parameterizations for 2D surfaces.
Specifically, for a base-complex face, its parameterization domain
stitches its two neighboring components together to form a larger
component, which can be mapped to a regular cuboid. For a base-
complex edge bei = (bvi , bvj ) with valence n, its adjacent n com-
ponents form a unified parameterization domain. In this parame-
terization domain, for the axes i, j, and k, let the k axis points in
the direction of bei , and the i, j axes are perpendicular to bei . As-
sume bvi is at the origin O(0, 0, 0), then bvj will be (0, 0, k). For
each ij layer, its parametric coordinates are expressed in the form
of polar coordinates (ρ, θ), and further transformed to (ρt, tθ) via
the exponential map, where t = 4/n.

Through face and edge based domain re-parameterization, distorted
base-complex faces and edges can be optimized. With the above
parameterization domains, we perform our global optimization it-
eratively, i.e., the edge and patch parameterization domains are ex-
ecuted alternately. As shown in Figure 15(b), at each iteration, the
parameterization domains are set to be isolated from each other,
thus parallel techniques can be employed to significantly speed up
the optimization performance.

Surface feature preserving: Typically no feature exists inside the
volume unless users define one. In this work, we only tackle the
isotropic volume space; thus, only boundary features are consid-
ered. Surface features can be preserved by projecting specific pa-
rameterizaiton lines onto the detected features of the boundary sur-
face. After global optimization, the hex-mesh is further improved
using the Mesquite software [Brewer et al. 2003].

6 Results

We have applied the proposed approach to several datasets, includ-
ing the hex-meshes provided by the authors of [Gregson et al. 2011;
Li et al. 2012; Livesu et al. 2013; Huang et al. 2014]. The datasets
cover a spectrum of man-made and natural objects, with various
complexities. Table 1 provides the statistics of the tested hex-
meshes before and after alignment, including: the number of hex
elements(|H|), the detected and corrected valid removal candidates
(|m|), the average and minimal Scaled Jacobians (S. J.), and the
number of components (|BC |) in the base-complex. We removed
all the detected candidates shown in Table 1. The improvement of

singularity alignment is measured as the ratio between |BC |− |B′C |
and |BC |, which is also provided for each mesh (i.e., the AR col-
umn in Table 1). As shown in the |BC | column in Table 1, we can
see that our alignment algorithm significantly simplifies the base-
complexes of the tested hex-meshes, while reliably preserving lo-
cal element quality (the S. J. column in Table 1). Figure 17 pro-
vides visual results before and after optimization on some of the
hex-meshes listed in Table 1. All the other results can be found
in supplemental material. The hexahedral elements that belong to
the same components of the base-complex are shown in the same
colors. In our experiments, the computational time varied from one
minute (e.g., Fandisk model) to half an hour (e.g., Dragon model).
All the timing information was recorded on a PC with an Intel Xeon
(E5-1620) processor and 16GB memory.

Input, | BC |= 2518(a) p = 7, | BC |= 2172(b) p = 26, | BC |= 590(c)

Figure 18: p controls the simplicity of the optimized global struc-
ture. The larger the p value, the smaller the number of components
in the resulting simplified base-complex.

User control: Our alignment algorithm is intuitive for users to
control. Although we removed all the detected misalignments for
the hex-meshes shown in Table 1, we also allow users to specify a
parameter p to decide how many candidates they want to remove.
The Bumpy torus model (Figure 18) is used to demonstrate different
simplification results controlled by p.

7 Conclusion and Discussion

In this paper, we introduce a complete framework to reduce the
number of components in the base-complex of a hex-mesh by pre-
serving its singularity structure. We have applied our framework to
numerous hex-meshes to demonstrate its effectiveness.

Limitations: Similar to the alignment problem on surface
domain, the major limitation of our work lies in that for
an input hex-mesh, if the singularities are at a high or-
der, the number of singularities is large, or the singu-
larities are badly placed, its simplified base-complex will
still be too complicated to be used for some applications.
The inset shows such an example, where
the hex-mesh is directly subdivided
from a tet-mesh. However, the com-
plexities of the base-complexes of most
tested hex-meshes (Table 1) are reduced,
unless the input hex-mesh already has a
well aligned singularity-structure, such
as the Sculpture-B model shown in Ta-
ble 1. In this case, our framework di-
rectly performs the optimization step, while the hex-mesh after op-
timization cannot guarantee a higher geometric quality than the
original input. Another limitation is that, although all the valid
removal base-complex sheets in the tested hex-meshes can be de-
tected and corrected by our approach, other unreported valid re-
moval configurations may exist. Furthermore, in theory, our ap-
proach cannot guarantee the optimized base-complex is free of any



Figure 17: The hex-meshes (from left to right and top to bottom) of the Kiss [Gregson et al. 2011], Fertility [Livesu et al. 2013], Fandisk,
Joint, Impeller [Li et al. 2012], Bunny [Livesu et al. 2013], Dragon, Dancing children [Huang et al. 2014] before (the left of each model)
and after misalignment correction and optimization (the right of each model).

Models |H| |m| S. J. | BC | AR Models |H| |m| S. J. | BC | AR

girl/BU
∗ 193k

16
.925/.235 1098 63% Gargoyle

] 26k
52

.906/.196 7563 75%44k .894/.121 401 23k .911/.214 1920

Bumpy-torus
∗

(Fig. 8(b), 18(c))
35k

33
.891/.271 2518 77% Angel-1

] 14k
11

.923/.470 1284 46%35k .866/.189 590 15k .915/.296 698

Bunny
∗ 82k

7
.930/.138 1324 82% Angel-2

] 16k
5

.919/.212 302 35%33k .906/.200 240 16k .914/.260 196

Fertility-refine
∗ 20k

15
.911/.196 598 35% Angel-3

] 14k
2

.898/.222 78 28%22k .884/.364 390 17k .867/.157 56

Kiss-coarse
∗

(Fig. 17)
27k

24
.901/.163 3690 63% Bumpy-torus

] 39k
23

.929/.335 2254 60%59k .910/.190 1365 39k .879/.270 910

Bone
† 3k

6
.930/.620 87 45% Bunny

] 38k
2

.926/.382 273 19%9k .924/.577 48 48k .937/.373 221

Bunny
† 134k

2
.940/.293 259 29% Bustle

] 12k
3

.934/.302 348 16%96k .930/.276 184 22k .929/.393 292

Rod
† 6k

1
.947/.658 66 50% Dancing-children

]
(Fig. 17)

35k
48

.870/.143 5482 73%7k .937/.527 33 38k .876/.190 1458

Sculpture-A
†

(Fig. 1)
24k

6
.961/.689 51 69% Dragon

]
(Fig. 17)

118k
22

.857/.150 3977 51%24k .890/.426 16 113k .899/.120 1958

Fandisk
†

(Fig. 17)
.4k

3
.936/.609 49 39% Elephant

] 172k
26

.878/.221 2842 65%.8k .940/.413 30 55k .890/.170 1008

Fertility
†

(Fig. 6)
14k

7
.911/.351 1352 31% Rockerarm-1

]
(Fig. 15)

24k
12

.920/.439 686 42%28k .88/.300 934 26k .890/.329 395

Hanger
† 5k

1
.964/.599 60 32% Rockerarm-2

] 25k
13

.905/.378 835 69%9k .950/.448 41 26k .899/.366 263

Impeller
†

(Fig. 17)
11k

8
.924/.185 944 58% Bunny

‡
(Fig. 17)

74k
13

.938/.274 580 67%19k .925/.238 399 46k .928/.263 194

Joint
†

(Fig. 17)
18k

4
.984/.729 83 29% Fertility

‡
(Fig. 17)

54k
11

.872/.259 693 43%18k .983/.724 59 74k .885/.272 396

Rockerarm
† 11k

9
.866/.209 578 50% Girl/BU

‡ 56k
9

.926/.401 580 57%18k .862/.145 291 77k .899/.279 252

Sculpture-B
† 6k

0
.892/.055 51 0% Rockerarm

‡ 57k
10

.890/.370 664 50%6k .889/.049 51 57k .893/.297 335

Table 1: The number of components of base-complex and quality comparisons of hex-meshes before and after alignment. For each model,
the original hex-mesh and optimized hex-mesh by our method are shown in the upper row and bottom row, respectively. Original hex-meshes
with ∗, †, ], and ‡ are obtained from [Gregson et al. 2011; Li et al. 2012; Huang et al. 2014; Livesu et al. 2013], respectively.



misalignments. We plan to address these limitations in our future
work.
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