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Abstract—We present a semi-infinite program (SIP) solver
for trajectory optimizations of general articulated robots. These
problems are more challenging than standard Nonlinear Program
(NLP) by involving an infinite number of non-convex, collision
constraints. Prior SIP solvers based on constraint sampling
cannot guarantee the satisfaction of all constraints. Instead, our
method uses a conservative bound on articulated body motions
to ensure the solution feasibility throughout the optimization
procedure. We further use subdivision to adaptively reduce the
error in conservative motion estimation. Combined, we prove
that our SIP solver guarantees feasibility while approaching the
optimal solution of SIP problems up to arbitrary user-provided
precision. We demonstrate our method towards several trajectory
optimization problems in simulation, including industrial robot
arms and UAVs. The results demonstrate that our approach gen-
erates collision-free locally optimal trajectories within a couple
of minutes.

Index Terms—Semi-Infinite Program, Trajectory Optimiza-
tion, Collision Handling, Articulated Body

I. INTRODUCTION

This paper deals with trajectory generation for articu-
lated robots, which is a fundamental problem in robotic
motion planning. Among other requirements, providing strict
collision-free guarantees is crucial to a reliable algorithm,
i.e., the robot body should be bounded away from static and
dynamic obstacles by a safe distance at any time instance. In
addition to feasibility, modern planning algorithms such as [1]
further seek (local) optimality, i.e., finding trajectories that
correspond to the minimizers of user-specified cost functions.
Typical cost functions would account for smoothness [2],
energy efficacy [3], and time-optimization [4]. Despite decades
of research, achieving simultaneous feasibility and optimality
remains a challenging problem.

Several categories of techniques have attempted to generate
feasible and optimal trajectories. The most widely recognized
sampling-based motion planners [5] and their optimal vari-
ants [6] progressively construct a tree in the robot config-
uration space and then use low-level collision checker to
ensure collision-free along each edge of the tree. The optimal
trajectory restricted to the tree can asymptotically approach the
global optima. However, most of the low-level collision check-
ers are based on discrete-time sampling [7] and cannot ensure
collision-free during continuous motion. Optimal sampling-
based methods are a kind of zeroth-order optimization al-
gorithm that does not require gradient information to guide
trajectory search. On the downside, the complexity of finding
globally optimal trajectories is exponential in the dimension
of configuration spaces [8].
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In parallel, first- and second-order trajectory optimization
algorithms [9] have been proposed to utilize derivative infor-
mation to bring the trajectory towards a local optima with
a polynomial complexity in the configuration space dimen-
sion. Based on the well-developed off-the-shelf NLP solvers
such as [10], trajectory optimization has been adopted to
solve complex high-dimensional planning problems. Despite
the efficacy of high-order techniques, however, dealing with
collision constraints becomes a major challenge as the number
of constraints is infinite, leading to SIP problems [11]. Existing
trajectory optimizers for articulated robots are based on the
exchange method [12], i.e., sampling the constraints at discrete
time instances. Similar to the discrete-time sampling used
in the collision checkers, the exchange method can miss
infeasible constraints and sacrifice the feasibility guarantee. In
their latest works, Marcucci et al. [13] propose an alternative
approach that first identifies feasible convex subsets of the
configuration space, and then searches for globally optimal
trajectories restricted to these subsets. While their method can
provide feasibility and optimality guarantees, expensive pre-
computations are required to identify the feasible subsets [14].

We propose a novel SIP solver with guaranteed feasibil-
ity. Our method is based on the discretization-based SIP
solver [12]. We divide a robot trajectory into intervals and
use conservative motion bound to ensure the collision-free
property during each interval. These intervals further introduce
barrier penalty functions, which guide the optimizer to stay
inside the feasible domain and approach the optimal solution
of SIP problems up to arbitrary user-specified precision. The
key components of our method involve: 1) a motion bound
that conservatively estimates the range of motion of a point
on the robot over a finite time interval; 2) a safe line-search
algorithm that prevents the intersection between the motion
bound and obstacles; 3) a motion subdivision scheme that
recursively reduces the error of conservative motion estima-
tion. By carefully designing the motion bound and line-search
algorithm, we prove that our solver converges within finitely
many iterations to a collision-free, nearly locally optimal
trajectory, under the mild assumption of Lipschitz motion
continuity. We have also evaluated our method on a row
of examples, including industrial robot arms reaching targets
through complex environments and multi-UAV trajectory gen-
eration with simultaneous rotation and translation. Our method
can generate safe trajectories within a couple of minutes on a
single desktop machine.

II. RELATED WORK

We review related works in optimality and feasibility of
motion planning, SIP and its application in robotics, and
various safety certifications.



A. Optimality and Feasibility of Motion Planning

We highlight three milestones in the development of mo-
tion planning frameworks: the trajectory optimization ap-
proach [15], the rapid-exploring random tree (RRT) [5], and
its optimal variant (RRT-Star) [6]. Although the performance
of these frameworks largely depends on the concrete choices
of algorithmic components, a major qualitative difference lies
in their optimality and complexity. Trajectory optimization
ensures the returned trajectory is optimal in a local basin
of attraction; RRT returns an arbitrary feasible trajectory
without any optimality guarantee; while RRT-Star provides
an asymptotic global optimality guarantee. With the stronger
guarantee in terms of optimality comes significantly higher
complexity in the dimension of configuration spaces. Based
on off-the-shelf NLP solvers such as [16], the complexity of
trajectory optimization is polynomial. The complexity of RRT
relies on the visibility property [17], which is not directly
related to the dimension. Unfortunately, the complexity of
optimal sampling-based motion planning is exponential [8],
which is unsurprising considering the NP-hardness of general
non-convex optimization. As a result, nearly global optimality
can only be expected in low-dimensional problems, while local
optimality is preferred in practical, high-dimensional planning
problems. Although there have been considerable efforts in
reducing the cost of RRT-Star, including the use of bidi-
rectional exploration [18], branch-and-bound [19], informed-
RRT-Star [20], and lazy collision checkers [21], its worst-case
complexity cannot be shaken.

In addition to optimality, providing a strict feasibility guar-
antee poses a major challenge for any of the aforementioned
frameworks. For trajectory optimization, collision-constraints
are formulated as differentiable hard constraints in NLP.
However, since there are the infinite number of constraints,
practical formulations [9, 22, 23] need to sample constraints at
discrete time instances, which violate the feasibility guarantee.
Even worse, many off-the-shelf NLP solvers [10] can accept
infeasible solutions and then use gradient information to
guide the solutions back to the feasible domain, which is
not guaranteed to succeed, especially when either the robot
or the environment contains geometrically thin objects. An
exception is the feasible SQP algorithm [24] that ensures
iteration-wise feasibility, but this algorithm is not well-studied
in the robotic community. On the other hand, RRT, RRT-
Star, and their variants require a low-level collision checker to
prune non-collision-free trajectory segments. The widely used
discrete-time collision checker [7] again requires temporal
sampling and violates the feasibility guarantee. There exists
exact continuous-time collision checkers [25, 26, 27], but
they make strong assumptions that robot links are undergoing
linear or affine motions, which are only valid for point,
rigid, or car-like robots. For more general articulated robot
motions, inexact continuous-time collision checkers [28, 29,
30] have been proposed that provide motion upper bounds,
but such bounds can be overly conservative and result in
false negatives. In comparison, our trajectory optimization
method also relies heavily on motion upper bounds, but we use
recursive subdivision to adaptively tighten the motion bounds

and provide both local optimality and feasibility guarantee for
general configuration spaces.

B. SIP and Applications in Robotics

SIP models mathematical programs involving a finite num-
ber of decision variables but an infinite number of constraints.
SIPs frequently arise in robotic applications for modeling
constraints on motion safety [11, 14], controllability and
stability [31, 32], reachability [33], and pervasive contact
realizability [34]. The key challenge of solving SIP lies in
the reduction of the infinite constraint set to a computable
finite set. To the best of our knowledge, a generally equivalent
infinite-to-finite reduction is unavailable, except for some spe-
cial cases [35, 36]. Therefore, general-purpose SIP solvers [12]
rely on approximate infinite-to-finite reductions that transform
SIP to a conventional NLP, which is then solved iteratively as
a sub-problem. Two representative methods of this kind are the
exchange and discretization methods. These methods sample
the constraint index set to approximately reduce SIP to NLP.
In terms of our collision constraints, this treatment resembles
the discrete-time collision checker used in sampling-based
motion planners. Unfortunately, even starting from a feasible
initial point, general-purpose SIP solvers cannot guarantee the
feasibility of solutions, which is an inherited shortcoming of
the underlying NLP solver. Instead, we propose a feasible dis-
cretization method for solving the special SIP under collision
constraints with a feasibility guarantee. Our method is inspired
by the exact penalty formulation [37, 38], which reduces the
SIP to a conventional NLP by integrating over the constraint
indices. The exact penalty method can be considered as a third
method for infinite-to-finite reduction, but the integral in such
penalty function is generally intractable to compute. Our key
idea is to approximate such integrals by subdivision without
compromising the theoretical guarantees.

C. Planning Under Safety Certificates

Our discussion to this point focuses on general algorithms
applicable to arbitrary configuration spaces, where a feasibility
guarantee is difficult to establish. But exceptions exist for
several special cases or under additional assumptions. As-
suming a continuous-time dynamic system, for example, the
Control Barrier Function (CBF) [39, 40] designs a controller
to steer a robot while satisfying given constraints, but CBF is
only concerned about the feasibility and cannot guarantee the
steered robot trajectory is optimal. By approximating the robot
as a point or a ball, the robot trajectory becomes a high-order
spline, and tight motion bound can be derived to ensure safety.
This approach is widely adopted for (multi-)UAV trajectory
generation [35, 41], but it cannot be extended to more complex
robot kinematics. Most recently, a novel formulation has been
proposed by Amice et al. [14] to certify the feasibility of a
positive-measure subset of the configuration space of arbitrary
articulated robots. Their method relies on reformulation that
transforms the collision constraint to a conditional polyno-
mial positivity problem, which can be further combined with
mixed-integer convex programming, as done in [13], to ensure
feasibility. Compared to all these techniques, our feasibility
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Fig. 1: We consider a moving articulated robot arm, where
the volume occupied by the ith link is denoted as bi. Each
bi admits a finite decomposition bi = ⋃j bij and each bij is a
simple shape, e.g. the red edge. bij is a function of the time
t and trajectory parameters θ, denoted as bij(t, θ). θ could
be the control points of Bézier curves in the configuration
space. Similarly, we can decompose the obstacle o = ⋃k ok
where ok is the short red edge. We introduce log barrier energy
bounding the distance dist(bij , ok) (dashed line) away from a
safety distance d0.

guarantee is based on a much weaker assumption of Lipschitz
motion bound, and we do not require any precomputation to
establish the safety certificate.

III. PROBLEM STATEMENT

In this section, we provide a general formulation for
collision-constrained trajectory generation problems. Through-
out the paper, we will use subscripts to index geometric entities
or functions, but we choose not to indicate the total number
of indices to keep the paper succinct, e.g., we denote ∑i

as a summation over all indices i. We consider an open-
loop articulated robot as composed of several rigid bodies.
The ith rigid body occupies a finite volume in the global
frame, denoted as bi ⊂ R3. Without ambiguity, we refer to
the rigid body and its volume interchangeably. We further
denote b0i ⊂ R3 as the volume of ith body in its local frame.
We further assume there is a set of static obstacles taking up
another volume o ⊂ R3. By the articulated body kinematics,
we can compute bi from b0i via the rigid transform: bi =Mib

0
i

where we define Mib
0
i = {Mix∣x ∈ b

0
i }. When a robot moves,

Mi and thus bi are time-dependent functions, denoted as
Mi(t, θ) and bi(t, θ), respectively. Here t ∈ [0, T ] is the
time parameter and the trajectory is parameterized by a set
of decision variables, denoted as θ. The problem of collision-
constrained trajectory generation aims at minimizing a twice-
differentiable cost function O(θ), such that each rigid body
bi is bounded away from o by a user-specified safe distance

denoted as d0 at any t ∈ [0, T ]. Formally, this is defined as:

argmin
θ
O(θ)

s.t. dist(bi(t, θ), o) ≥ d0 ∀i ∧ t ∈ [0, T ],
(1)

where dist(●) is the shortest Euclidean distance between
two sets. Under the very mild assumption of being twice-
differentiable, the cost function O(θ) can encode various user
requirements for a “good” trajectory, i.e., the closedness be-
tween an end-effector and a target position, or the smoothness
of motion. This is a SIP due to the infinitely many constraints,
one corresponding to each time instance. Further, the SIP
is non-smooth as the distance function between two general
sets is non-differentiable. Equation (1) is a general definition
incorporating various geometric representations of the robot
and obstacles as illustrated in Figure 1.

A. Smooth Approximation

Although the main idea of this work is a discretization
method for solving Equation (1), most existing SIP solvers al-
ready adopt the idea of discretization for spatial representation
of a rigid body bi to deal with non-smoothness of the function
dist(●). By spatial discretization, we assume that bi endows
a finite decomposition bi = ⋃j bij where bij is the jth subset
of bi in world frame. Similarly, we can finitely decompose o
as o = ⋃k ok where ok is the kth subset of environmental
obstacles o in the world frame. If the distance function
dist(bij , ok) between a pair of subsets is differentiable, then we
can reduce the non-smooth SIP Equation (1) to the following
smooth SIP:

argmin
θ
O(θ)

s.t. dist(bij(t, θ), ok) ≥ d0 ∀i, j, k ∧ t ∈ [0, T ].
(2)

In summary, spatial discretization is based on the following
assumption:

Assumption III.1. Each bi and o endows a finite decom-
position denoted as bi = ⋃j bij and o = ⋃k ok such that
dist(bij , ok) is sufficiently smooth for any ⟨i, j, k⟩.

Assumption III.1 holds for almost all computational rep-
resentations of robot links. For example, common spatial
discretization methods include point cloud, convex hull, and
triangle mesh. In the case of the point cloud, each bij or ok
is a point, and dist(●) is the differentiable pointwise distance.
In the case of the convex hull, dist(●) is the distance between
a pair of convex hulls, which is non-differentiable in its exact
form, but can be made sufficiently smooth by slightly bulging
each convex hull to make them strictly convex [42]. In the
case of the triangle mesh, it has been shown that the distance
between a pair of triangles can be reduced to two sub-cases:
1) the distance between a point and a triangle and 2) the
distance between a pair of edges, see [25], both of which are
special cases of the convex hull. Although spatial discretization
can generate many more distance constraints, only a few con-
straints in close proximity to each other need to be activated
and forwarded to the SIP solver for consideration, and these
potentially active constraints can be efficiently identified using
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Fig. 2: When the red edge illustrated in Figure 1 is tracing
out a temporal trajectory, we use a spatial-temporal motion
bound (blue) to estimate its range and guarantee safety.

a spatial acceleration data structure [43]. Despite these spatial
discretizations, however, the total number of constraints is still
infinite in the temporal domain.

B. The Exchange Method

The exchange method is a classical algorithm for solving
general SIP, which reduces SIP to a series of NLP by sampling
constraints both spatially and temporally. Specifically, the
algorithm maintains an instance set I that contains a finite set
of ⟨i, j, k, t⟩ tuples and reduces Equation (1) to the following
NLP:

argmin
θ
O(θ)

s.t. dist(bij(t, θ), ok) ≥ d0 ∀⟨i, j, k, t⟩ ∈ I.
(3)

The algorithm approaches the solution of Equation (1) by
alternating between solving Equation (3) and updating I.
The success of the exchange method relies on a constraint
selection oracle for updating I. Although several heuristic
oracles are empirically effective, we are unaware of any
exchange method that can guarantee the satisfaction of semi-
infinite constraints. Indeed, most exchange methods insert new
⟨i, j, k, t⟩ pairs into I when the constraint is already violated,
i.e., dist(bij(t, θ), ok) < d0, and relies on the underlying NLP
solver to pull the solution back onto the constrained manifold,
where the feasibility guarantee is lost.

IV. SUBDIVISION-BASED SIP SOLVER

We propose a novel subdivision-based SIP solver inspired
by the discretization method [12]. Unlike the exchange method
that selects the instance set I using an oracle algorithm,
the discretization method uniformly subdivides the index set
into finite intervals and chooses a surrogate index from each
interval to form the instance set I, reducing the original
problem into an NLP. As a key point of departure from
the conventional infeasible discretization method, however,
we design the surrogate constraint in Section IV-A such that
its feasible domain is a strict subset of the true feasible
domain of Equation (1). We then show in Section IV-B
and Section IV-C that, by using the feasible interior point
method such as [44, Chapter 4.1] to solve the NLP, our
algorithm is guaranteed to generate iterations satisfying all the
surrogate constraints. Since our surrogate constraint can limit
the solution to an overly conservative subset, in Section IV-D,
we introduce a subdivision method to adaptively adjust the
conservative subset and approach the original feasible domain.

A. Surrogate Constraint

We consider the following infinite spatial-temporal subset
of constraints:

dist(bij(t, θ), ok) ≥ d0 ∀t ∈ [T0, T1] ⊆ [0, T ], (4)

where bij and ok are two spatial subsets and [T0, T1] ⊆ [0, T ]
is a temporal subset. Our surrogate constraint replaces the
entire time interval with a single time instance. A natural
choice is to use the following midpoint constraint:

dist(bij (
T0 + T1

2
, θ) , ok) ≥ d0, (5)

which is differentiable by Assumption III.1. Unfortunately,
the domain specified by Equation (5) is larger than that
of Equation (4), violating our feasibility requirement. We
remedy this problem by upper-bounding the feasibility error
due to the use of our surrogate. A linear upper bound can be
established by taking the following mild assumption:

Assumption IV.1. The feasible domain of t and θ is bounded.

Lemma IV.2. Under Assumption III.1, IV.1, there exists a
constant L1 such that:

∣dist(bij(t1, θ), ok) − dist(bij(t2, θ), ok)∣ ≤ L1∣t1 − t2∣.

Proof. A differentiable function in a bounded domain is also
Lipschitz continuous so that we can define L1 as the Lipschitz
constant.

The above result implies that the feasibility error of the mid-
point surrogate constraint is upper bounded by L1(T1−T0)/2.
Further, the feasible domain is specified by the following more
strict constraint:

dist(bij(t, θ), ok) ≥ d0 +L1∣T1 − T0∣/2,

is a subset of the true feasible domain. However, such a subset
can be too restrictive and oftentimes lead to an empty feasible
domain. Instead, our method only uses Lemma IV.2 as an
additional safety check as illustrated in Figure 2, while the
underlying optimizer deals with the standard constraint Equa-
tion (5). Note that the bound in Lemma IV.2 is not tight
and there are many sophisticated upper bounds that converge
superlinearly, of which a well-studied method is the Taylor
model [29]. Although we recommend using the Taylor model
in the implementation of our method, our theoretical results
merely require a linear upper bound.

B. Barrier Penalty Function

To ensure our algorithm generates feasible iterations, we
have to solve the NLP using a feasible interior-point method
such as [44, Chapter 4.1]. These algorithms turn each inequal-
ity collision constraint into the following penalty function:

Pijk(t, θ) ≜ P (dist (bij (t, θ) , ok) − d0) ,

where P is a sufficiently smooth, monotonically decreasing
function defined on (0,∞) such that limx→0P(x) = ∞ and
limx→∞P(x) = 0. In order to handle SIP problems, we need
the following additional assumption to hold for P:



Assumption IV.3. The barrier function P satisfies:

lim
x→0

xP(x) = ∞.

The most conventional penalty function is the log-barrier
function P(x) = − log(x), but this function violates As-
sumption IV.3. By direct verification, one could see that
a valid penalty function is P(x) = − log(x)/x. In [43],
authors showed that a locally supported P is desirable for a
spatial acceleration data structure to efficiently prune inactive
constraints, for which we propose the following function:
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which is twice differentiable and locally supported within
(0, x0] with x0 being a small positive constant. The intuition
behind Assumption IV.3 lies in the integral reformulation
of semi-infinite constraints. Indeed, we can transform the
infinite constraints into a finite form by integrating the penalty
function over semi-infinite variables, giving the following
finite integral penalty function, denoted as P̄:

P̄ijk(T0, T1, θ) ≜ ∫
T1

T0

Pijk(t, θ)dt. (6)

The above integral penalty function has been considered
in [37, 38, 45] to solve SIP. However, their proposed algo-
rithms are only applicable for special forms of constraints,
where the integral in Equation (6) has a closed-form expres-
sion. Unfortunately, such an integral in our problem does
not have a closed-form solution. Instead, we propose to
approximate the integral via spatial-temporal discretization.
We will show that the error in our discrete approximation
is controllable, which is crucial to the convergence of our
proposed solver. In order for the penalty function to guarantee
feasibility, P̄ijk must tend to infinity when:

∃t ∈ [T0, T1] dist (bij (t, θ) , ok) → d0. (7)

bij(0) bij(1)

oHowever, the log-barrier function
does not satisfy this property.
As illustrated in the inset, sup-
pose there is a straight line tra-
jectory bij(t) = (t, 0, 0) along
the positive X-axis, o is the YZ-
plane that intersects the X-axis at
(1/2, 0, 0), T = 1 and d0 = 0,
then P̄ takes the following finite value:

P̄ijk(0,1) ≜ ∫
1

0
− log (∣t −

1

2
∣)dt = log(2) + 1 < ∞.

Instead, our Assumption IV.3 could ensure the well-
definedness of P̄ as shown in the following lemma:

Lemma IV.4. Suppose Assumption III.1, IV.1, IV.3, and Equa-
tion (7) holds, then: P̄ijk →∞.

Proof. By Assumption III.1, we have the finite decomposition
and P̄ijk is well-defined. Without loss of generality, we assume
t ∈ (T0, T1) so we can pick a positive ϵ1 such that [t − ϵ1, t +
ϵ1] ⊆ [T0, T1]. For any t′ ∈ [t− ϵ1, t+ ϵ1], by the boundedness
of t′ and Lemma IV.2, we have:

dist (bij (t′, θ) , ok) ≤ dist (bij (t, θ) , ok) +L1∣t
′
− t∣.

Putting things together, we have:

P̄ijk(T0, T1, θ) ≥ P̄ijk(t − ϵ1, t + ϵ1, θ)

≥ϵ1P(dist (bij (t, θ) , ok) − d0 +L1ϵ1) ≥ ϵ1P(ϵ1 +L1ϵ1),

where the last inequality is due to Equation (7) and by
choosing θ so that dist (bij (t, θ) , ok)−d0 ≤ ϵ1. The lemma is
proved by tending ϵ1 to zero and applying IV.3.

C. Feasible Interior-Point Method
We now combine the above ideas to design a feasible

interior point method for the SIP problem. We divide the
bounded temporal domain into a disjoint set of intervals,
[0, T ] = ⋃l[T

l
0, T

l
1], and choose the midpoint constraint as

the representative. As a result, the penalty functions transform
the inequality-constrained NLP into an unconstrained one as
follows:

argmin
θ
E(θ) ≜ O(θ) + µ∑

ijkl

(T l
1 − T

l
0)Pijkl(θ)

Pijkl(θ) ≜ Pijk(
T l
0 + T

l
1

2
, θ),

(8)

where µ is a positive weight of the barrier coefficient. Note
that we weight the penalty function Pijkl by the time span
T l
1 − T

l
0 in order to approximate the integral form P̄ijkl(θ) ≜

P̄ijk(T
l
0, T

l
1, θ) in the sense of Riemann sum. Standard first-

and second-order algorithms can be utilized to solve Equa-
tion (8), where the search direction of a first-order method
d(1) is:

d(1) ≜ −∇θE ,

and that of the second-order method is:

d(2) ≜M(∇2
θE)

−1
d(1).

Here M(●) is an modulation function for a Hessian matrix
such that βI ⪯ M(H) ⪯ β̄I for some positive constants β
and β̄. After a search direction is computed, a step size α is
adaptively selected to ensure the first Wolfe’s condition:

E(θ + dα) ≤ E(θ) + c ⟨dα,∇θE⟩ , (9)

where c ∈ (0,1) is a positive constant. It has been shown that if
the smallest z ∈ Z+ is chosen such that α = 1/z satisfies Equa-
tion (9), then the feasible interior-point method will converge
to the first-order critical point of E [44, Proposition 1.2.4].
Under the finite-precision arithmetic of a computer, we would
terminate the loop of the θ update when ∥d(1)∥∞ ≤ ϵd.
Furthermore, we add an outer loop to reduce the duality gap by
iteratively reducing µ down to a small constant ϵµ. The overall
interior point procedure of solving inequality-constrained NLP
is summarized in Algorithm 1.



Algorithm 1: Feasible Interior Point Method

Input: Feasible θ, initial µ, ϵα, ϵd, ϵµ, γ ∈ (0,1)
Output: Locally optimal θ

1: while µ > ϵµ do
2: d← d(1) or d← d(2)

3: while ∥d∥∞ > ϵd do
4: α, ϵα ←Line-Search(θ, d, ϵα)
5: θ ← θ + dα
6: d← d(1) or d← d(2)

7: µ← µγ

8: Return θ

D. Adaptive Subdivision

Algorithm 1 is used to solve NLP instead of SIP. As
analyzed in Section IV-A, the feasible domain of NLP derived
by surrogate constraints can be larger than that of SIP. To
ensure feasibility in terms of semi-infinite constraints, we
utilize the motion bound Lemma IV.2 and add an additional
safety check in the line search procedure as summarized in
Algorithm 2. Algorithm 2 uses a more conservative feasibility
condition that shrinks the feasible domain by ψ(T l

1 − T
l
0).

The motion bound Lemma IV.2 immediately indicates that
ψ(x) = L1x/2. However, our theoretical analysis requires an
even more conservative ψ defined as:

ψ(x) = L1x/2 +L2x
η, (10)

where L2 and η are positive constants. We choose to only
accept α found by the line search algorithm when θ + dα
passes the safety check. On the other hand, the failure of a
safety check indicates that the surrogate constraint is not a
sufficiently accurate approximation of the semi-infinite con-
straints and a subdivision is needed. We thus adopt a midpoint
subdivision, dividing [T l

0, T
l
1] into two pieces [T l

0, (T
l
0+T

l
1)/2]

and [(T l
0+T

l
1)/2, T

l
1]. This procedure is repeated until α found

by the line search algorithm passes the safety check. Note
that the failure of safety check can be due to two different
reasons: 1) the step size α is too large; 2) more subdivisions
are needed. Since the first reason is easier to check and fix, so
we choose to always reduce α when safety check fails, until
some lower bound of α is reached. We maintain such a lower
bound denoted as ϵα. Our line-search method is summarized
in Algorithm 3. Our SIP solver is complete by combining
Algorithm 1, 2, and 3.

Algorithm 2: Safety-Check(θ)

Output: ⟨i, j, k, l⟩ such that Pijkl violates safety condition
1: for Each penalty term Pijkl do
2: if dist(bij (

T l
0+T

l
1

2
, θ) , ok) ≤ d0 + ψ(T

l
1 − T

l
0) then

3: Return ⟨i, j, k, l⟩
4: Return None

V. CONVERGENCE ANALYSIS

In this section, we argue that our Algorithm 1 is suited
for solving SIP problems Equation (1) by establishing three

Algorithm 3: Line-Search(θ, d, ϵα)

Input: Initial α0, γ ∈ (0,1)
Output: Step size α and updated ϵα

1: α ← α0

2: θ′ ← θ + dα
3: ⟨i, j, k, l⟩ ←Safe-Check(θ′)
4: while ⟨i, j, k, l⟩ ≠None ∨ θ′ violates Equation (9) do
5: if ⟨i, j, k, l⟩ ≠None then
6: if α ≤ ϵα then
7: ϵα ← γϵα
8: Subdivide(Pijkl) and re-evaluate E(θ)
9: d← d(1) or d← d(2)

10: else
11: α ← γα

12: else
13: α ← γα

14: θ′ ← θ + dα
15: ⟨i, j, k, l⟩ ←Safe-Check(θ′)
16: Return α, ϵα

properties. First, the following result is straightforward and
shows that our algorithm generates feasible iterations:

Theorem V.1. Under Assumption III.1 and Assumption IV.1,
if Algorithm 1 can find a positive α and update θ in Line 5
during an iteration, then the updated θ is a feasible solution
to Equation (1).

Proof. A step size generated by Algorithm 3 must pass the
safety check, which in turn ensures that:

dist(bij (
T l
0 + T

l
1

2
, θ) , ok)

≥d0 + ψ(T1 − T0) > d0 +L1
T l
1 − T

l
0

2
,

where we have used our choice of ψ in Equation (10). From
Lemma IV.2, we have for any t ∈ [T l

0, T
l
1] that:

dist (bij (t, θ) , ok)

≥dist(bij (
T l
0 + T

l
1

2
, θ) , ok) −L1 ∣t −

T l
0 + T

l
1

2
∣ > d0.

Since Algorithm 3 would check every spatial-temporal con-
straint subset, the proof is complete.

Theorem V.1 depends on the fact that Algorithm 1 does
generate an iteration after a finite amount of computation.
However, the finite termination of Algorithm 1 is not obvious
for two reasons. First, the line search Algorithm 3 can get stuck
in the while loop and never pass the safety check. Second,
even if the line search algorithm always terminate finitely, the
inner while loop in Algorithm 1 can get stuck forever. This is
because a subdivision would remove one and contribute two
more penalty terms of form: (T l

1 − T
l
0)Pijkl to E(θ), which

changes the landscape of objective function. As a result, it is
possible for a subdivision to increase ∥d∥∞ and Algorithm 1
can never bring ∥d∥∞ down to user-specified ϵd. However, the



following result shows that neither of these two cases would
happen by a proper choice of η:

Theorem V.2. Under Assumption III.1, IV.1, IV.3, and suppose
η < 1/6, Algorithm 1 terminates after a finite number of
subdivisions.

Proof. See Section IX.

Theorem V.2 shows the well-definedness of Algorithm 1,
which aims at solving the NLP Equation (8) instead of the
original Equation (1). Our final result bridges the gap by show-
ing that the first-order optimality condition of Equation (8)
approaches that of Equation (1) by a sufficiently small choice
of µ and ϵµ:

Theorem V.3. We take Assumption III.1, IV.1, IV.3, X.2 and
suppose η < 1/6. If we run Algorithm 1 for infinite number
of iterations using null sequences {µk} and {ϵkd}, where k is
the iteration number, then we get a solution sequence {θk}
such that every accumulation point θ0 satisfies the first-order
optimality condition of Equation (1).

Proof. See Section X.

VI. REALIZATION ON ARTICULATED ROBOTS

We introduce two versions of our method. In our first
version, we assume both the robot and the environmental
geometries are discretized using triangular meshes. Although
triangular meshes can represent arbitrary concave shapes, they
requires a large number of elements leading to prohibitive
overhead even using the acceleration techniques introduced
in Section VI-C. Therefore, our second version reduces the
number of geometric primitives by approximating each robot
link and obstacle with a single convex hull [14, 46] or multiple
convex hulls via a convex decomposition [47]. In other words,
the bij and ok in our method can be a moving point, edge,
triangle, or general convex hull. In our first version, we need
to ensure the two triangle meshes are collision-free. To this
end, it suffices to ensure the distances between every pair of
edges and every pair of vertex and triangle are larger than
d0 [48]. In our second version, we need to ensure the distance
between every convex-convex pair is larger than d0. However,
it is known that edge-edge or convex-convex distance functions
are not differentiable. We follow [42] to resolve this problem
by bulging each edge or convex hull using curved surfaces,
making them strictly convex with well-defined derivatives.
In this section, we present technical details for a practical
realization of our method to generate trajectories of articulated
robots with translational and hinge rotational joints.

A. Computing Lipschitz Upper Bound

Our method requires the Lipschitz constant L1 to be
evaluated for each type of geometric shape. We denote by
Lijk
1 as the Lipschitz constant for the pair of bij and ok

satisfying Lemma IV.2. We first consider the case with bij
being a moving point, and all other cases are covered by minor
modifications. We denote Θ as the vector of joint parameters,

which is also a function of t and θ. By the chain rule, we
have:

Lijk
1 =max ∣

∂dist(bij(t, θ), ok)
∂t

∣

=max ∣
∂dist(bij(t, θ), ok)

∂bij(t, θ)

∂bij(t, θ)

∂Θ(t, θ)

∂Θ(t, θ)

∂t
∣ .

Without a loss of generality, we assume each entry of
∂Θ(t, θ)/∂t is limited to the range [−1,1]. The first term is
a distance function, whose subgradient has a norm at most
1 [49]. These results combined, we derive the following upper
bound for Lijk

1 independent of ok, which in turn is denoted
as Lij

1 :

Lij
1 ≤max ∣

∂bij(t, θ)

∂Θ(t, θ)
∣
2,1

,

which means Lij
1 is upper bound of the l2,1-norm of the

Jacobian matrix (the sum of l2-norm of each column). Next,
we consider the general case with bij being a convex hull with
N vertices denoted as b1,⋯,Nij . We have the closest point on bij
to ok lies on some interpolated point ∑N

m=1 b
m
ij ξ

m, where ξm

are convex-interpolation weights that are also function of θ(t).
We have the following upper-bound for the distance variation
over time:

∣dist(
N

∑
m=1

bmij (t1, θ)ξ
m
1 , ok) − dist(

N

∑
m=1

bmij (t2, θ)ξ
m
2 , ok)∣

≤ ∣dist(
N

∑
m=1

bmij (t1, θ)ξ
m
1 , ok) − dist(

N

∑
m=1

bmij (t2, θ)ξ
m
1 , ok)∣

≤Lij
1 (ξ

m
1 )∣t1 − t2∣.

The inequality above is due to the fact that coefficients ξm
minimize the distance, so replacing ξm2 with ξm1 will only
increase the distance. Here we abbreviate ξm

●
≜ ξm(θ(t●))

and assume that dist(bij(t1, θ), ok) < dist(bij(t2, θ), ok), and
we can switch t1 and t2 otherwise. Next, we treat ξm1 as a
constant independent of θ(t) and estimate the ξm1 -dependent
Lipschitz constant Lij

1 (ξ
m
1 ) as:

Lij
1 (ξ

m
1 ) =max

RRRRRRRRRRR

∂dist(bij(t, θ), ok)
∂∑

N
m=1 bmij ξ

m
1

∂∑
N
m=1 b

m
ij ξ

m
1

∂Θ(t, θ)

∂Θ(t, θ)

∂t

RRRRRRRRRRR

≤max
N

∑

m=1
∣

∂bmij (t, θ)

∂Θ(t, θ)
∣

2,1

ξm1 ≤ max
m=1,⋯,N

∣

∂bmij (t, θ)

∂Θ(t, θ)
∣

2,1

.

Θ1

Θ2

Θ3

l1

l2

l3

where the last inequality is due
to the fact that ξm1 form a
convex combination. We see
that our estimate of Lij

1 (ξ
m
1 )

is indeed independent of ξm1
and can be re-defined as our
desired Lipschitz constant Lij

1 .
In other words, the Lipschitz
constant of a moving convex
hull is the maximal Lipschitz
constant over its vertices, and
the Lipschitz constants of edge and triangle are just special
cases of a convex hull.

It remains to evaluate the upper bound of the l2,1-norm of
the Jacobian matrix for a moving point bij . We can derive this



(a) dimension=12 (b) dimension=6 (c) dimension=54 (d) dimension=11

Fig. 3: Snapshots of our four benchmark problems with labeled dimension of configuration spaces.

bound from the forward kinematic function. For simplicity, we
assume a robot arm with only hinge joints as illustrated in the
inset. We use Θk to denote the angle of the kth hinge joint.
If bij lies on the Kth link, then only Θ1,⋯,K can affect the
position of bij . We assume the kth link has length lk, then
the maximal influence of Θk on bij happens when all the
k,⋯,Kth links are straight, so that:

∣
∂bij

∂Θk
∣ ≤

k

∑
m=1

lm Ô⇒ ∣
∂bij

∂Θ
∣
2,1
≤

K

∑
k=1

K

∑
m=k

lm.

B. High-Order Polynomial Trajectory Parameterization

Our Lij
1 formulation relies on the boundedness of

∂Θ(t, θ)/∂t. And articulated robots can have joint limits
which must be satisfied at any t ∈ [0, T ]. To these ends, we
use high-order composite Bézier curves to parameterize the
trajectory Θ(t, θ) in the configuration space, so that Θ(t, θ)
is a high-order polynomial function. In this form, bounds on
Θ(t, θ) at an arbitrary t can be transformed into bounds on
its control points [50]. We denote the lower- and upper-joint
limits as Θ and Θ̄, respectively. If we denote by Mk the matrix
extracting the control points of Θk and Mik the ith row of Mk,
then the joint limit constraints can be conservatively enforced
by the following barrier function:

∑
i

∑
k

P(Θ̄k −MikΘk) + P(−Θk +MikΘk). (11)

A similar approach can be used to bound ∂Θk(t, θ)/∂t to the
range [−1,1]. We know that the gradient of a Bézier curves is
another Bézier curves with a lower-order, so we can denote by
M ′

k the matrix extracting the control points of ∂Θk(t, θ)/∂t
and M ′

ik the ith row of M ′

k. The boundedness of ∂Θ(t, θ)/∂t
for any t can then be realized by adding the following barrier
function:

∑
i

∑
k

P(1 −M ′

ikΘk) + P(1 +M
′

ikΘk). (12)

Note that these constraints are strictly conservative. However,
one can always use more control points in the Bézier curve
composition to allow an arbitrarily long trajectory of complex
motions.

C. Accelerated & Adaptive Computation of Barrier Functions

A naive method for computing the barrier function terms
∑ijklPijkl could be prohibitively costly, and we propose
several acceleration techniques that is compatible with our
theoretical analysis. Note first that our theoretical results
assume the same L1 for all bij , but the Lij

1 constant computed
in Section VI-A is different for each bij . Instead of letting
L1 =max

ij
Lij
1 , we could use a different ϕ(x) = Lij

1 x/2+L2x
η

for each bij , leading to a loose safety condition and less sub-
divisions. Further, note that our potential function P is locally
supported by design and we only need to compute Pijk if the
distance between bij and ok is less than x0+d0. We propose to
build a spatial-temporal, binary-tree-based bounding volume
hierarchy (BVH) [51] for pruning unnecessary Pijk terms,
where each leaf node of our BVH indicates a unique tuple
< bij , T

l
0, T

l
1 >, which can be checked against each obstacle

ok to quickly prune < bij , ok > pairs with distance larger than
x0+d0. The BVH further provides a convenient data-structure
to perform adaptive subdivision. When safety check fails for
the term Pijk, we only subdivide that single term without
modifying the subdivision status of other bij and ok pairs.
Specifically, a leaf node tuple < bij , T l

0, T
l
1 > is replaced by an

internal node with two children: < bij , T l
0, (T

l
0 + T

l
1)/2 > and

< bij , (T
l
0 + T

l
1)/2, T

l
1 > upon subdivision.

D. Handling Self-Collisions

Our method inherently applies to handle self-collisions.
Indeed, for two articulated robot subsets bij and bi′j′ , we have
the following generalized motion bound:

∣dist(bij(t1, θ), bi′j′(t1, θ)) − dist(bij(t2, θ), bi′j′(t2, θ))∣
≤∣dist(bij(t1, θ), bi′j′(t1, θ)) − dist(bij(t2, θ), bi′j′(t1, θ))∣+
∣dist(bij(t2, θ), bi′j′(t1, θ)) − dist(bij(t2, θ), bi′j′(t2, θ))∣

≤(Lij
1 +L

i′j′

1 )∣t1 − t2∣,

where the second inequality is derived by treating bi′j′(t1, θ)
and bij(t2, θ) as a static obstacle in the first and second term,
respectively. The above result implies that if Lemma IV.2 holds
for distances to static obstacles, it also holds for distances be-
tween two moving robot subsets by summing up the Lipschitz
constants. As a result, we can use the following alternative



definition of ϕ(x) within the safety check to prevent self-
collisions:

ϕ(x) = (Lij
1 +L

i′j′

1 )x/2 +L2x
η.

Readers can verify that all our theoretical results follow for
self-collisions by the same argument, and we omit their repet-
itive derivations for brevity. Notably, using our adaptive sub-
division scheme introduced in Section VI-C, the subdivision
status of bij and bi′j′ can be different. For example, bij can
have a subdivision interval [T l

0, T
l
1], while bi′j′ has an over-

lapping interval [T l′

0 , T
l′

1 ] such that [T l
0, T

l
1) ∩ [T

l′

0 , T
l′

1 ) ≠ ∅,
but [T l

0, T
l
1] ≠ [T

l′

0 , T
l′

1 ]. Since we use the midpoint constraint
as the representative of the interval, there is no well-defined
midpoint for such inconsistent interval pairs. To tackle this
issue, we note that by the midpoint subdivision rule, we have
either [T l

0, T
l
1] ⊂ [T

l′

0 , T
l′

1 ] or [T l′

0 , T
l′

1 ] ⊂ [T
l
0, T

l
1]. As a result,

we could recursively subdivide the larger interval until the two
intervals are identical.

VII. EVALUATION

We implement our method using C++ and evaluate the
performance on a single desktop machine with one 32-core
AMD 3970X CPU. We make full use of the CPU cores to
parallelize the BVH collision check, energy function, and
derivative computations. For all our experiments, we use
x0 = 10−3, L2 = 10−4, η = 1/7, µ = 10−2, ϵd = 10−4. The
trajectory is parameterized in configuration space using a 5th-
order composite Bézier curve with 5 segments over a horizon
of T = 5s. We use four computational benchmarks discussed
below. For all these benchmarks, we use trivial initialization,
where we pick collision-free robot poses and have the robots
stand still throughout the trajectory. Our goal is to have these
robots reach one or more goal configurations as specified by
objective functions.

A. Benchmark Problems
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Fig. 4: The number of subdivisions and cost per iteration
in seconds plotted against the computational time for our
first benchmark using triangular mesh (a) and convex hull (b)
representations.

Our first benchmark (Figure 3a) involves two LBR iiwa
robot arms simultaneously reaching 4 target points in a shared
workspace. To this end, our objective function involves a
distance measure between the robot end-effectors and the
target points, as well as a Laplacian trajectory smoothness
metric as in [22]. The convergence history as well as the
number of subdivisions is plotted in Figure 4 for both versions
of geometric representations: triangular mesh and convex hull.

Our method using triangular meshes is much slower than that
using convex hulls, due to the fine geometric details leading to
a large number of triangle-triangle pairs. Our method with the
convex hull representation converges after 359 subdivisions,
231 iterations, and 2.23 minutes of computation to reach all
4 target positions. We have also plotted the cost per iteration
in Figure 4, which increases as more subdivisions and barrier
penalty terms are introduced.

Our second benchmark (Figure 3b with successful points
in green and unsuccessful points in red) involves a single
LBR iiwa robot arm interacting with a tree-like obstacle with
thin geometric objects. Such obstacles can lead to ill-defined
gradients for infeasible discretization methods or even tunnel
through robot links [1], while our method can readily handle
such ill-shaped obstacles. We sample a grid of target positions
for the end-effector to reach and run our algorithm for each
position. Our method can successfully reach 16/56 positions.
We further conduct an exhaustive search for each unsuccessful
point. Specifically, if an unsuccessful point is neighboring a
successful point, we optimize an additional trajectory for the
end-effector to connect the two points. Such connection is
performed until no new points can be reached. In this way, our
method can successfully reach 39/56 positions. On average,
to reach each target point, our method with the convex hull
representation converges after 416 subdivisions, 246 iterations,
and 0.31 minutes of computation, so the total computational
time is 17.36 minutes.
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Fig. 5: The number of subdivisions and cost per iteration
in seconds plotted against the computational time for our
third benchmark using triangular mesh (a) and convex hull
(b) representations.

Our third benchmark (Figure 3c) involves a swarm of UAVs
navigating across each other through an obstacle. A UAV can
be modeled as a free-flying rigid body with 6 degrees of
freedom. Prior work [52] searches for only the translations
and then exploits differential flatness [53] to recover feasible
orientation trajectories. However, such orientation trajectories
might not be collision-free. Instead, we can optimize both the
translation and rotation with a collision-free guarantee. We
have experimented with both geometric representations, and
the convergence history of this example is plotted Figure 5.
Again, our method with triangular mesh can represent detailed
geometries but takes significantly more computation time. In
comparison, our method with the convex hull representation
converges after 1297 subdivisions, 188 iterations, and 25.87
minutes of computation. In Table I, we summarize the fraction
of computation for each component of our method for both of
the triangle mesh and convex hull representations. Our major
bottleneck lies in the energy evaluation, i.e. computing E(θ)



Step Time

Line-search direction computation 1.6%
Subdivision 3.3%
Safety-check 14.4%
Objective function evaluation 80.7%

TABLE I: Over an optimization, we summarize the fraction
of computation on each component. Our major bottleneck lies
in the energy evaluation, taking 80.7% of the computation.

and its derivatives. Note that we use either triangular mesh
or convex hull as our geometric representation. In the former
case, each distance term is between a pair of edges or a pair of
point and triangle. Although such distance function is cheap to
compute, the number of Pijkl terms is large, leading to a major
computational burden. In the latter case, the number of Pijkl

terms is much smaller, but each evaluation of Pijkl involves
the non-trivial computation of the shortest distance between
two general convex hulls, which is also the computational
bottleneck.

Our final benchmark (Figure 3d) plans for an armed mobile
robot to reach a grid of locations on a book-shelf. We use
convex decomposition to represent both the robot links and
the book-shelf as convex hulls. Starting from a faraway initial
guess, our method can guide the robot to reach 88/114 target
positions, achieving a success rate of 77.19%. On average
over each target point, our method with the convex hull
representation converges after 874 subdivision, 402 iterations,
and 1.77 minutes of computation, so the total computational
time is 201.78 minutes.

ith Link 1 2 3 4 5 6 7 9 10

δLi
1 3.71 5.24 4.87 5.06 5.84 6.14 6.88 7.21 7.79

TABLE II: Overestimation of Lipschitz constant for each link
of the armed mobile robot in Figure 3d (The 1st link is closest
to the root joint).

B. Conservativity of Lipschitz Constant

According to Table I, our main computational bottleneck
lies in the large number of penalty terms resulting from
repeated subdivision. This is partly due to over-estimation
of the Lipschitz constant, resulting in an overly conservative
motion bound and more subdivisions to tighten the bound. To
quantify the over-estimation for the ith rigid body, we compare
our Lipschitz constant with the following groundtruth tightest
bound:

Lij∗
1 ≜ argmin

t∈[T l
0,T

l
1]

∣
∂bij(t, θ)

∂t
∣ ,

and define the over-estimation metric as δLi
1 ≜maxj L

ij
1 /L

ij∗
1 ,

where we calculate Lij∗
1 by sampling time instances within

t ∈ [T l
0, T

l
1] at an interval of δt = 10−3 and pick the largest

value. We initialize 1000 random trajectories lasting for 1s
(T l

1 −T
l
0 = 1) for the armed mobile robot in Figure 3d and we

summarize the average ∆Li
1 over 1000 cases for each robot

link in Table II, with the 1st link being closest to the root

joint. The level of over-estimation increases for links further
down the kinematic chain, due to the over-estimation of each
joint on the chain. As a result, more subdivisions are needed
with longer kinematic chains.

C. Complexity of Geometric Representation

Apart from the over-estimation of the Lipschitz constant, the
inherent complexity of the robot geometry contributes majorly
to the number of penalty terms, especially when triangular
meshes are used. In Figure 6, we analyze the computational
time increase with respect to the number of triangles. We use
our first benchmark (Figure 3a) and subdivide the triangular
meshes uesd to represent the two robot arms. Each subdivision
increases the number of triangles by a factor of 4. Finally, we
plot the total computational time as well as the average time
per iteration. The result shows that computational time grows
nearly linearly with the number of triangles.
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Fig. 6: In our first benchmark (Figure 3a), we plot the total
computational time (a) and the average time per iteration (b)
against the number of triangles used to represent the robot
links.

D. Comparisons with Exchange Method

We combine the merits of prior works into a reliable
implementation of the exchange method [12]. During each it-
eration, the spatio-temporal deepest penetration point between
each pair of convex objects is detected and inserted into the
finite index set. To detect the deepest penetration point, we
densely sample the temporal domain with a finite interval of
ϵ = 10−3 and compute penetration depth for every pair of robot
links and each time instance. We use the exact point-to-mesh
distance computation implemented in CGAL [54] to compute
penetration depth at each time instance, and we adopt the
bounding volume hierarchy and branch-and-bound technique
to efficiently prune non-deepest penetrated points as proposed
in [6]. After the index set is updated, an NLP is formulated and
solved using the IPOPT software package [10]. We terminate
NLP when the inf-norm of the gradient is less than 10−4, same
as for our method. Note that we sample the temporal domain
with a finite interval of ϵ = 10−3 and we only insert new con-
straints into the index set and never remove constraints from
it. Therefore, our exchange solver is essentially reducing SIP
to NLP solver with progressive constraint instantiation, so that
our solver pertains to the same feasibility guarantee as an NLP
solver. Such is the strongest feasibility guarantee an exchange-
based SIP solver can provide, to the best of our knowledge. For



fairness of comparison, we only use the collision constraints
for both methods, i.e. the joint limit Equation (11) and gradient
bound Equation (12) are not used in our method for this
section.

(a) (b)

(c) (d)

Fig. 7: The result of object settling for 18 bulky objects one-
by-one (a) and jointly (b) using our method. Further, we can
settle very thin objects such as eyeglasses, either one-by-one
(c) or jointly (d).

#Bulky Object 1 2 3 4 5 6 7 9 10

Discretization 2.13 4.31 6.67 5.96 9.33 6.18 12.44 21.54 14.43
Exchange 0.11 0.06 0.11 0.14 0.22 0.31 0.84 1.93 0.40

#Thin Object 1 2 3 4 5 6 7 9 10

Discretization 3.90 8.43 4.74 22.87 24.10 9.71 23.43 10.87 11.94
Exchange - - - - - - - - -

TABLE III: Computational time in seconds for settling
10 objects using our discretization method or the exchange
method. We use “-” to indicate failed runs.

Our first comparative benchmark involves object settling,
where we drop non-convex objects into a box and use both
methods to compute the force equilibrium poses. This can be
achieved by setting the objective function to the gravitational
potential energy and optimizing a single pose for all the
objects. As compared with trajectory optimization, object
settling is a much easier task, since no temporal subdivision or
sampling is needed. We consider two modes of object settling:
the first one-by-one mode sequentially optimizes one object’s
pose per-run, assuming all previously optimized objects stay
still; the second joint mode optimizes all the objects’ poses
in a single run. The one-by-one mode is faster to compute,
but cannot find accurate force equilibrium poses. The joint
mode can find accurate poses, but takes considerably more
iterations to converge. In our first experiment, we drop 18
bulky objects into a box and the results are shown in Figure 7a
and the average computational time for the first 10 objects
is summarized in Table III. The exchange method is more
than 10× faster than our method. This is because our method
needs to consider all potential contacts between all pairs of
triangles during each iteration. In our second experiment, we
drop 18 eyeglasses into the box as illustrated in Figure 7c. Our
method can still find force equilibrium poses, but the exchange

method fails to find a feasible solution, because the eyeglasses
have thin geometries with no well-defined penetration depth.
Finally, we run our method in joint mode for both examples,
where our method takes 19 minutes for the bulky objects and
20 minutes for the thin objects. As illustrated in Figure 7bd,
the joint mode computes poses with much lower gravitational
potential energy.

(a) (b)

Fig. 8: A UAV is trapped inside a cage but trying to fly outside
to the blue target point. We show final location of the UAV
computed by our discretization method (a) and the exchange
method (b).

Our second comparative benchmark uses a toy example
illustrated in Figure 8, where a UAV is trapped in a cage
consisting of a row of metal bars. The UAV is trying to fly to
the target point outside. Our method would get the UAV close
to the target point but still trapped inside the cage, while the
exchange method will erroneously get the UAV outside the
cage however small ϵ is. This seemingly surprising result is
due to the fact that the exchange method ultimately detects
penetrations at discrete time instances with a resolution of ϵ.
However, the optimizer is allowed to arbitrarily accelerate the
UAV to a point where it can fly out of the cage within ϵ, and
the collision constraint will be missed.

Finally, we run the two algorithms on the first and third
benchmarks (Figure 3ac), which involve only a single target
position for the robots. (The other two benchmarks involve
a grid of target positions making it too costly to compute
using the exchange method.) The exchange method succeeds
in both benchmarks. On the first benchmark, the exchange
method takes 33.09 minutes to finish the computation after 123
index set updates and NLP solves, while our method only takes
5.47 minutes. Similarly, on the third benchmark, the exchange
method takes 699.23 minutes to finish the computation after
1804 index set updates and NLP solves, while our method
only takes 30.02 minutes. The performance advantage of our
method is for two reasons: First, our method does not require
the collision to be detected at the finest resolution (ϵ = 10−3

in the exchange method). Instead, we only need a subdivision
that is sufficient to find descendent directions. Second, our
method does not require the NLP to be solved exactly after
each update of the energy function. We only run one iteration
of Newton’s method per round of subdivision.

E. Comparison with Sampling-Based Method

In contrast to our locally optimal guarantee, sampling-based
methods provide a stronger asymptotic global optimality guar-
antee, so we use the open-source sampling-based algorithm
implementation [55] as a groundtruth and set their low-level
discrete collision checker to use a small sampling interval
of ϵ = 10−3. In our first comparison, we run our method
and RRT-Star on the first benchmark (Figure 3a) with a



timeout of 60 minutes. For both methods, we set the objective
function to be the weighted combination of the configuration-
space trajectory length and the Cartesian-space distance to the
target end-effector position. Throughout the optimizations, we
save the best trajectory every 10 seconds and profile their
trajectory length and distance to target in Figure 9. Our method
converges much faster to a locally optimal solution, while
RRT-Star takes a long computational time to search for better
trajectories in the 12-dimensional configuration space, making
little progress. We have also tested RRT-Star on the third
benchmark (Figure 3c) with an even higher 54-dimensional
configuration space, but it fails to compute a meaningful
trajectory within 60 minutes. This is due to the exponential
complexity of the zeroth-order sampling-based algorithms.
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Fig. 9: We profile the Cartesian-space distance to target
(a) and the configuration-space trajectory length (b) over a
trajectory optimization procedure using our algorithm and
RRT-Star, both in log-scale.

In our second comparison, we run PRM on the second
benchmark (Figure 3b) with a timeout of 20 minutes, which
is already longer than the computational time taken by our
method to reach all target positions, and we consider a target
position reached if the end-effector is within 7 centimeters
from it. In this 6-dimensional configuration space, PRM suc-
ceeds in reaching 46/56 target positions, while our method
reaches 39/56 target positions. Our lower success rate is due
to our locally optimal nature. For a higher success rate, the
sampling-based algorithms can be combined with our local
method to provide a high-quality initial guess, e.g., as done
in [56], but this is beyond the scope of this research. We
further test PRM on the fourth benchmark (Figure 3d) with a
timeout of 240 minutes, which is again longer than the total
computational time of our method. In this 11-dimensional con-
figuration space, PRM can only reach 17/114 target positions,
while our method reaches 88/114 target positions, highlighting
the benefits of our first-order algorithms.

Interval ϵ 0.1 0.05 0.025 0.0125 0.01

#UAV-Escape 10/10 7/10 2/10 0/10 0/10

TABLE IV: The behavior of UAV planned by RRT-Star under
different sample intervals ϵ.

Finally, we compare the two methods on the toy example
in Figure 8 to highlight the sensitivity of RRT-Star to the
sampling interval of the collision checker. Again, we set the
timeout to 30 minutes for RRT-Star. We use different sampling
interval ϵ and run RRT-Star for 10 times under each ϵ. The
number of times when UAV can incorrectly escape the cage is

summarized in Table IV. The UAV is correctly trapped in the
cage under sufficiently small ϵ, while it escapes under large
ϵ. For intermediary values of ϵ, the behavior of UAV depends
on the random sample locations. In contrast, our method can
guarantee that the UAV is correctly trapped inside the cage
without tuning ϵ.

F. Comparison with STOMP

We conduct additional comparison with STOMP [57], a
widely used gradient-guided trajectory optimizer. This method
uses stochastic approximation to compute gradient for a gen-
eral, non-smooth cost function. As a result, it is convenient
for us to formulate collision-avoidance constraints as a soft
penalty term. Specifically, we use the same penetration detec-
tor as in [6], which finds the deepest penetrating point between
each pair of point cloud and the convex hull. The absolute
penetration depth are summed up and used as an additional
cost function. We use the same setting for other other cost
functions and parameters and compare the performance of
the two methods on our third benchmark (Figure 3c). For
STOMP, we use 12 samples to approximate the gradient and
the evaluation of cost functions are computed in parallel for
each sample. Note that stochastic gradient approximation is
slower than analytic gradients used in our method. However,
this problem can be alleviated using finite-difference or ap-
proximate analytic gradient used by follow-up works [23, 58].
To factor out the influence of efficiency in gradient calculation
as much as possible, we plot the iteration-wise change of
smoothness cost and distance to target cost in Figure 10.
The results show that, while both methods converge, our
method achieves much faster reduction in both cost terms and
ultimately converges to a better solution.
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Fig. 10: On our third benchmark (Figure 3c), we plot the
iteration-wise change of smoothness cost (a) and distance to
target (b) for our method and STOMP.

VIII. CONCLUSION

We propose a provably feasible algorithm for collision-free
trajectory generation of articulated robots. We formulate the
underlying SIP problem and solve it using a novel feasible
discretization method. Our method divides the temporal do-
main into discrete intervals and chooses one representative
constraint for each interval, reducing the SIP to an NLP.
We further propose a conservative motion bound that ensures
the original SIP constraint is satisfied. Finally, we establish
theoretical convergence guarantee and propose practical im-
plementations for articulated robots. Our results show that our



method can generate long-horizon trajectories for industrial
robot arms within a couple minutes of computation.

Our method pertains several limitations that we consider
to address as future work. On the downside, our method
requires a large number of subdivisions to approach a feasible
and nearly optimal solution. This is partly due to an overly
conservative Lipschitz constant estimation and a linear motion
bound Lemma IV.2. In the future, we plan to reduce the
number of subdivisions and improve the computational speed
by exploring high-order Taylor models [29]. As a minor lim-
itation, our method requires a customized line-search scheme
and cannot use off-the-shelf NLP solvers, which potentially
increase the implementation complexity. Finally, our method
does not account for equality constraints, which is useful
for modeling the dynamics of the robot. Additional equality
constraints can be incorporated by combining our method with
merit-function-based techniques [44], which is an essential
avenue of future work.
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IX. FINITE TERMINATION OF ALGORITHM 1

We show that Algorithm 1 would terminate after finitely
many iterations. We will omit the parameter of a function
whenever there can be no confusion. Our main idea is to
compare the following two terms:

P̃ ≜ ∑
ijkl

(T l
1 − T

l
0)Pijkl P̄ ≜ ∑

ijkl
∫

T l
1

T l
0

Pijk(t)dt,

where we use a shorthand notation P̃ for the penalty func-
tion part of Equation (8). Conceptually, P̃ approximates P̄
in the sense of Riemann sum and the approximation error
would reduce as more subdivisions are performed. However,
the approximation error will not approach zero because our
subdivision is adaptive. Therefore, we need a new tool to
analyze the difference between P̃ and P̄ . To this end, we
introduce the following hybrid penalty function with a variable
ϵ2 controlling the level of hybridization:

P̂(ϵ2) = ∑
ijkl

⎧⎪⎪
⎨
⎪⎪⎩

(T l
1 − T

l
0)Pijkl T l

1 − T
l
0 ≥ ϵ2

∫
T l
1

T l
0

Pijk(t)dt T l
1 − T

l
0 < ϵ2,

where we use the integral form when a temporal interval is
shorter than ϵ2, and use the surrogate constraint otherwise. An
important property of P̂(ϵ2) is that it is invariant to subdivision
after finitely many iterations:

Lemma IX.1. Given fixed ϵ2, and after finitely many times of
subdivision, P̂(ϵ2) becomes invariant to further subdivision.

Proof. Since each subdivision would reduce a time interval by
a factor of 1/2, it takes finitely many subdivisions to reduce a
time interval to satisfy: T l

1 − T
l
0 < ϵ2. Therefore, after finitely

many subdivision operators, a time interval must satisfy one
of two cases: (Case I) No more subdivisions are applied to it,
making it invariant to further subdivisions; (Case II) The time
interval T l

1 − T
l
0 < ϵ2 and infinitely many subdivisions will be

applied, but the integral is invariant to subdivision.

Next, we show that the difference between P̂ and P̃ is con-
trollable via ϵ2. The following result bound their differences:

Lemma IX.2. Taking Assumption III.1, IV.1, IV.3, and assum-
ing θ is generated by some iteration of Algorithm 1, we have:

∣P̂(ϵ2) − P̃∣ = O(ϵ1−5η2 ),

for arbitrarily small fixed ϵ2.

Proof. We use the shorthand notation ∑∆T<ϵ2
ijkl to denote a

summation over intervals T l
1 − T

l
0 < ϵ2, and the following

abbreviations are used:

dt ≜dist (bij (t, θ) , ok) − d0

dm ≜dist(bij (
T l
0 + T

l
1

2
, θ) , ok) − d0.

Since θ is generated by line search, we have θ passes the safety
check, leading to the following result:

∣Pijk(t) − Pijkl∣ = ∣∫

dm

dt

dP(x)

dx
dx∣

≤

RRRRRRRRRRRRR

dP(x)

dx

RRRRRRRRRRRL2(T l
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l
0)

η

RRRRRRRRRRRRR

∣dm − dt∣

≤L1

RRRRRRRRRRRRR

dP(x)

dx
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l
0)

η

RRRRRRRRRRRRR

∣t −
T l
0 + T

l
1

2
∣ .

The second inequality above is due to the safety check
condition and monotonicity of P, ∣∇xP∣. The third inequality
above is due to Lemma IV.2. The result in our lemma is
derived immediately as follows:

∣P̂(ϵ2) − P̃∣ ≤
∆T<ϵ2

∑
ijkl
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T l
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T l
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≤ ∑
ijkl

T + ϵ2
ϵ2

L1
(T l

1 − T
l
0)

2

4

RRRRRRRRRRRRR

dP(x)

dx

RRRRRRRRRRRL2(T l
1−T

l
0)

η

RRRRRRRRRRRRR

= ∑
ijkl

T + ϵ2
ϵ2

L1(T
l
1 − T

l
0)Γ(T

l
1 − T

l
0)

Γ(T l
1 − T

l
0) ≜

T l
1 − T

l
0

4

RRRRRRRRRRRRR

dP(x)

dx

RRRRRRRRRRRL2(T l
1−T

l
0)

η

RRRRRRRRRRRRR

.

The last inequality above is by the assumption that the entire
temporal domain [0, T ] is subdivided into intervals of length
smaller than ϵ2. It can be shown by direct verification that by
choosing η < 1/5, Γ(T l

1 − T
l
0) =O(ϵ

1−5η
2 ) as T l

1 − T
l
0 → 0 and

the lemma is proved.

In a similar fashion to Lemma IX.2, we can bound the
difference in gradient:

Lemma IX.3. Taking Assumption III.1, IV.1, IV.3, and assum-
ing θ is generated by some iteration of Algorithm 1, we have:

∥∇θP̂(ϵ2) − ∇θP̃∥ = O(ϵ1−6η2 ),

for arbitrarily small fixed ϵ2.

Proof. Again, we use the shorthand notations: ∑∆T<ϵ2
ijkl , dt,

and dm. We begin by bounding the error of the integrand:

∥∇θPijk(t) − ∇θPijkl∥

=∥
dP(dt)

ddt
∇θdt −

dP(dm)

ddm
∇θdm∥

≤ ∣
dP(dt)

ddt
∣ ∥∇θdt −∇θdm∥ + ∣

dP(dt)

ddt
−
dP(dm)

ddm
∣ ∥∇θdm∥,

which is due to triangle inequality. There are two terms in the
last equation to be bounded. To bound the first term, we use
a similar argument as Lemma IV.2. Under Assumption IV.1,
there must exist some constant L3 such that:

∥∇θdt −∇θdm∥ ≤ L3 ∣t −
T l
0 + T

l
1

2
∣ .



Since θ passes the safety check, we further have:

∣
dP(dt)

ddt
∣ ∥∇θdt −∇θdm∥ ≤ L3

RRRRRRRRRRRRRR

dP(x)

dx

RRRRRRRRRRRL2(T l
1
−T l

0
)η

RRRRRRRRRRRRRR

∣t −
T l
0 + T

l
1

2
∣ .

To bound the second term, we note that ∥∇θdm∥ ≤ L4 for
some L4 because its domain is bounded. By the mean value
theorem, we have:

∣
dP(dt)

ddt
−
dP(dm)

ddm
∣ ∥∇θdm∥ ≤ L4 ∣∫

dm

dt

∂2P(x)

∂x2
dx∣

≤L4

RRRRRRRRRRRRR

∂2P(x)

∂x2

RRRRRRRRRRRL2(T l
1−T

l
0)

η

RRRRRRRRRRRRR

∣t −
T l
0 + T

l
1

2
∣ ,

where we have used the safety check condition and mono-
tonicity of ∣∇2

xP∣. Putting everything together, we establish
the result in our lemma as follows:

∥∇θP̂(ϵ2) − ∇θP̃∥ ≤
∆T<ϵ2

∑
ijkl

L3(T
l
1 − T

l
0)Γ(T

l
1 − T

l
0) +L4(T

l
1 − T

l
0)Γ

′
(T l

1 − T
l
0)

Γ′(T l
1 − T

l
0) ≜

T l
1 − T

l
0

4

RRRRRRRRRRRRR

∂2P(x)

∂x2

RRRRRRRRRRRL2(T l
1−T

l
0)

η

RRRRRRRRRRRRR

.

It can be shown that Γ′ is the dominating term and, by direct
verification, we have Γ′(T l

1 − T
l
0) =O(ϵ

1−6η
2 ) as T l

1 − T
l
0 → 0,

which proves our lemma.

A. Finite Termination of Algorithm 3

We are now ready to show the finite termination of the
line search Algorithm 3. If Algorithm 3 does not terminate, it
must make infinitely many calls to the subdivision function.
Otherwise, suppose only finitely many calls to the subdivision
is used, Algorithm 3 reduces to a standard line search for NLP
after the last call, which is guaranteed to succeed. However,
we show that using infinitely many subdivisions will contradict
the finiteness of E(θ).

Lemma IX.4. Taking Assumption III.1, IV.1, IV.3, if Algo-
rithm 3 makes infinitely many calls to subdivision, then θ is
unsafe. In other words, θ cannot pass the safety check Algo-
rithm 2 under any finite spatial-temporal subdivision.

Proof. Suppose θ is safe and Algorithm 3 is trying to update θ
to θ′ = θ+dα. Such update must fail because only finitely many
subdivisions are needed otherwise. Further, there must be some
interval [T l

0, T
l
1] that requires infinitely many subdivisions. As

a result, given any fixed ϵ3 and ϵ4, there must be some unsafe
interval [T̄ l

0, T̄
l
1] ⊂ [T

l
0, T

l
1] such that:

T̄ l
1 − T̄

l
0 ≤ ϵ3 α ≤ ϵ4.

We use the following shorthand notation:

P̄ijkl ≜P (dist(bij (
T̄ l
0 + T̄

l
1

2
, θ) , ok) − d0)

P
′

ijkl ≜P (dist(bij (
T̄ l
0 + T̄

l
1

2
, θ′) , ok) − d0)

dm ≜dist(bij (
T̄ l
0 + T̄

l
1

2
, θ) , ok) − d0

d′m ≜dist(bij (
T̄ l
0 + T̄

l
1

2
, θ′) , ok) − d0.

Since the interval is unsafe, we have:

P
′

ijkl ≥ P(ψ(T̄
l
1 − T̄

l
0)).

Finally, we can bound the difference between penalty functions
evaluated at θ and that at θ′ using mean value theorem:

∣P
′

ijkl − P̄ijkl∣ = ∣∫

d′m

dm

dP(x)

dx
dx∣

≤ max
x∈[dm,d′m]

∣
dP(x)

dx
∣ ∣dm − d

′

m∣

≤L4 max
x∈[dm−L4∥d∥ϵ4,dm+L4∥d∥ϵ4]

∣
dP(x)

dx
∣ ∥d∥ ϵ4.

The above result implies that the difference between the two
penalty functions is controllable via ϵ4. Since both ϵ3 and ϵ4
are arbitrary and independent, we can first choose small ϵ4
such that:

P̄ijkl =Θ(P
′

ijkl) ≥Θ(P(ψ(T̄
l
1 − T̄

l
0))) ≥Θ(P(ψ(ϵ3))),

and then choose small ϵ3 to make P̄ijkl arbitrarily large
by Lemma IV.4. But for θ to be safe, we need:

P̄ijkl ≤ P(L2(T
l
1 − T

l
0)

η
),

leading to a contradiction, so θ cannot be safe.

Corollary IX.5. Algorithm 3 makes finitely many calls to
subdivision, i.e., terminates finitely.

Proof. Algorithm 1 requires the initial θ to be feasible, so the
initial θ is safe. Each iteration of Algorithm 1 generates feasi-
ble iterations by Theorem V.1. If infinitely many subdivisions
are used, then Lemma IX.4 implies that some θ is unsafe,
which is a contradiction.

B. Finite Termination of Algorithm 1

After showing the finite termination of Lemma IX.4, we
move on to show the finite termination of main Algorithm 1.
Our main idea is to compare P̃ and P̂ and bound their
difference. We first show that: P̂ is unbounded if infinite
number of subdivisions are needed:

Lemma IX.6. Taking Assumption III.1, IV.1, IV.3, for any fixed
ϵ5, if Algorithm 3 makes infinitely many calls to subdivision,
then either P̂(ϵ5) is unbounded or θ is unsafe.

Proof. Following the same argument as Lemma IX.4, there
must be unsafe interval [T̄ l

0, T̄
l
1] ⊂ [T

l
0, T

l
1] with Pijkl =

Θ(P ′ijkl) ≥ Θ(P(ψ(ϵ3)) for any fixed ϵ3. Since the domain
is compact, there must be some t ∈ [T l

0, T
l
1] such that

Pijk(t) = ∞. There are two cases for the interval [T l
0, T

l
1]:

(Case I) If T l
1 − T

l
0 < ϵ5, then P̂(ϵ5) is using the integral

formula for the interval and P is unbounded by Lemma IV.4.
(Case II) If T l

1−T
l
0 ≥ ϵ5, then θ is unsafe by Lemma IX.4.



Our final proof uses the Wolfe’s condition to derive a
contradiction if infinite number of subdivisions are needed.
Specifically, we will show that the search direction is descen-
dent if P̃ is replaced by P̂ for some small ϵ2. The following
argument assumes d = d(1) and the case with d = d(2) follows
an almost identical argument.

Proof of Theorem V.2. Suppose otherwise, we have ∥d∥∞ ≥ ϵd
because the algorithm terminates immediately otherwise. Due
to the equivalence of metrics, we have ∥d∥ ≥ ϵ6 for some ϵ6.
We introduce the following shorthand notation:

Ê(θ, ϵ2) = O(θ) + µP̂(ϵ2).

We consider an iteration of Algorithm 1 that updates from θ
to θ′. Since the first Wolfe’s condition holds, we have:

E(θ′) ≤ E(θ) − c∥∇θE(θ)∥
2α ≤ E(θ) − c∥∇θE(θ)∥αϵ6.

The corresponding change in Ê(θ, ϵ2) can be bounded as
follows:

Ê(θ′, ϵ2) = Ê(θ, ϵ2) + ∫
θ′

θ
⟨∇θÊ(θ, ϵ2), dθ⟩

≤Ê(θ, ϵ2) + ∫
θ′

θ
⟨∇θÊ(θ, ϵ2) − ∇θE(θ) + ∇θE(θ), dθ⟩

≤Ê(θ, ϵ2) + ∫
θ′

θ
∥∇θÊ(θ, ϵ2) − ∇θE(θ)∥∥dθ∥ + E(θ

′
) − E(θ)

≤Ê(θ, ϵ2) +O(ϵ1−6η2 )∥d(1)∥α − c∥∇θE(θ)∥αϵ6

=Ê(θ, ϵ2) + ∥∇θE(θ)∥α(O(ϵ1−6η2 ) − cϵ6).

As long as η < 1/6, we can choose sufficiently small ϵ2
such that Ê(θ′, ϵ2) < Ê(θ, ϵ2). Since we assume there are
infinitely many subdivisions and Corollary IX.5 shows that
line search Algorithm 3 will always terminate finitely, we
conclude that Algorithm 1 will generate an infinite sequence θ
of decreasing Ê(θ, ϵ2) for sufficiently small ϵ2. Further, each
θ is safe and each Ê(θ, ϵ2) is finite by the motion bound. But
these properties contradict Lemma IX.6.

X. USING ALGORITHM 1 AS SIP SOLVER

We show that Algorithm 1 is indeed a solver of the SIP
problem Equation (1). To this end, we consider running
Algorithm 1 for an infinite number of iterations and we use
superscript to denote iteration number. At the kth iteration, we
use µ = µk, ϵd = ϵ

k
d and we assume the sequences {µk} and

{ϵkd} are both null sequences. This will generate a sequence
of solutions {θk} and we consider one of its convergent
subsequence also denoted as {θk} → θ0. We consider the first-
order optimality condition at θ0:

Definition X.1. If θ0 satifies the first-order optimality condi-
tion, then for each direction Dθ such that:

⟨Dθ,∇θdist(bij(t, θ0), ok)⟩ ≥ 0 ∀dist(bij(t, θ0), ok) = 0,

we have ⟨Dθ,∇θO(θ
0)⟩ ≥ 0.

We further assume the following generalized Mangasarian-
Fromovitz constraint qualification (GMFCQ) holds at θ0:

Assumption X.2. There exists some direction Dθ and positive
ϵ7 such that:

⟨Dθ,∇θdist(bij(t, θ0), ok)⟩ ≥ ϵ7 ∀dist(bij(t, θ0), ok) = 0.

MFCQ is a standard assumption establishing connection
between the first-order optimality condition of NLP and the
gradient of the Lagrangian function. Our generalized version
of MFCQ requires a positive constant ϵ7, which is essential for
extending it to SIP. Note that GMFCQ is equivalent to standard
MFCQ for NLP. We start by showing a standard consequence
of assuming GMFCQ:

Lemma X.3. Taking Assumption X.2, if first-order optimality
fails at a trajectory θ0, then we have a direction Dθ such that:

⟨Dθ,∇θO(θ
0
)⟩ < −ϵ8

⟨Dθ,∇θdist(bij(t, θ0), ok)⟩ > ϵ9 ∀dist(bij(t, θ0), ok) = 0.

Proof. Under our assumptions, there is a direction D1
θ satis-

fying GMFCQ and another direction D2
θ violating first-order

optimality condition. We can then consider a third direction
D3

θ =D
1
θϵ10 +D

2
θ where we have:

⟨D3
θ ,∇θO(θ

0
)⟩ = ϵ10 ⟨D

1
θ ,∇θO(θ

0
)⟩ − ϵ11

⟨D3
θ ,∇θdist(bij(t, θ0), ok)⟩ ≥ ϵ10ϵ7,

where ϵ11 is some positive constant. We can thus choose
sufficiently small ϵ10 to make the righthand side of the first
equation negative and the righthand side of the second one
positive.

Assuming a failure direction D3
θ exists, we now start to

show that the directional derivative of our objective function
E along D3

θ is bounded away from zero, which contradicts the
fact that our gradient norm threshold {ϵkd} is tending to zero.
To bound the derivative near θ0, we need to classify bij(t, θ0)
into two categories: 1) its distance to o is bounded away from
zero; 2) its distance to o is close to zero but bij is moving
away along D3

θ . This result is formalized below:

Lemma X.4. Taking Assumption III.1, for D3
θ stated in

Lemma X.3 and each tuple of ⟨i, j, k⟩, one of the following
conditions holds:

dist(bij(t, θ0), ok) > ϵ12

dist(bij(t, θ0), ok) ≤ ϵ12 ∧ ⟨D3
θ ,∇θdist(bij(t, θ0), ok)⟩ ≥

ϵ9
2
,

where ϵ12 is some positive constant.

Proof. Suppose otherwise, for arbitrarily small ϵ12, we can
find some i, j, k, t such that:

dist(bij(t, θ0), ok) ≤ ϵ12∧

⟨D3
θ ,∇θdist(bij(t, θ0), ok)⟩ <

ϵ9
2
.

(13)

We can construct a sequence of {⟨i, j, k, t, ϵ12⟩} with dimin-
ishing ϵ12 such that Equation (13) holds for each ⟨i, j, k, t, ϵ12⟩
tuple. If the sequence is finite, then there must be some:

dist(bij(t, θ0), ok) = 0 ∧ ⟨D3
θ ,∇θdist(bij(t, θ0), ok)⟩ <

ϵ9
2
,



contradicting Lemma X.3. If the sequence is infinite, then by
Assumption III.1, there is an infinite subsequence with ⟨i, j, k⟩
being the same throughout the subsequence. We denote the
subsequence as: {⟨t, ϵ12⟩}, which tends to {⟨t0,0⟩}. By the
continuity of functions we have:

dist(bij(t0, θ0), ok) = 0 ∧ ⟨D3
θ ,∇θdist(bij(t0, θ0), ok)⟩ ≤

ϵ9
2
,

again contradicting Lemma X.3.

The above analysis is performed at θ0. But by the continuity
of problem data, we can extend the conditions to a small
vicinity around θ0. We denote B(θ0, ϵ13) as a closed ball
around θ0 with a radius equal to ϵ13. We formalize this
observation in the following lemma:

Lemma X.5. Taking Assumption X.2, III.1, and for D3
θ stated

in Lemma X.3, we have:

⟨D3
θ ,∇θO(θ)⟩ < −

ϵ8
2
,

and one of the following condition holds each tuple of ⟨i, j, k⟩:

dist(bij(t, θ), ok) >
ϵ12
2

(14)

⟨D3
θ ,∇θdist(bij(t, θ), ok)⟩ ≥

ϵ9
4
, (15)

for any θ ∈ B(θ0, ϵ13).

Proof. Combining Lemma X.3, X.4, and the continuity of
problem data.

Lemma X.5 allows us to quantify the gradient norm of
E(θ, µ) (we write µ as an additional parameter of E for
convenience). The gradient norm should tend to zero as
k → ∞. However, Lemma X.5 would bound it away from
zero, leading to a contradiction.

Lemma X.6. Taking Assumption X.2, III.1, IV.1, suppose {µk}

is a null sequence, and for D3
θ stated in Lemma X.3, there

exists a D3
θ and sufficiently large k such that for any θ ∈

B(θ0, ϵ14):

⟨D3
θ ,∇θE(θ, µ

k
)⟩ < −ϵ15,

for some positive constant ϵ14.

Proof. The gradient consists of three sub-terms:

∇θE(θ, µ
k
) = ∇θO(θ) + ∇θP̄1(θ, µ

k
) + ∇θP̄2(θ, µ

k
)

P̄1(θ, µ
k
) ≜ µk

I

∑
ijkl

(T l
1 − T

l
0)Pijkl

P̄2(θ, µ
k
) ≜ µk

II

∑
ijkl

(T l
1 − T

l
0)Pijkl.

Here we use ∑I
ijkl to denote a summation over terms Pijkl

where Equation (14) holds and ∑II
ijkl denotes a summation

where Equation (14) does ont hold but Equation (15) holds.
From Lemma X.5, we have the following holds for the first
two terms:

⟨D3
θ ,∇θO(θ)⟩ < −

ϵ8
2
⟨D3

θ ,∇θP̄2(θ, µ
k
)⟩ < 0.

The third term can be arbitrarily small for sufficiently large k
because:

∣⟨D3
θ ,∇θP̄1(θ, µ

k
)⟩∣

≤µk
I

∑
ijkl

(T l
1 − T

l
0)

RRRRRRRRRRRRR

⟨D3
θ ,
∂P(x)

∂x

RRRRRRRRRRRϵ12/2

∇θ
¯dist⟩
RRRRRRRRRRRRR

≤µkT

RRRRRRRRRRRRR

∂P(x)

∂x

RRRRRRRRRRRϵ12/2

RRRRRRRRRRRRR

∣⟨D3
θ ,∇θ

¯dist⟩∣ .

Here we have used Assumption IV.1 and denote ∇θ
¯dist as the

location on trajectory where ∣⟨D3
θ ,∇θ

¯dist⟩∣ takes the maximum
value. Since {µk} is a null sequence, the third term can be
arbitrarily small and the lemma follows.

We are now ready to prove our main result:

Proof of Theorem V.3. Suppose otherwise, i.e. the first-order
optimality condition fails, then the condition of Lemma X.6
holds, indicating that ∥∇θE(θ

k, µk)∥∞ is bounded away from
zero. But this contradicts the fact that {ϵkd} is null.
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