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Second-Order Convergent Collision-Constrained Optimization-Based Planner

Chen Liang1, Xifeng Gao2, Kui Wu2, Zherong Pan2†

Abstract—Finding robot poses and trajectories represents a
foundational aspect of robot motion planning. Despite decades of
research, efficiently and robustly addressing these challenges is
still difficult. Existing approaches are often plagued by various
limitations, such as intricate geometric approximations, violations
of collision constraints, or slow first-order convergence. In this
paper, we introduce two novel optimization formulations that
offer provable robustness, achieving second-order convergence
while requiring only a convex approximation of the robot’s
links and obstacles. Our first method, known as the Explicit
Collision Barrier (ECB) method, employs a barrier function
to guarantee separation between convex objects. ECB uses an
efficient matrix factorization technique, enabling a second-order
Newton’s method with an iterative complexity linear in the
number of separating planes. Our second method, referred to as
the Implicit Collision Barrier (ICB) method, further transforms
the separating planes into implicit functions of robot poses. We
show such an implicit objective function is twice-differentiable,
with derivatives evaluated at a linear complexity. To assess
the effectiveness of our approaches, we conduct a comparative
study with a first-order baseline algorithm across six testing
scenarios. Our results unequivocally justify that our method
exhibits significantly faster convergence rates compared to the
baseline algorithm.

Index Terms—Trajectory and Pose Optimization, Collision
Constraint, Convex Analysis

I. INTRODUCTION

The issue of robot safety stands as a paramount concern,
imposing stringent constraints on motion planning algorithms.
Among these constraints, collision avoidance requirements de-
mand that the robot maintains a minimum distance from static
or moving obstacles at all times. This paper addresses the chal-
lenge of generating optimal robot poses and trajectories while
adhering to collision constraints and optimizing a user-defined
cost function. Such a problem finds practical applications in
(multi-)UAV trajectory planning [1], inverse kinematics [2],
object settling [3], and dynamic simulations [4]. Ideally, an
effective planning algorithm should possess several key at-
tributes to cater to the diverse needs of these applications:
(Scalability) handling a significant number of robot links and
obstacles; (Efficacy) rapid convergence and low iterative and
overall computational costs; (Robustness) guarantee to satisfy
all collision constraints; (Generality) applying to arbitrary
articulated robots with complex geometries. However, despite
decades of dedicated research in pursuit of such algorithms, it
remains a challenge to find a single solution that fully satisfies
all these diverse requirements.

Existing trajectory generation algorithms are engineered to
suit a set of specific applications. Take, for instance, (online)
UAV trajectory generation, where computational efficiency is
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paramount. Existing algorithm [5] employs penalty methods to
handle constraints, which can compromise robustness. In con-
trast, other algorithms such as [1, 6] offer guaranteed robust-
ness and global optimality. Unfortunately, their applicability
is limited to point robots and convex-decomposable freespace.
When dealing with general articulated robots, the formulation
of collision constraints becomes notably challenging. Many
optimization-based algorithms, as seen in the works [7, 8],
once again resort to less robust penalty-based techniques.
Furthermore, these algorithms often exhibit limited efficacy,
having only first-order convergence. Recent advancements [9,
10] have introduced interior point methods to address collision
constraints with guaranteed robustness. However, Li et al.
[9] necessitates the decomposition of robot geometry into
a large number of triangles, which scales poorly with the
complexity of the robot geometry. On the other hand, Zhang et
al. [10] relies on the strict convexity of robot links, demanding
intricate geometric modifications and suffering from first-order
convergence limitations.

Method Scalability Efficacy Robustness Generality

[5] point-penalty second-order no point
[1, 6] convex mixed-integer yes point

[9] triangle second-order yes linear motion
[10] convex first-order yes articulated
[3] point second-order no articulated

[7, 8] point-penalty first-order no articulated
[11] convex first-order yes articulated
Ours convex second-order yes articulated

TABLE I: Comparison of planning methods across four dimen-
sions: (Scalability) granularity (convex>triangle>point) of collision
constraints, finer granularity can result in a larger number of con-
straints with limited scalability (certain algorithms use point-wise
soft penalty and do not involve hard constraints, denoted as point-
penalty); (Efficacy) type/convergence-speed of underlying numerical
algorithm; (Robustness) whether collision constraints are guaranteed
to be satisfied; (Generality) allowed type of robot motions.

Main Results: We present two innovative optimization
solvers designed for collision-constrained robot pose and tra-
jectory planning. Our approach highlights a structural analysis
of the barrier function governing collision constraints between
pairs of convex polytopes. We demonstrate that the Hessian
matrix of this barrier function possesses a unique structure
that enables efficient factorization using a Schur-complement
solver, leading to our Explicit Collision Barrier (ECB) method.
Furthermore, by employing a generalized barrier function, we
eliminate the need for a separating plane between convex
polytope pairs by representing it as an implicit function of
robot poses, leading to our Implicit Collision Barrier (ICB)
method. Both of these advancements empower us to apply
second-order convergent Newton’s methods with an iterative
cost linear in the number of convex polytope pairs.

Our method exhibits several advantageous properties that
have not been simultaneously achieved by prior algorithms.
First, we decompose the robot’s geometry into convex poly-
topes rather than points [3] or triangles [9]. As a result, our
method can scale to large, complex robot and environmental
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geometries using a moderate number of geometric primitives,
leading to enhanced scalability. Second, in contrast to pre-
vious first-order convergent methods [12, 10], our approach
enjoys faster second-order convergence. Finally, our method
adopts the interior point algorithm that inherits the robustness
established by [9, 10], i.e., our method ensures the collision-
free properties of the optimize robot poses/trajectories. We
have conducted evaluations of our method across six chal-
lenging robot planning scenarios. Our results unequivocally
demonstrate that our approach achieves significantly faster
convergence compared to the first-order baseline method.

II. RELATED WORK

We review related work on collision-constrained planning,
collision constraint formulations, numerical optimization tech-
niques, and semi-infinite collision constraints.

Collision-Constrained Planning: The algorithms summa-
rized in Table I predominantly fall into the category of local
optimization methods. These approaches leverage (high-order)
derivatives of the objective/constraint functions to efficiently
identify locally optimal plans. In contrast, optimal sampling-
based methods [14, 15] pursue globally optimal plans by
exploring the entire configuration space. However, a notable
drawback of these methods is their limited scalability con-
cerning the dimensionality of the configuration space [16].
An additional category of techniques includes the control
barrier function [17], designed for dynamic systems to adhere
to specific constraints. However, these algorithms primarily
focus on constraint satisfaction and do not directly address the
planning of robot motions that fulfill users’ requirements. We
also acknowledge recent advancements [18, 19] that involve
precomputing feasible sub-domains within the configuration
space. Subsequently, mixed-integer second-order numerical
solvers are employed to derive globally optimal motion plans
restricted to these sub-domains. This approach represents a
promising alternative to our method. Their method uses ex-
pensive precomputations to find a sequence of convex subsets
in the freespace and then solve a mixed-integer programming
to find the globally optimal solution restricted to the subsets.
Instead, our method does not need the sub-domain precompu-
tation or restriction, but our solution can only achieve local
optimality.

Collision-Constraint Formulations: The local optimiza-
tion techniques outlined in Table I can be distinguished by
the granularity at which they formulate collision constraints.
Several methods [5, 3] opt to replace collision constraints with
point constraints, due to their neat closed-form derivatives.
However, this approach necessitates a considerable number
of point constraints to ensure the safety of a robot with
complex geometries. Recent advancements, as exemplified
in [9], extend point constraints to collision constraints be-
tween pairs of triangles, benefiting from closed-form second-
order derivatives. Nevertheless, even this approach requires
a substantial number of triangles to represent intricate robot
geometries, resulting in a high volume of collision constraints.
As proposed in [13, 11], the number of geometric primitives
can be significantly reduced if we can formulate collision

constraints between general convex hulls. While Escande
et al. [12] demonstrated that the distance function between
convex hulls possesses first-order derivatives, a comprehensive
exploration of second-order differentiability and the efficient
evaluation of convex constraints remains an area that requires
further investigation.

Numerical Optimization Techniques: Methods from Ta-
ble I harness the power of numerical optimization solvers
to search for optimal plans. The majority of existing ap-
proaches [5, 1, 6] cast the problem in the form of a con-
ventional (mixed-integer) Nonlinear Program (NLP) and sub-
sequently employ off-the-shelf optimization software pack-
ages [20, 21]. These algorithms typically exhibit second-
order convergence when an accurate Hessian matrix can be
evaluated. However, they regress to first-order convergence
when solely gradient information is accessible, as in [12].
Furthermore, customized optimization solvers have been de-
vised to enhance robustness or efficiency. For instance, Li
et al. [9] seamlessly integrated continuous collision checks
into the line-search procedure to circumvent the challenge of
tunneling, where the robot has no collisions at sampled time
instances, but collisions can occur in between. Meanwhile,
methods like [3, 10] strategically sample collision constraints
along the trajectory to approximate the solution of a Semi-
Infinite Program (SIP). Ni et al. [11] introduced a first-order
ADMM approach that interleaves the optimization of robot
trajectories and the separating planes between convex hulls to
facilitate parallel computation.

Semi-Infinite Collision Constraints: As clarified in Sec-
tion I, the necessity to satisfy collision constraints at infinitely
many time instances inherently gives rise to SIP problem
instances, a concept recently articulated by [3, 10]. While
this paper primarily addresses a finite set of collision con-
straints, we emphasize that our methodology can be adapted
to tackle SIP problems. Notably, existing SIP solvers propose
to transform SIP into a standard NLP by either sampling [3]
or discretizing [10] the constraints. In this context, we can
readily substitute the underlying solver in [3, 10] with our
approach to achieve second-order convergence when dealing
with convex constraints. However, it is noteworthy that, while
this enables second-order convergence in the NLP subproblem,
the convergence speed of the original SIP problem remains
an open question and warrants further exploration, which we
leave as a subject for future work.

III. PROBLEM STATEMENT

We address the challenge of collision-constrained optimiza-
tion, focusing on the task of optimizing the pose/trajectory of
a robot within the context of a twice-differentiable objective
function O(θ), where θ represents the robot’s configuration
parameter. The robot is subject to a set of collision constraints
taking the following general form:

Ci(θ) ∩Cj(θ) = ∅ ∀ij ∈ C,

Here, Ci and Cj represent pairs of potentially contacting
objects drawn from the set of contact pairs denoted as C. C●
can correspond to a link within an articulated robot or a static
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Fig. 1: We exemplify the optimization process involving two articulated robot poses, wherein the two end-effectors (red) must maintain
a certain separation distance. Previous approaches [5, 3] substitute such collision constraints with point constraints, while [9] suggests
discretizing the end-effector using a triangle mesh and employing triangle constraints. In contrast, our method builds upon the convex
constraints formulation introduced by [11, 13], where a separating plane denoted as pij is jointly optimized along with the robot poses.
While [11, 13] are first-order convergent methods, our approach stands out with its local second-order convergence.

obstacle. For the sake of generality, we assume that O(θ)
is a function of the robot’s configuration. Additionally, we
presume that C● possesses a (not necessarily strictly) convex
shape, which is a widely adopted geometric representation
for robots [12, 22, 18]. Using convex shapes can effectively
reduce the number of constraints as compared with point-
pair or triangle-pair constraints. Non-convex shapes can be
approximately decomposed into convex primitives [23]. Al-
though such approximations can shrink the space of feasible
solutions, the error can be made arbitrarily small at the price
of increasing the number of convex constraints. Consequently,
the primary optimization model addressed in this paper can be
summarized as:

argmin
θ
O(θ) s.t. Ci(θ) ∩Cj(θ) = ∅ ∀ij ∈ C. (1)

Equation 1 embraces a generalized formulation that encom-
passes both the optimization of a static robot pose and a
dynamic robot trajectory. In the case of optimizing a static
robot pose, θ corresponds to a single configuration, and C
is a finite set that enumerates all potential convex object
pairs susceptible to collision. In contrast, when optimizing
a robot trajectory, θ represents the parameterization of the
robot’s trajectory, such as the control points of a spline
curve [1, 24]. In this scenario, C expands to an infinite set that
encompasses all possible convex object pairs at infinitely many
time instances across the trajectory. This extension leads to the
formulation of SIP problem instances. In the latter case, C can
be further approached by sampling at finite time instances [3]
or discretizing [10], thus unified with the former case.

IV. METHOD

The effective resolution of Equation 1 poses practical
challenges, particularly when dealing with convex collision
constraints known for their non-differentiability [12, 3]. As il-
lustrated in Figure 1, when complex environmental geometries
are considered, the number of collision pairs can rapidly esca-
late, leading to sizable problem dimensions. In this study, we
introduce two efficient optimization techniques, both featuring
local second-order convergence and an iterative cost linear in
the number of collision pairs. Our approach draws inspiration
from recent research [13, 11], which introduced separating
planes between pairs of convex objects, represented by the
normal direction nij and offset dij . However, prior works [13,

11] employed an Alternating Optimization (AO) approach
that interleaved the updates of nij , dij and θ. Unfortunately,
this approach is limited to at most first-order convergence
speed [25]. Our primary contribution is the development of two
quasi-Newton algorithms that jointly optimize nij , dij , and θ
without significantly increasing the computational overhead.
To achieve this, we augment our objective function with a
barrier energy designed to prevent the intersection of Ci and
Cj . In our ECB method, we derive the Hessian matrix of
the augmented objective function concerning both nij , dij ,
and θ. Subsequently, we efficiently invert this large Hessian
matrix using the Schur-complement lemma [26]. In our ICB
method, we eliminate nij and dij by expressing them as
implicit functions of θ and derive its Hessian using the implicit
function theorem [27].

A. ECB Method

A convex object can be represented in two ways: the
V-representation characterizes C● using a set of vertices,
while the H-representation characterizes it using a set of
separating planes. In this work, we consistently utilize the
V-representation. Without any ambiguity, we denote C● as
the set of vertices. We assume each vertex x(θ) ∈ C● is
a twice-differentiable function of θ, which holds generally
for articulated robot with x(θ) being the forward-kinematic
function. To define a valid separating plane pij ≜ (nij , dij ),
it should ensure that the vertices of Ci and Cj are on opposite
sides of it, i.e.:

nT
ijx + dij < 0 ∀x ∈ Ci ∧n

T
ijx + dij > 0 ∀x ∈ Cj .

We enforce each of these linear constraints by introducing a
barrier energy function P (●) and augmenting the objective
function as follows:

Ō(θ,⋯,pij ,⋯) = O(θ) + ∑
ij∈C

Pij(θ,pij)

Pij(θ,pij) ≜ ∑
x∈Ci

P (−nT
ijx(θ) − dij) + ∑

x∈Cj

P (nT
ijx(θ) + dij),

where we assume the barrier function P (●) is strictly convex,
defined in the interval (0,∞), and satisfies the condition
lim●→0+ P (●) = ∞, where the last property ensures the
feasibility of our problem, since any finite function value
corresponds to a feasible solution. Put together, our primary
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optimization problem Equation 1 is approximately by the
following barrier-augmented optimization:

argmin
θ,p●

Ō(θ,⋯,pij ,⋯) s.t. ∥nij∥ = 1 ∀ij ∈ C.

Note that we still need an additional constraint to ensure unit
normal vectors for the separating planes. This method was
previously proposed in [11]. However, they optimized pij and
θ in separate sub-problems. In contrast, we introduce a joint
optimization formulation for both pij and θ, achieving faster
convergence. We refer to this method as the ECB method since
all variables are explicitly treated as independent decision
variables.

Our approach to optimizing the explicit formulation em-
ploys a standard Newton’s method. We calculate the joint
Hessian matrix ∇2Ō and then determine the joint update
direction δ ≜ (δθT ,⋯, δpT

ij ,⋯)
T

by solving the following
KKT system:

0 = (
∇2Ō J
JT 0

)(
δ
λ
) + (

∇Ō

0
) , (2)

where J represents the Jacobian of the unit normal constraint
∥nij∥ = 1, with each column of J corresponding to the normal
vector of a separating plane. However, this straightforward
approach can encounter two main issues. Firstly, when dealing
with complex environmental geometries, the number of sep-
arating planes can reach tens of thousands [10], resulting in
large Hessian matrices. If we use standard direct factorization
methods to invert such matrices, the computational overhead
can compromise the advantages of second-order convergence.
Additionally, the Hessian matrix can exhibit exceedingly large
condition numbers, leading to numerical instability. Fortu-
nately, we can leverage the unique structure of the Hessian
matrix to develop an efficient and stable matrix factorization
scheme with linear complexity in the number of separating
planes.

We first notice that a separating plane only appears in
a single term Pij . Therefore, the Hessian matrix takes the
following form:

∇
2
Ō =

⎛
⎜
⎜
⎜
⎝

∇θθŌ ⋯∇θpPij ⋯

⋮ ⋱

∇pθPij ∇ppPij

⋮ ⋱

⎞
⎟
⎟
⎟
⎠

.

We propose a Gauss elimination approach to solve the KKT
system in Equation 2 and show that this procedure is well-
defined. We first notice that λ can also be decomposed into
λij , each related to one separating plane. The joint linear sub-
system of pij , λij takes the following form:

(
∇pθPij

0
) δθ + (

∇ppPij nij

nT
ij 0

)(
δpij

λij
) = (

∇pPij

0
) ,

where we abuse notation and add a pending zero to nij when
necessary. Suppose the coefficient matrix is invertible, we can
solve for δpij as:

δpij =Hij (∇pPij −∇pθPijδθ)

Hij ≜∇ppP
−1
ij [I −nijn

T
ij

∇ppP
−1
ij

nT
ij∇ppP −1ij nij

] ,
(3)

where we have used Gauss elimination to factor out λij

assuming ∇ppPij is invertible. Next, we plug all the δpij

into the first equation to yield the following Schur-complement
system of θ alone:

Hθδθ =

⎡
⎢
⎢
⎢
⎢
⎣

∇θŌ − ∑
ij∈C
∇θpPijHij∇pPij

⎤
⎥
⎥
⎥
⎥
⎦

(4)

Hθ ≜

⎡
⎢
⎢
⎢
⎢
⎣

∇θθŌ − ∑
ij∈C
∇θpPijHij∇pθPij

⎤
⎥
⎥
⎥
⎥
⎦

,

which is then solved for θ. Notably, the above procedure has
a complexity linear in the number of hyper planes, which is
much faster than using an off-the-shelf solver to factorize
the large KKT matrix in Equation 2. However, the well-
definedness of the above system relies on the inversion of
the matrix ∇ppPij and Hθ. Using the Schur-complement
lemma [26], we have the following corollary (proved in
appendix):

Corollary IV.1. If ∇2Ō ⪰ ϵI , then the Schur-complementary
solver is well-defined and Hθ ⪰ ϵI .

In practice, however, the strict requirement of ∇2Ō ⪰ ϵI
may not be met, and we introduce a diagonal perturbation
to ensure well-definedness. Specifically, we employ an adjust-
ment function A(H, ϵ) that ensures all eigenvalues of H to be
greater than a specified ϵ. This adjustment is applied to both
∇ppPij and Hθ. The primary challenge in this adjustment
process is the eigen decomposition. Thankfully, this operation
is computationally efficient due to the relatively small matrix
sizes involved. Following the computation of δ, we utilize a
line-search strategy to find a step size that strictly decreases
the objective function. Finally, we re-normalize nij after the
update. The algorithm pipeline for the ECB method is outlined
in Algorithm 1.

Algorithm 1 ECB Method

Input: Initial θ,pij ,C, ϵ1, ϵ2, ϵ
Output: Locally optimal θ

1: for ∥∇Ō∥∞ > ϵ do
2: Compute derivatives in Equation 2
3: for ij ∈ C do
4: ∇ppPij ← A(∇ppPij , ϵ1)
5: Form complement system for pij (Equation 3)
6: Form complement system for θ (Equation 4)
7: Hθ ← A(Hθ, ϵ2) then solve for δθ
8: for ij ∈ C do
9: Plug δθ in Equation 3 for δpij

10: Use line-search procedure to find step size α
11: Update θ ← θ + αδθ
12: for ij ∈ C do
13: Update pij ← pij + αδpij , nij ← nij/∥nij∥

B. ICB Method

The primary computational challenge encountered in the
ECB method is the inversion of the large Hessian matrix.
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However, many variables correspond to separating planes,
which are intermediary variables unrelated to the robot’s
motion itself. Hence, it is advantageous to eliminate these
variables, leaving only θ as the independent variable. In this
section, we demonstrate that it is indeed possible to express
pij as a well-defined, sufficiently smooth function of θ. For
this reason, we refer to this method as the ICB method. To
initiate this discussion, we observe that each plane pij only
appears in the collision penalty terms. Therefore, the optimal
pij should satisfy the following optimization problem:

pij ∈ argmin
nij ,dij

Pij(θ,pij) s.t. ∥nij∥ = 1.

However, the function defined above does not guarantee a
well-defined pij(θ) because the solution may not be unique
due to the additional non-convex unit-norm constraint. To
obtain a well-defined function pij(θ), we turn to an equivalent
formulation based on the Support Vector Machine (SVM) [28].
This formulation replaces the non-convex constraint ∥nij∥ = 1
with a relaxed convex constraint ∥nij∥ ≤ 1, giving the
following alternative definition:

pij ∈ argmin
nij ,dij

Pij(θ,pij) s.t. ∥nij∥ ≤ 1.

It is evident that the above optimization is convex. However,
convexity alone is insufficient to express pij as a function of θ
because there may not be a unique minimizer. Even if a unique
solution exists, the resulting implicit function pij(θ) may
not be differentiable. As pointed out in [27], general convex
optimization problems only have sub-gradients. Therefore, we
introduce the following smoothed optimization amenable to
differentiability, employing our log-barrier function P (●) to
handle the additional convex constraint:

pij(θ) ≜ argmin
nij ,dij

Pij(θ,pij) + P (1 − ∥nij∥). (5)

We have the several essential properties for Equation 5 as
summarized below (proved in appendix):

Corollary IV.2. Assuming Ci and Cj are closed set, Ci or
Cj has non-zero volume, i.e. ∣Ci∣ ≠ 0 or ∣Cj ∣ ≠ 0, and P (●)
is third-order differentiable, we have the following properties:
1) Equation 5 has a solution iff Ci(θ)∩Cj(θ) = ∅; 2) pij is
a well-defined function of θ; 3) pij(θ) is twice-differentiable;
4) limdist(Ci,Cj)→0+ Pij(θ,pij(θ)) = ∞, with dist(●, ●) being
the distance between convex polytopes.

Corollary IV.2 ensures the differentiable structure of pij(θ)
as long as one of the convex sets is non-degenerate. This
limitation is not significant for robotic applications because
robot links practically always have non-zero volume. With this
structure, we can define an implicit optimization approach and
solve the following optimization problem:

argmin
θ
Õ(θ) ≜ Ō(θ,⋯,pij(θ),⋯), (6)

replacing the explicit variable pij with the implicit function
pij(θ). Corollary IV.2 3) ensures that Equation 6 has the
twice-differentiable objective function and Corollary IV.2 4)
ensures that the feasibility of Equation 6 implies the collision-
free property. To evaluate such objective function at given θ,

Algorithm 2 ICB Method

Input: Initial θ,pij ,C, ϵ1, ϵ
Output: Locally optimal θ

1: for ∥∇Õ∥∞ > ϵ do
2: for ij ∈ C do
3: pij(θ)←solution to Equation 5
4: Compute derivatives of pij(θ) via Equation 7
5: Form ∇Õ and ∇2Õ

6: Adjust ∇2Õ ← A(∇2Õ, ϵ1)
7: Form search direction δθ ← −∇−2Õ∇Õ
8: Use line-search procedure to fine step size α
9: Update θ ← θ + αδθ

we need to solve Equation 5 for every pair of convex sets
in close proximity. After the solution, we can evaluate the
first- and second-order derivative of pij(θ) and Õ (appendix).
The computational complexity of these equations is linear
with respect to the number of separating planes, similar
to our explicit algorithm. However, solving Equation 5 for
each pair of convex sets may initially appear computationally
burdensome. Fortunately, we can expedite the process by
employing a warm-start strategy, where we retain the solu-
tion from the previous iteration. If this warm-start approach
fails (for instance, if the solution from the last iteration is
infeasible), we can establish a feasible initial estimate by
computing the closest pair of points on Ci and Cj . We then
use this information to determine the initial separating plane,
setting it as the middle sectioning plane. In practice, we
can solve the subproblems in Equation 5 with just a few
Newton iterations, and all of these subproblems can be solved
in parallel. The algorithmic workflow of the ICB method is
summarized in Algorithm 2. Since the Hessian matrix of Õ
remains relatively small, we can calculate its dense eigen-
decomposition, which is essential for matrix inversion and
performing the positive-definite adjustment. This adjustment
ensures that the minimal eigenvalue of the Hessian matrix is
at least ϵ1.

∣θ∣ ∣C∣
ECB ICB AO

(a) 54 50 49 50
(b) 108 716 570 714
(c) 24 1757 1024 1266
(d) 36 3099 3585 2444
(e) 54 6424 11122 6892
(f) 33 973 837 899

TABLE II: The number of degrees of freedom ∣θ∣ and separating
planes ∣C∣ for each benchmarking scenario.

V. EVALUATION

We conducted our experiments using C++ on a single
desktop machine equipped with an 8-core AMD EPYC 7K62
CPU. All available cores were utilized to facilitate parallel
computations related to separating planes, such as the com-
putation of per-plane Schur-complements in the ECB method
and the evaluation of implicit functions and their derivatives
in the ICB method. We also incorporated the widely used
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(a) (b) (c) (d) (e) (f)

Fig. 2: The six scenarios used for evaluating the three methods: bulky object settling (a), thin object settling (b), quadruple-arm reaching
(c), UAV trajectory generation (d), long-distance UAV trajectory generation (e), basket-reaching (f).

ECB ICB AO
Scenario ϵ = 10−1 ϵ = 10−4 ϵ = 10−1 ϵ = 10−4 ϵ = 10−1 ϵ = 10−4

(a) 697 26906 337 21610 24182 N.A.
(b) 6898 10329 1470 13245 42000 79300
(c) 424 2356 132 525 371 N.A.
(d) 1068 1987 406 623 1983 5010
(e) 1802 2936 1115 1396 2305 6773
(f) 219 1066 159 400 277 N.A.

TABLE III: The number of iterations for the three algorithms to
reach difference level of gradient norm ϵ (N.A. denotes the algorithm
cannot finish computation within the time limit).

ECB ICB AO
Scenario ϵ = 10−1 ϵ = 10−4 ϵ = 10−1 ϵ = 10−4 ϵ = 10−1 ϵ = 10−4

(a) 0.04 1.70 0.02 1.44 1.14 N.A.
(b) 3.58 5.40 0.74 7.54 20.63 38.56
(c) 2.58 38.05 0.76 5.51 1.78 N.A.
(d) 13.44 30.80 4.99 9.56 27.28 81.06
(e) 107.88 222.79 76.74 109.99 161.08 679.28
(f) 2.57 26.73 1.72 7.71 4.47 N.A.

TABLE IV: The computational time (min) for the three algorithms
to reach difference level of gradient norm ϵ.

acceleration technique of broadphase collision checks, similar
to the one employed in prior works [9, 11]. This technique
excludes distant pairs of convex hulls from consideration,
introducing barrier terms only when the convex hulls are in
close proximity. It is important to note that once inserted,
these barrier terms are not removed, even if the pair of
convex hulls later move apart. Throughout our analysis, we
require our penalty function to be positive and strictly convex.
One function satisfying our needs is the layered penalty
function [29], which is used in our implementation. Finally,
we use hyper-parameters ϵ1 = 0.001 and ϵ2 = 0.001 throughout
our experiements.

Additionally, we integrated our solver with an implemen-
tation of the SIP solver from [10]. This allows us to solve
SIP problem instances, ensuring collision-free trajectories at
every continuous time interval, by leveraging their constraint
discretization method. For comparison, both the ECB and
ICB methods are compared with the baseline Alternating
Optimization (AO) technique [11], which optimizes θ and
pij in separate subproblems, where we also optimize pij

subproblems in parallel. This is state-of-the-art optimization
technique, allowing the optimization of arbitrary articulated
robot poses under convex constraints, with the only difference
being the convergence speed.

We assess the performance of our method using a series
of six challenging benchmarks, as outlined in Figure 2. The
first two benchmarks involve object settling problems, with
bulky objects (a) and thin objects (b) dropped into a box.

These problems require us to compute the static equilibrium
poses of the objects. To this end, we minimize the gravita-
tional potential energy as our objective function O. Since we
optimize a single pose, these scenarios only involve a finite set
of collision constraints. The remaining four scenarios focus on
trajectory optimization problems, where we solve SIP problem
instances by integrating both our methods and AO [11] into
the SIP solver framework [10]. For all four examples, our
objective function O involves a distance-to-target cost term
and a Laplacian trajectory smoothness cost. In Figure 2 (c),
four robot arms reach various end-effector positions on a table,
while avoiding obstacles. In Figure 2 (d), we optimize the
trajectories of six UAVs with a giraffe-shaped obstacle in the
middle. Figure 2 (e) extends this challenge with longer tra-
jectories for the nine UAVs and multiple obstacles along their
paths. Finally, Figure 2 (f) presents three fetch robots reaching
3 positions in a basket. In these scenarios, the trajectories for
each robot’s configuration space are parameterized using high-
order spline curves, with the number of degrees of freedom
and separating planes summarized in Table II, which shows
that our method can scale to complex high-DOF robots and
environmental setups. We measure the number of iterations
and computational costs required to reach different gradient
norm values, and the results are summarized in Table III
and Table IV, respectively. We further plot the evolution of
energy values overtime for two of our results in Figure 3.
Note that as local optimization methods, different techniques
can converge to different solutions and energy values.
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Fig. 3: We plot the energy value evolution for two of the
examples in Figure 2.

Our results clearly demonstrate the superior convergence
speed of our method compared to AO, especially when aim-
ing for highly optimal motion plans with a small threshold
value (ϵ). The key factor behind this superior performance
is the significantly lower number of iterations required by
our method, while maintaining a comparable per-iteration
cost. Furthermore, it is worth noting that ICB exhibits faster
convergence compared to ECB, despite both methods being
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locally second-order. This can be attributed to ICB’s ap-
proach of computing the optimal separating planes during each
iteration. Although this leads to a slightly higher iterative
cost, the overall reduction in the number of iterations more
than compensates for this additional computational overhead.
In summary, our method consistently achieves a remarkable
reduction in computational time, with a speedup ranging from
5.12 to 206.34 for pose optimization (Figure 2a-b) and 2.63
to 151.23 for trajectory optimization (Figure 2c-f).

VI. CONCLUSION & LIMITATIONS

We present innovative second-order optimization-based
planners for both robot poses and trajectories, building upon
the convex constraint formulation introduced by [13, 11]. A
key distinguishing feature of our approach is the efficient
application of Newton’s method to simultaneously optimize
the separating planes and robot poses. Our work has paved
the way for several promising avenues in future research. ICB
is more efficient than ECB, requiring even fewer iterations
to converge. However, it demands a more complex imple-
mentation with an intricate inner loop of optimization and
a careful treatment of second-order derivatives. The reliable
evaluation of these derivatives under finite-precision floating-
point formats requires further investigation. Moreover, due
to the inherent complexity of the underlying problem, our
method may still be time-consuming. In addition, our method
can be extended to incorporate robot dynamics by utilizing
differential flatness such as [30], i.e. formulating the flat
variables as decision variables. Finally, our method is a form
of local optimization, which suffers from sub-optimal or even
useless solutions, i.e., our method cannot explore multiple
homotopy classes to find the optimal solution. This issue can
be alleviated by combining our method with search-based
methods or multi-start optimization.
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APPENDIX: ADDITIONAL PROOFS

Proof of Corollary IV.1. ∇2Ō is positive definite and so is all
its principal submatrices. As a result, ∇ppPij is invertible and
nT

ij∇ppP
−1
ij nij ≠ 0 so Hij is well-defined. We further rewrite:

Hij =∇ppP
− 1

2

ij [I − n̄ijn̄
T
ij]∇ppP

− 1
2

ij

n̄ij ≜∇ppP
− 1

2

ij nij/∥∇ppP
− 1

2

ij nij∥,

from which we immediately have ∇ppP
−1
ij ⪰ Hij ⪰ 0. By

Guttman rank additivity [31], we have the following matrix is
positive definite:

H̄θ ≜

⎡
⎢
⎢
⎢
⎢
⎣

∇θθŌ − ∑
ij∈C
∇pθPij∇ppP

−1
ij ∇pθPij

⎤
⎥
⎥
⎥
⎥
⎦

.

Combined with the fact that ∇ppP
−1
ij ⪰Hij , we have: Hθ ⪰

H̄θ ≻ 0. Note the above argument only requires ∇2Ō ⪰ 0.
If we further have: ∇2Ō ⪰ ϵI , then we can apply the above
argument to the perturbed matrix:

(
∇2Ō J
JT 0

) − (
ϵI

0
) ,

which immediately yields: Hθ ⪰ H̄θ ⪰ ϵI .

Proof of Corollary IV.2. 1) If Equation 5 is feasible, then
nij ≠ 0 because otherwise we have P (−dij) + P (dij) < ∞.
But this implies dij ∈ (0,∞) and −dij ∈ (0,∞) which is
impossible. Therefore, we can verify that nij/∥nij∥, dij/∥nij∥

is a plane separating Ci and Cj . Conversely, if Ci ∩Cj = ∅,
then dist(Ci,Cj) > 0, i.e., we have a separating plane nij such
that −nT

ijx(θ)−dij > 0 for all x(θ) ∈ Ci and nT
ijx(θ)+dij > 0

for all x(θ) ∈ Cj . We can then choose α ∈ (0,1) sufficiently
close to 1 such that: −αnT

ijx(θ) − dij > 0 for x(θ) ∈ Ci

and αnT
ijx(θ) + dij > 0 for x(θ) ∈ Cj . And we can

immediately verify that pij = (αnij
T , dij

T )
T

is a feasible
solution of Equation 5.

2) This property essentially requires the uniqueness of
minimizer. To establish uniqueness, we can write the Hessian
of the objective function of Equation 5 as:

H̃ij(θ,pij) ≜ ∇2
pij
[Pij(θ,pij) + P (1 − ∥nij∥)]

= ∑
x∈Ci

P ′′(−nT
ijx(θ) − dij) (

x(θ)
1
)(x(θ)T , 1)+

∑
x∈Cj

P ′′(nT
ijx(θ) + dij) (

x(θ)
1
)(x(θ)T , 1) +∇2

pij
[P (1 − ∥nij∥)] .

We show that H̃ij must be a matrix of full-rank. Note that
P ′′(−nT

ijx(θ) − dij) > 0 and P ′′(nT
ijx(θ) + dij) > 0 due to

the strong convexity of P . Next, note that P (1 − ∥nij∥) is a
convex function because it is a composite of a convex function
−1+∥nij∥ and a non-decreasing function P (−●) [26]. Further,
we have the top-left entry of Hessian taking the following
form:

∂2P (1 − ∥nij∥)

∂nij,x
2

=
n2

ij,y +n
2
ij,z

∥nij∥
3(1 − ∥nij∥)

+
n2

ij,x

∥n2
ij∥(1 − ∥nij∥)

> 0.

This implies the Hessian of P (1 − ∥nij∥) is a positive semi-
definite, non-zero matrix, so it has the following diagonaliza-

tion:
∂2P (1 − ∥nij∥)

∂nij
2

= V ΣV T ,

where 0 ≠ Σ ⪰ 0 and V is a orthogonal matrix. Putting all
these facts together, we have:

H̃ij =UUT

U ≜ (U1,U2,U3 )

U1 ≜(⋯,
√

P ′′(−nT
ijx(θ) − dij)(

x(θ) ∈ Ci

1
),⋯)

U2 ≜(⋯,
√

P ′′(nT
ijx(θ) + dij)(

x(θ) ∈ Cj

1
),⋯)

U3 ≜(
V1 V2 V3

0 0 0
)
√
Σ.

Without a loss of generality, we can assume ∣Ci∣ ≠ 0 and
Σ11 > 0. Then x(θ) ∈ Ci spans R3 and hence the following
vectors span R4:

(⋯,
√

P ′′(−nT
ijx(θ) − dij)(

x(θ) ∈ Ci

1
),⋯, (

V1

√
Σ11

0
)) .

Put together, we have U spans R4 and H̃ij = UUT ≻ 0. Due
to the arbitarity of pij , we have Equation 5 is a strictly convex
optimization and pij is a unique minimizer.

3) Due to the strict convexity, pij(θ) is equivalently defined
as the solution of:

G̃ij(θ,pij) ≜ ∇pij [Pij(θ,pij) + P (1 − ∥nij∥)] = 0.

Since H̃ij(θ,pij) has full-rank, we can then invoke the high-
order implicit function theorem to see that pij(θ) is a twice-
differentiable function of θ if the barrier P (●) is third-order
differentiable.

4) Denote d ≜ dist(Ci,Cj) > 0, then for every separating
plane pij with ∥nij∥ = 1, we have −nT

ijx(θ)−dij < d for some
x(θ) ∈ Ci and nT

ijx(θ)+dij < d for some x(θ) ∈ Cj because
otherwise dist(Ci,Cj) > d. Now the solution to Equation 5 can
be denoted as a generalized separating plane with ∥nij∥ < 1, so
we have −nT

ijx(θ)−dij < d∥nij∥ < d for some x(θ) ∈ Ci and
nT

ijx(θ) + dij < d∥nij∥ < d for some x(θ) ∈ Cj . As a result
we have: limd→0+ Pij(θ,pij(θ)) ≥ limd→0+ P (d) =∞.

APPENDIX: DERIVATIVES

We use Einstein’s notation with scripts α,β, γ:

∂pij(θ)
∂θα

= −H̃−1
ij

∂G̃ij

∂θα

∂2pij(θ)
∂θα∂θβ

= −H̃−1
ij [

∂2G̃ij

∂θα∂θβ
+ ∂H̃ij

∂θα

∂pij(θ)
∂θβ

+

∂H̃ij

∂θβ

∂pij(θ)
∂θα

+ ∂H̃ij

∂pγ
ij

∂pij(θ)
∂θα

∂pγ
ij(θ)
∂θβ

]

dÕ
dθ
= ∂Õ

∂θ
+ ∑

ij∈C

∂Õ
∂pij

∂pij(θ)
∂θ

d2Õ
dθ2

= ∂2Õ
∂θ2
+

∑
ij∈C

[ ∂2Õ
∂θ∂pij

∂pij(θ)
∂θ

+ ∂pij(θ)
∂θ

T ∂2Õ
∂pij∂θ

+

∂pij(θ)
∂θ

T ∂2Õ
∂pij

2

∂pij(θ)
∂θ

+ ∂Õ
∂pα

ij

∂2pα
ij(θ)

∂θ2
].

(7)
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